--- _id: '14243' abstract: - lang: eng text: 'Two-player zero-sum "graph games" are central in logic, verification, and multi-agent systems. The game proceeds by placing a token on a vertex of a graph, and allowing the players to move it to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In "bidding games", however, the players have budgets and in each turn, an auction (bidding) determines which player moves the token. So far, bidding games have only been studied as full-information games. In this work we initiate the study of partial-information bidding games: we study bidding games in which a player''s initial budget is drawn from a known probability distribution. We show that while for some bidding mechanisms and objectives, it is straightforward to adapt the results from the full-information setting to the partial-information setting, for others, the analysis is significantly more challenging, requires new techniques, and gives rise to interesting results. Specifically, we study games with "mean-payoff" objectives in combination with "poorman" bidding. We construct optimal strategies for a partially-informed player who plays against a fully-informed adversary. We show that, somewhat surprisingly, the "value" under pure strategies does not necessarily exist in such games.' acknowledgement: This research was supported in part by ISF grant no.1679/21, by the ERC CoG 863818 (ForM-SMArt), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Avni G, Jecker IR, Zikelic D. Bidding graph games with partially-observable budgets. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol 37. ; 2023:5464-5471. doi:10.1609/aaai.v37i5.25679' apa: Avni, G., Jecker, I. R., & Zikelic, D. (2023). Bidding graph games with partially-observable budgets. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (Vol. 37, pp. 5464–5471). Washington, DC, United States. https://doi.org/10.1609/aaai.v37i5.25679 chicago: Avni, Guy, Ismael R Jecker, and Dorde Zikelic. “Bidding Graph Games with Partially-Observable Budgets.” In Proceedings of the 37th AAAI Conference on Artificial Intelligence, 37:5464–71, 2023. https://doi.org/10.1609/aaai.v37i5.25679. ieee: G. Avni, I. R. Jecker, and D. Zikelic, “Bidding graph games with partially-observable budgets,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, United States, 2023, vol. 37, no. 5, pp. 5464–5471. ista: 'Avni G, Jecker IR, Zikelic D. 2023. Bidding graph games with partially-observable budgets. Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI: Conference on Artificial Intelligence vol. 37, 5464–5471.' mla: Avni, Guy, et al. “Bidding Graph Games with Partially-Observable Budgets.” Proceedings of the 37th AAAI Conference on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 5464–71, doi:10.1609/aaai.v37i5.25679. short: G. Avni, I.R. Jecker, D. Zikelic, in:, Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023, pp. 5464–5471. conference: end_date: 2023-02-14 location: Washington, DC, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2023-02-07 date_created: 2023-08-27T22:01:18Z date_published: 2023-06-27T00:00:00Z date_updated: 2023-09-05T08:37:00Z day: '27' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v37i5.25679 ec_funded: 1 external_id: arxiv: - '2211.13626' intvolume: ' 37' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1609/aaai.v37i5.25679 month: '06' oa: 1 oa_version: Published Version page: 5464-5471 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 37th AAAI Conference on Artificial Intelligence publication_identifier: isbn: - '9781577358800' publication_status: published quality_controlled: '1' scopus_import: '1' status: public title: Bidding graph games with partially-observable budgets type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2023' ... --- _id: '13310' abstract: - lang: eng text: Machine-learned systems are in widespread use for making decisions about humans, and it is important that they are fair, i.e., not biased against individuals based on sensitive attributes. We present runtime verification of algorithmic fairness for systems whose models are unknown, but are assumed to have a Markov chain structure. We introduce a specification language that can model many common algorithmic fairness properties, such as demographic parity, equal opportunity, and social burden. We build monitors that observe a long sequence of events as generated by a given system, and output, after each observation, a quantitative estimate of how fair or biased the system was on that run until that point in time. The estimate is proven to be correct modulo a variable error bound and a given confidence level, where the error bound gets tighter as the observed sequence gets longer. Our monitors are of two types, and use, respectively, frequentist and Bayesian statistical inference techniques. While the frequentist monitors compute estimates that are objectively correct with respect to the ground truth, the Bayesian monitors compute estimates that are correct subject to a given prior belief about the system’s model. Using a prototype implementation, we show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds, and if a college is fair in admitting students while maintaining a reasonable financial burden on the society. Although they exhibit different theoretical complexities in certain cases, in our experiments, both frequentist and Bayesian monitors took less than a millisecond to update their verdicts after each observation. acknowledgement: 'This work is supported by the European Research Council under Grant No.: ERC-2020-AdG101020093.' alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mahyar full_name: Karimi, Mahyar id: f1dedef5-2f78-11ee-989a-c4c97bccf506 last_name: Karimi orcid: 0009-0005-0820-1696 - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. Monitoring algorithmic fairness. In: Computer Aided Verification. Vol 13965. Springer Nature; 2023:358–382. doi:10.1007/978-3-031-37703-7_17' apa: 'Henzinger, T. A., Karimi, M., Kueffner, K., & Mallik, K. (2023). Monitoring algorithmic fairness. In Computer Aided Verification (Vol. 13965, pp. 358–382). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-37703-7_17' chicago: Henzinger, Thomas A, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik. “Monitoring Algorithmic Fairness.” In Computer Aided Verification, 13965:358–382. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-37703-7_17. ieee: T. A. Henzinger, M. Karimi, K. Kueffner, and K. Mallik, “Monitoring algorithmic fairness,” in Computer Aided Verification, Paris, France, 2023, vol. 13965, pp. 358–382. ista: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. 2023. Monitoring algorithmic fairness. Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13965, 358–382.' mla: Henzinger, Thomas A., et al. “Monitoring Algorithmic Fairness.” Computer Aided Verification, vol. 13965, Springer Nature, 2023, pp. 358–382, doi:10.1007/978-3-031-37703-7_17. short: T.A. Henzinger, M. Karimi, K. Kueffner, K. Mallik, in:, Computer Aided Verification, Springer Nature, 2023, pp. 358–382. conference: end_date: 2023-07-22 location: Paris, France name: 'CAV: Computer Aided Verification' start_date: 2023-07-17 date_created: 2023-07-25T18:32:40Z date_published: 2023-07-18T00:00:00Z date_updated: 2023-09-05T15:14:00Z day: '18' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1007/978-3-031-37703-7_17 ec_funded: 1 external_id: arxiv: - '2305.15979' file: - access_level: open_access checksum: ccaf94bf7d658ba012c016e11869b54c content_type: application/pdf creator: dernst date_created: 2023-07-31T08:11:20Z date_updated: 2023-07-31T08:11:20Z file_id: '13327' file_name: 2023_LNCS_CAV_HenzingerT.pdf file_size: 647760 relation: main_file success: 1 file_date_updated: 2023-07-31T08:11:20Z has_accepted_license: '1' intvolume: ' 13965' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 358–382 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Computer Aided Verification publication_identifier: eisbn: - '9783031377037' eissn: - 1611-3349 isbn: - '9783031377020' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Monitoring algorithmic fairness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13965 year: '2023' ... --- _id: '13221' abstract: - lang: eng text: The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totallyordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications. acknowledgement: We thank Christof Löding for pointing us to some results on PSpace-hardess of universality problems and the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093 and the Israel Science Foundation grant 2410/22. alternative_title: - LIPIcs article_number: '17' article_processing_charge: No author: - first_name: Udi full_name: Boker, Udi id: 31E297B6-F248-11E8-B48F-1D18A9856A87 last_name: Boker - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. Safety and liveness of quantitative automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.17' apa: 'Boker, U., Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2023). Safety and liveness of quantitative automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17' chicago: Boker, Udi, Thomas A Henzinger, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Safety and Liveness of Quantitative Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17. ieee: U. Boker, T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Safety and liveness of quantitative automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. 2023. Safety and liveness of quantitative automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 17.' mla: Boker, Udi, et al. “Safety and Liveness of Quantitative Automata.” 34th International Conference on Concurrency Theory, vol. 279, 17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.17. short: U. Boker, T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-23 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-18 date_created: 2023-07-14T10:00:15Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:14:03Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.17 ec_funded: 1 external_id: arxiv: - '2307.06016' file: - access_level: open_access checksum: d40e57a04448ea5c77d7e1cfb9590a81 content_type: application/pdf creator: esarac date_created: 2023-07-14T12:03:48Z date_updated: 2023-07-14T12:03:48Z file_id: '13224' file_name: CONCUR23.pdf file_size: 755529 relation: main_file success: 1 file_date_updated: 2023-07-14T12:03:48Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: eissn: - 1868-8969 isbn: - '9783959772990' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' status: public title: Safety and liveness of quantitative automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14405' abstract: - lang: eng text: We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs. acknowledgement: "This work was supported in part by the Austrian Science Fund (FWF) SFB project\r\nSpyCoDe F8502, by the FWF projects ZK-35 and W1255-N23, and by the ERC Advanced Grant\r\nVAMOS 101020093." alternative_title: - LIPIcs article_number: '21' article_processing_charge: Yes author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana full_name: Oliveira da Costa, Ana id: f347ec37-6676-11ee-b395-a888cb7b4fb4 last_name: Oliveira da Costa orcid: 0000-0002-8741-5799 citation: ama: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. Hypernode automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.21' apa: 'Bartocci, E., Henzinger, T. A., Nickovic, D., & Oliveira da Costa, A. (2023). Hypernode automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21' chicago: Bartocci, Ezio, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira da Costa. “Hypernode Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21. ieee: E. Bartocci, T. A. Henzinger, D. Nickovic, and A. Oliveira da Costa, “Hypernode automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. 2023. Hypernode automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 21.' mla: Bartocci, Ezio, et al. “Hypernode Automata.” 34th International Conference on Concurrency Theory, vol. 279, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.21. short: E. Bartocci, T.A. Henzinger, D. Nickovic, A. Oliveira da Costa, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-22 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-19 date_created: 2023-10-08T22:01:16Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:43:44Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.21 ec_funded: 1 external_id: arxiv: - '2305.02836' file: - access_level: open_access checksum: 215765e40454d806174ac0a223e8d6fa content_type: application/pdf creator: dernst date_created: 2023-10-09T07:42:45Z date_updated: 2023-10-09T07:42:45Z file_id: '14413' file_name: 2023_LIPcs_Bartocci.pdf file_size: 795790 relation: main_file success: 1 file_date_updated: 2023-10-09T07:42:45Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: isbn: - '9783959772990' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Hypernode automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14454' abstract: - lang: eng text: As AI and machine-learned software are used increasingly for making decisions that affect humans, it is imperative that they remain fair and unbiased in their decisions. To complement design-time bias mitigation measures, runtime verification techniques have been introduced recently to monitor the algorithmic fairness of deployed systems. Previous monitoring techniques assume full observability of the states of the (unknown) monitored system. Moreover, they can monitor only fairness properties that are specified as arithmetic expressions over the probabilities of different events. In this work, we extend fairness monitoring to systems modeled as partially observed Markov chains (POMC), and to specifications containing arithmetic expressions over the expected values of numerical functions on event sequences. The only assumptions we make are that the underlying POMC is aperiodic and starts in the stationary distribution, with a bound on its mixing time being known. These assumptions enable us to estimate a given property for the entire distribution of possible executions of the monitored POMC, by observing only a single execution. Our monitors observe a long run of the system and, after each new observation, output updated PAC-estimates of how fair or biased the system is. The monitors are computationally lightweight and, using a prototype implementation, we demonstrate their effectiveness on several real-world examples. acknowledgement: 'This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Kueffner K, Mallik K. Monitoring algorithmic fairness under partial observations. In: 23rd International Conference on Runtime Verification. Vol 14245. Springer Nature; 2023:291-311. doi:10.1007/978-3-031-44267-4_15' apa: 'Henzinger, T. A., Kueffner, K., & Mallik, K. (2023). Monitoring algorithmic fairness under partial observations. In 23rd International Conference on Runtime Verification (Vol. 14245, pp. 291–311). Thessaloniki, Greece: Springer Nature. https://doi.org/10.1007/978-3-031-44267-4_15' chicago: Henzinger, Thomas A, Konstantin Kueffner, and Kaushik Mallik. “Monitoring Algorithmic Fairness under Partial Observations.” In 23rd International Conference on Runtime Verification, 14245:291–311. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44267-4_15. ieee: T. A. Henzinger, K. Kueffner, and K. Mallik, “Monitoring algorithmic fairness under partial observations,” in 23rd International Conference on Runtime Verification, Thessaloniki, Greece, 2023, vol. 14245, pp. 291–311. ista: 'Henzinger TA, Kueffner K, Mallik K. 2023. Monitoring algorithmic fairness under partial observations. 23rd International Conference on Runtime Verification. RV: Conference on Runtime Verification, LNCS, vol. 14245, 291–311.' mla: Henzinger, Thomas A., et al. “Monitoring Algorithmic Fairness under Partial Observations.” 23rd International Conference on Runtime Verification, vol. 14245, Springer Nature, 2023, pp. 291–311, doi:10.1007/978-3-031-44267-4_15. short: T.A. Henzinger, K. Kueffner, K. Mallik, in:, 23rd International Conference on Runtime Verification, Springer Nature, 2023, pp. 291–311. conference: end_date: 2023-10-06 location: Thessaloniki, Greece name: 'RV: Conference on Runtime Verification' start_date: 2023-10-03 date_created: 2023-10-29T23:01:15Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T11:48:20Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-031-44267-4_15 ec_funded: 1 external_id: arxiv: - '2308.00341' intvolume: ' 14245' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2308.00341 month: '10' oa: 1 oa_version: Preprint page: 291-311 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 23rd International Conference on Runtime Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783031442667' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Monitoring algorithmic fairness under partial observations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14245 year: '2023' ... --- _id: '14518' abstract: - lang: eng text: We consider bidding games, a class of two-player zero-sum graph games. The game proceeds as follows. Both players have bounded budgets. A token is placed on a vertex of a graph, in each turn the players simultaneously submit bids, and the higher bidder moves the token, where we break bidding ties in favor of Player 1. Player 1 wins the game iff the token visits a designated target vertex. We consider, for the first time, poorman discrete-bidding in which the granularity of the bids is restricted and the higher bid is paid to the bank. Previous work either did not impose granularity restrictions or considered Richman bidding (bids are paid to the opponent). While the latter mechanisms are technically more accessible, the former is more appealing from a practical standpoint. Our study focuses on threshold budgets, which is the necessary and sufficient initial budget required for Player 1 to ensure winning against a given Player 2 budget. We first show existence of thresholds. In DAGs, we show that threshold budgets can be approximated with error bounds by thresholds under continuous-bidding and that they exhibit a periodic behavior. We identify closed-form solutions in special cases. We implement and experiment with an algorithm to find threshold budgets. acknowledgement: This research was supported in part by ISF grant no. 1679/21, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Suman full_name: Sadhukhan, Suman last_name: Sadhukhan - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. Reachability poorman discrete-bidding games. In: Frontiers in Artificial Intelligence and Applications. Vol 372. IOS Press; 2023:141-148. doi:10.3233/FAIA230264' apa: 'Avni, G., Meggendorfer, T., Sadhukhan, S., Tkadlec, J., & Zikelic, D. (2023). Reachability poorman discrete-bidding games. In Frontiers in Artificial Intelligence and Applications (Vol. 372, pp. 141–148). Krakow, Poland: IOS Press. https://doi.org/10.3233/FAIA230264' chicago: Avni, Guy, Tobias Meggendorfer, Suman Sadhukhan, Josef Tkadlec, and Dorde Zikelic. “Reachability Poorman Discrete-Bidding Games.” In Frontiers in Artificial Intelligence and Applications, 372:141–48. IOS Press, 2023. https://doi.org/10.3233/FAIA230264. ieee: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, and D. Zikelic, “Reachability poorman discrete-bidding games,” in Frontiers in Artificial Intelligence and Applications, Krakow, Poland, 2023, vol. 372, pp. 141–148. ista: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. 2023. Reachability poorman discrete-bidding games. Frontiers in Artificial Intelligence and Applications. ECAI: European Conference on Artificial Intelligence vol. 372, 141–148.' mla: Avni, Guy, et al. “Reachability Poorman Discrete-Bidding Games.” Frontiers in Artificial Intelligence and Applications, vol. 372, IOS Press, 2023, pp. 141–48, doi:10.3233/FAIA230264. short: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, D. Zikelic, in:, Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 141–148. conference: end_date: 2023-10-04 location: Krakow, Poland name: 'ECAI: European Conference on Artificial Intelligence' start_date: 2023-09-30 date_created: 2023-11-12T23:00:56Z date_published: 2023-09-28T00:00:00Z date_updated: 2023-11-13T10:18:45Z day: '28' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.3233/FAIA230264 ec_funded: 1 external_id: arxiv: - '2307.15218' file: - access_level: open_access checksum: 1390ca38480fa4cf286b0f1a42e8c12f content_type: application/pdf creator: dernst date_created: 2023-11-13T10:16:10Z date_updated: 2023-11-13T10:16:10Z file_id: '14529' file_name: 2023_FAIA_Avni.pdf file_size: 501011 relation: main_file success: 1 file_date_updated: 2023-11-13T10:16:10Z has_accepted_license: '1' intvolume: ' 372' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '09' oa: 1 oa_version: Published Version page: 141-148 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Frontiers in Artificial Intelligence and Applications publication_identifier: isbn: - '9781643684369' issn: - 0922-6389 publication_status: published publisher: IOS Press quality_controlled: '1' scopus_import: '1' status: public title: Reachability poorman discrete-bidding games tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2023' ... --- _id: '14559' abstract: - lang: eng text: We consider the problem of learning control policies in discrete-time stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability 1. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods proposed in previous works whose applicability is restricted to systems in which the stabilizing region cannot be left once entered under any control policy. We present a learning procedure that learns a control policy together with an sRSM that formally certifies probability 1 stability, both learned as neural networks. We show that this procedure can also be adapted to formally verifying that, under a given Lipschitz continuous control policy, the stochastic system stabilizes within some stabilizing region with probability 1. Our experimental evaluation shows that our learning procedure can successfully learn provably stabilizing policies in practice. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Matin full_name: Ansaripour, Matin last_name: Ansaripour - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. Learning provably stabilizing neural controllers for discrete-time stochastic systems. In: 21st International Symposium on Automated Technology for Verification and Analysis. Vol 14215. Springer Nature; 2023:357-379. doi:10.1007/978-3-031-45329-8_17' apa: 'Ansaripour, M., Chatterjee, K., Henzinger, T. A., Lechner, M., & Zikelic, D. (2023). Learning provably stabilizing neural controllers for discrete-time stochastic systems. In 21st International Symposium on Automated Technology for Verification and Analysis (Vol. 14215, pp. 357–379). Singapore, Singapore: Springer Nature. https://doi.org/10.1007/978-3-031-45329-8_17' chicago: Ansaripour, Matin, Krishnendu Chatterjee, Thomas A Henzinger, Mathias Lechner, and Dorde Zikelic. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” In 21st International Symposium on Automated Technology for Verification and Analysis, 14215:357–79. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-45329-8_17. ieee: M. Ansaripour, K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic, “Learning provably stabilizing neural controllers for discrete-time stochastic systems,” in 21st International Symposium on Automated Technology for Verification and Analysis, Singapore, Singapore, 2023, vol. 14215, pp. 357–379. ista: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. 2023. Learning provably stabilizing neural controllers for discrete-time stochastic systems. 21st International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 14215, 357–379.' mla: Ansaripour, Matin, et al. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” 21st International Symposium on Automated Technology for Verification and Analysis, vol. 14215, Springer Nature, 2023, pp. 357–79, doi:10.1007/978-3-031-45329-8_17. short: M. Ansaripour, K. Chatterjee, T.A. Henzinger, M. Lechner, D. Zikelic, in:, 21st International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2023, pp. 357–379. conference: end_date: 2023-10-27 location: Singapore, Singapore name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2023-10-24 date_created: 2023-11-19T23:00:56Z date_published: 2023-10-22T00:00:00Z date_updated: 2023-11-20T08:30:20Z day: '22' department: - _id: ToHe - _id: KrCh doi: 10.1007/978-3-031-45329-8_17 ec_funded: 1 intvolume: ' 14215' language: - iso: eng month: '10' oa_version: None page: 357-379 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 21st International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - 1611-3349 isbn: - '9783031453281' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Learning provably stabilizing neural controllers for discrete-time stochastic systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14215 year: '2023' ... --- _id: '13228' abstract: - lang: eng text: A machine-learned system that is fair in static decision-making tasks may have biased societal impacts in the long-run. This may happen when the system interacts with humans and feedback patterns emerge, reinforcing old biases in the system and creating new biases. While existing works try to identify and mitigate long-run biases through smart system design, we introduce techniques for monitoring fairness in real time. Our goal is to build and deploy a monitor that will continuously observe a long sequence of events generated by the system in the wild, and will output, with each event, a verdict on how fair the system is at the current point in time. The advantages of monitoring are two-fold. Firstly, fairness is evaluated at run-time, which is important because unfair behaviors may not be eliminated a priori, at design-time, due to partial knowledge about the system and the environment, as well as uncertainties and dynamic changes in the system and the environment, such as the unpredictability of human behavior. Secondly, monitors are by design oblivious to how the monitored system is constructed, which makes them suitable to be used as trusted third-party fairness watchdogs. They function as computationally lightweight statistical estimators, and their correctness proofs rely on the rigorous analysis of the stochastic process that models the assumptions about the underlying dynamics of the system. We show, both in theory and experiments, how monitors can warn us (1) if a bank’s credit policy over time has created an unfair distribution of credit scores among the population, and (2) if a resource allocator’s allocation policy over time has made unfair allocations. Our experiments demonstrate that the monitors introduce very low overhead. We believe that runtime monitoring is an important and mathematically rigorous new addition to the fairness toolbox. acknowledgement: 'The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions. This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mahyar full_name: Karimi, Mahyar last_name: Karimi - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. Runtime monitoring of dynamic fairness properties. In: FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. Association for Computing Machinery; 2023:604-614. doi:10.1145/3593013.3594028' apa: 'Henzinger, T. A., Karimi, M., Kueffner, K., & Mallik, K. (2023). Runtime monitoring of dynamic fairness properties. In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 604–614). Chicago, IL, United States: Association for Computing Machinery. https://doi.org/10.1145/3593013.3594028' chicago: 'Henzinger, Thomas A, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik. “Runtime Monitoring of Dynamic Fairness Properties.” In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 604–14. Association for Computing Machinery, 2023. https://doi.org/10.1145/3593013.3594028.' ieee: 'T. A. Henzinger, M. Karimi, K. Kueffner, and K. Mallik, “Runtime monitoring of dynamic fairness properties,” in FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, United States, 2023, pp. 604–614.' ista: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. 2023. Runtime monitoring of dynamic fairness properties. FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. FAccT: Conference on Fairness, Accountability and Transparency, 604–614.' mla: 'Henzinger, Thomas A., et al. “Runtime Monitoring of Dynamic Fairness Properties.” FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–14, doi:10.1145/3593013.3594028.' short: 'T.A. Henzinger, M. Karimi, K. Kueffner, K. Mallik, in:, FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–614.' conference: end_date: 2023-06-15 location: Chicago, IL, United States name: 'FAccT: Conference on Fairness, Accountability and Transparency' start_date: 2023-06-12 date_created: 2023-07-16T22:01:09Z date_published: 2023-06-12T00:00:00Z date_updated: 2023-12-13T11:30:31Z day: '12' ddc: - '000' department: - _id: ToHe doi: 10.1145/3593013.3594028 ec_funded: 1 external_id: arxiv: - '2305.04699' isi: - '001062819300057' file: - access_level: open_access checksum: 96c759db9cdf94b81e37871a66a6ff48 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:43:10Z date_updated: 2023-07-18T07:43:10Z file_id: '13245' file_name: 2023_ACM_HenzingerT.pdf file_size: 4100596 relation: main_file success: 1 file_date_updated: 2023-07-18T07:43:10Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 604-614 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 'FAccT ''23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency' publication_identifier: isbn: - '9781450372527' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Runtime monitoring of dynamic fairness properties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13263' abstract: - lang: eng text: "Motivation: Boolean networks are simple but efficient mathematical formalism for modelling complex biological systems. However, having only two levels of activation is sometimes not enough to fully capture the dynamics of real-world biological systems. Hence, the need for multi-valued networks (MVNs), a generalization of Boolean networks. Despite the importance of MVNs for modelling biological systems, only limited progress has been made on developing theories, analysis methods, and tools that can support them. In particular, the recent use of trap spaces in Boolean networks made a great impact on the field of systems biology, but there has been no similar concept defined and studied for MVNs to date.\r\n\r\nResults: In this work, we generalize the concept of trap spaces in Boolean networks to that in MVNs. We then develop the theory and the analysis methods for trap spaces in MVNs. In particular, we implement all proposed methods in a Python package called trapmvn. Not only showing the applicability of our approach via a realistic case study, we also evaluate the time efficiency of the method on a large collection of real-world models. The experimental results confirm the time efficiency, which we believe enables more accurate analysis on larger and more complex multi-valued models." acknowledgement: This work was supported by L’Institut Carnot STAR, Marseille, France, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. [101034413]. article_processing_charge: Yes article_type: original author: - first_name: Van Giang full_name: Trinh, Van Giang last_name: Trinh - first_name: Belaid full_name: Benhamou, Belaid last_name: Benhamou - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 citation: ama: 'Trinh VG, Benhamou B, Henzinger TA, Pastva S. Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. 2023;39(Supplement_1):i513-i522. doi:10.1093/bioinformatics/btad262' apa: 'Trinh, V. G., Benhamou, B., Henzinger, T. A., & Pastva, S. (2023). Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. Oxford Academic. https://doi.org/10.1093/bioinformatics/btad262' chicago: 'Trinh, Van Giang, Belaid Benhamou, Thomas A Henzinger, and Samuel Pastva. “Trap Spaces of Multi-Valued Networks: Definition, Computation, and Applications.” Bioinformatics. Oxford Academic, 2023. https://doi.org/10.1093/bioinformatics/btad262.' ieee: 'V. G. Trinh, B. Benhamou, T. A. Henzinger, and S. Pastva, “Trap spaces of multi-valued networks: Definition, computation, and applications,” Bioinformatics, vol. 39, no. Supplement_1. Oxford Academic, pp. i513–i522, 2023.' ista: 'Trinh VG, Benhamou B, Henzinger TA, Pastva S. 2023. Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. 39(Supplement_1), i513–i522.' mla: 'Trinh, Van Giang, et al. “Trap Spaces of Multi-Valued Networks: Definition, Computation, and Applications.” Bioinformatics, vol. 39, no. Supplement_1, Oxford Academic, 2023, pp. i513–22, doi:10.1093/bioinformatics/btad262.' short: V.G. Trinh, B. Benhamou, T.A. Henzinger, S. Pastva, Bioinformatics 39 (2023) i513–i522. date_created: 2023-07-23T22:01:12Z date_published: 2023-06-30T00:00:00Z date_updated: 2023-12-13T11:41:52Z day: '30' ddc: - '000' department: - _id: ToHe doi: 10.1093/bioinformatics/btad262 ec_funded: 1 external_id: isi: - '001027457000060' pmid: - '37387165' file: - access_level: open_access checksum: ba3abe1171df1958413b7c7f957f5486 content_type: application/pdf creator: dernst date_created: 2023-07-31T11:09:05Z date_updated: 2023-07-31T11:09:05Z file_id: '13335' file_name: 2023_Bioinformatics_Trinh.pdf file_size: 641736 relation: main_file success: 1 file_date_updated: 2023-07-31T11:09:05Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: Supplement_1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: i513-i522 pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Bioinformatics publication_identifier: eissn: - 1367-4811 issn: - 1367-4803 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://github.com/giang-trinh/trap-mvn scopus_import: '1' status: public title: 'Trap spaces of multi-valued networks: Definition, computation, and applications' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2023' ... --- _id: '14400' abstract: - lang: eng text: "We consider the problem of computing the maximal probability of satisfying an \r\n-regular specification for stochastic, continuous-state, nonlinear systems evolving in discrete time. The problem reduces, after automata-theoretic constructions, to finding the maximal probability of satisfying a parity condition on a (possibly hybrid) state space. While characterizing the exact satisfaction probability is open, we show that a lower bound on this probability can be obtained by (I) computing an under-approximation of the qualitative winning region, i.e., states from which the parity condition can be enforced almost surely, and (II) computing the maximal probability of reaching this qualitative winning region.\r\nThe heart of our approach is a technique to symbolically compute the under-approximation of the qualitative winning region in step (I) via a finite-state abstraction of the original system as a \r\n-player parity game. Our abstraction procedure uses only the support of the probabilistic evolution; it does not use precise numerical transition probabilities. We prove that the winning set in the abstract -player game induces an under-approximation of the qualitative winning region in the original synthesis problem, along with a policy to solve it. By combining these contributions with (a) a symbolic fixpoint algorithm to solve \r\n-player games and (b) existing techniques for reachability policy synthesis in stochastic nonlinear systems, we get an abstraction-based algorithm for finding a lower bound on the maximal satisfaction probability.\r\nWe have implemented the abstraction-based algorithm in Mascot-SDS, where we combined the outlined abstraction step with our tool Genie (Majumdar et al., 2023) that solves \r\n-player parity games (through a reduction to Rabin games) more efficiently than existing algorithms. We evaluated our implementation on the nonlinear model of a perturbed bistable switch from the literature. We show empirically that the lower bound on the winning region computed by our approach is precise, by comparing against an over-approximation of the qualitative winning region. Moreover, our implementation outperforms a recently proposed tool for solving this problem by a large margin." acknowledgement: "We thank Daniel Hausmann and Nir Piterman for their valuable comments on an earlier version of the manuscript of our other paper [22] where we present, among other things, the parity fixpoint for 2 1/2-player games (for a slightly more general class of games) with a different and indirect proof of correctness. Based on their comments we observed that, unlike the other fixpoints that we present in [22], the parity fixpoint does not follow the exact same structure as its counterpart for 2-player games, which we also use int his paper.\r\nWe also thank Thejaswini Raghavan for observing that our symbolic parity fixpoint algorithm can be solved in quasi-polynomial time using recent improved algorithms for solving \r\n-calculus expressions. This significantly improved the complexity bounds of our algorithm in this paper.\r\nThe work of R. Majumdar and A.-K. Schmuck are partially supported by DFG, Germany project 389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG, Germany project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. S. Soudjani is supported by the following projects: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047." article_number: '101430' article_processing_charge: No article_type: original author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Anne Kathrin full_name: Schmuck, Anne Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: 'Majumdar R, Mallik K, Schmuck AK, Soudjani S. Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. 2023;51. doi:10.1016/j.nahs.2023.101430' apa: 'Majumdar, R., Mallik, K., Schmuck, A. K., & Soudjani, S. (2023). Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. Elsevier. https://doi.org/10.1016/j.nahs.2023.101430' chicago: 'Majumdar, Rupak, Kaushik Mallik, Anne Kathrin Schmuck, and Sadegh Soudjani. “Symbolic Control for Stochastic Systems via Finite Parity Games.” Nonlinear Analysis: Hybrid Systems. Elsevier, 2023. https://doi.org/10.1016/j.nahs.2023.101430.' ieee: 'R. Majumdar, K. Mallik, A. K. Schmuck, and S. Soudjani, “Symbolic control for stochastic systems via finite parity games,” Nonlinear Analysis: Hybrid Systems, vol. 51. Elsevier, 2023.' ista: 'Majumdar R, Mallik K, Schmuck AK, Soudjani S. 2023. Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. 51, 101430.' mla: 'Majumdar, Rupak, et al. “Symbolic Control for Stochastic Systems via Finite Parity Games.” Nonlinear Analysis: Hybrid Systems, vol. 51, 101430, Elsevier, 2023, doi:10.1016/j.nahs.2023.101430.' short: 'R. Majumdar, K. Mallik, A.K. Schmuck, S. Soudjani, Nonlinear Analysis: Hybrid Systems 51 (2023).' date_created: 2023-10-08T22:01:15Z date_published: 2023-09-27T00:00:00Z date_updated: 2023-12-13T12:58:56Z day: '27' department: - _id: ToHe doi: 10.1016/j.nahs.2023.101430 ec_funded: 1 external_id: arxiv: - '2101.00834' isi: - '001093188100001' intvolume: ' 51' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.nahs.2023.101430 month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 'Nonlinear Analysis: Hybrid Systems' publication_identifier: issn: - 1751-570X publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Symbolic control for stochastic systems via finite parity games type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 51 year: '2023' ... --- _id: '14718' abstract: - lang: eng text: 'Binary decision diagrams (BDDs) are one of the fundamental data structures in formal methods and computer science in general. However, the performance of BDD-based algorithms greatly depends on memory latency due to the reliance on large hash tables and thus, by extension, on the speed of random memory access. This hinders the full utilisation of resources available on modern CPUs, since the absolute memory latency has not improved significantly for at least a decade. In this paper, we explore several implementation techniques that improve the performance of BDD manipulation either through enhanced memory locality or by partially eliminating random memory access. On a benchmark suite of 600+ BDDs derived from real-world applications, we demonstrate runtime that is comparable or better than parallelising the same operations on eight CPU cores. ' acknowledgement: "This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413 and the\r\n“VAMOS” grant ERC-2020-AdG 101020093." article_processing_charge: No author: - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Pastva S, Henzinger TA. Binary decision diagrams on modern hardware. In: Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design. TU Vienna Academic Press; 2023:122-131. doi:10.34727/2023/isbn.978-3-85448-060-0_20' apa: 'Pastva, S., & Henzinger, T. A. (2023). Binary decision diagrams on modern hardware. In Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design (pp. 122–131). Ames, IA, United States: TU Vienna Academic Press. https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20' chicago: Pastva, Samuel, and Thomas A Henzinger. “Binary Decision Diagrams on Modern Hardware.” In Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, 122–31. TU Vienna Academic Press, 2023. https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20. ieee: S. Pastva and T. A. Henzinger, “Binary decision diagrams on modern hardware,” in Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, Ames, IA, United States, 2023, pp. 122–131. ista: 'Pastva S, Henzinger TA. 2023. Binary decision diagrams on modern hardware. Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design. FMCAD: Conference on Formal Methods in Computer-aided design, 122–131.' mla: Pastva, Samuel, and Thomas A. Henzinger. “Binary Decision Diagrams on Modern Hardware.” Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, TU Vienna Academic Press, 2023, pp. 122–31, doi:10.34727/2023/isbn.978-3-85448-060-0_20. short: S. Pastva, T.A. Henzinger, in:, Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, TU Vienna Academic Press, 2023, pp. 122–131. conference: end_date: 2023-10-27 location: Ames, IA, United States name: 'FMCAD: Conference on Formal Methods in Computer-aided design' start_date: 2023-10-25 date_created: 2023-12-31T23:01:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-02T08:16:28Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.34727/2023/isbn.978-3-85448-060-0_20 ec_funded: 1 file: - access_level: open_access checksum: 818d6e13dd508f3a04f0941081022e5d content_type: application/pdf creator: dernst date_created: 2024-01-02T08:14:23Z date_updated: 2024-01-02T08:14:23Z file_id: '14721' file_name: 2023_FMCAD_Pastva.pdf file_size: 524321 relation: main_file success: 1 file_date_updated: 2024-01-02T08:14:23Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 122-131 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design publication_identifier: isbn: - '9783854480600' publication_status: published publisher: TU Vienna Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Binary decision diagrams on modern hardware tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14830' abstract: - lang: eng text: We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold p in [0,1] over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on 3 stochastic non-linear reinforcement learning tasks. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol 37. Association for the Advancement of Artificial Intelligence; 2023:11926-11935. doi:10.1609/aaai.v37i10.26407' apa: 'Zikelic, D., Lechner, M., Henzinger, T. A., & Chatterjee, K. (2023). Learning control policies for stochastic systems with reach-avoid guarantees. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (Vol. 37, pp. 11926–11935). Washington, DC, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v37i10.26407' chicago: Zikelic, Dorde, Mathias Lechner, Thomas A Henzinger, and Krishnendu Chatterjee. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” In Proceedings of the 37th AAAI Conference on Artificial Intelligence, 37:11926–35. Association for the Advancement of Artificial Intelligence, 2023. https://doi.org/10.1609/aaai.v37i10.26407. ieee: D. Zikelic, M. Lechner, T. A. Henzinger, and K. Chatterjee, “Learning control policies for stochastic systems with reach-avoid guarantees,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, United States, 2023, vol. 37, no. 10, pp. 11926–11935. ista: 'Zikelic D, Lechner M, Henzinger TA, Chatterjee K. 2023. Learning control policies for stochastic systems with reach-avoid guarantees. Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI: Conference on Artificial Intelligence vol. 37, 11926–11935.' mla: Zikelic, Dorde, et al. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” Proceedings of the 37th AAAI Conference on Artificial Intelligence, vol. 37, no. 10, Association for the Advancement of Artificial Intelligence, 2023, pp. 11926–35, doi:10.1609/aaai.v37i10.26407. short: D. Zikelic, M. Lechner, T.A. Henzinger, K. Chatterjee, in:, Proceedings of the 37th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2023, pp. 11926–11935. conference: end_date: 2023-02-14 location: Washington, DC, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2023-02-07 date_created: 2024-01-18T07:44:31Z date_published: 2023-06-26T00:00:00Z date_updated: 2024-01-22T14:08:29Z day: '26' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v37i10.26407 ec_funded: 1 external_id: arxiv: - '2210.05308' intvolume: ' 37' issue: '10' keyword: - General Medicine language: - iso: eng month: '06' oa_version: Preprint page: 11926-11935 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 37th AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' related_material: record: - id: '14600' relation: earlier_version status: public status: public title: Learning control policies for stochastic systems with reach-avoid guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2023' ... --- _id: '13234' abstract: - lang: eng text: Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. We consider the problem of monitoring the classification decisions of neural networks in the presence of novel classes. For this purpose, we generalize our recently proposed abstraction-based monitor from binary output to real-valued quantitative output. This quantitative output enables new applications, two of which we investigate in the paper. As our first application, we introduce an algorithmic framework for active monitoring of a neural network, which allows us to learn new classes dynamically and yet maintain high monitoring performance. As our second application, we present an offline procedure to retrain the neural network to improve the monitor’s detection performance without deteriorating the network’s classification accuracy. Our experimental evaluation demonstrates both the benefits of our active monitoring framework in dynamic scenarios and the effectiveness of the retraining procedure. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, by DIREC - Digital Research Centre Denmark, and by the Villum Investigator Grant S4OS. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Kueffner K, Lukina A, Schilling C, Henzinger TA. Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. 2023;25:575-592. doi:10.1007/s10009-023-00711-4' apa: 'Kueffner, K., Lukina, A., Schilling, C., & Henzinger, T. A. (2023). Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. Springer Nature. https://doi.org/10.1007/s10009-023-00711-4' chicago: 'Kueffner, Konstantin, Anna Lukina, Christian Schilling, and Thomas A Henzinger. “Into the Unknown: Active Monitoring of Neural Networks (Extended Version).” International Journal on Software Tools for Technology Transfer. Springer Nature, 2023. https://doi.org/10.1007/s10009-023-00711-4.' ieee: 'K. Kueffner, A. Lukina, C. Schilling, and T. A. Henzinger, “Into the unknown: Active monitoring of neural networks (extended version),” International Journal on Software Tools for Technology Transfer, vol. 25. Springer Nature, pp. 575–592, 2023.' ista: 'Kueffner K, Lukina A, Schilling C, Henzinger TA. 2023. Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. 25, 575–592.' mla: 'Kueffner, Konstantin, et al. “Into the Unknown: Active Monitoring of Neural Networks (Extended Version).” International Journal on Software Tools for Technology Transfer, vol. 25, Springer Nature, 2023, pp. 575–92, doi:10.1007/s10009-023-00711-4.' short: K. Kueffner, A. Lukina, C. Schilling, T.A. Henzinger, International Journal on Software Tools for Technology Transfer 25 (2023) 575–592. date_created: 2023-07-16T22:01:11Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-01-30T12:06:57Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/s10009-023-00711-4 ec_funded: 1 external_id: arxiv: - '2009.06429' isi: - '001020160000001' file: - access_level: open_access checksum: 3c4b347f39412a76872f9a6f30101f94 content_type: application/pdf creator: dernst date_created: 2024-01-30T12:06:07Z date_updated: 2024-01-30T12:06:07Z file_id: '14903' file_name: 2023_JourSoftwareTools_Kueffner.pdf file_size: 13387667 relation: main_file success: 1 file_date_updated: 2024-01-30T12:06:07Z has_accepted_license: '1' intvolume: ' 25' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 575-592 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: International Journal on Software Tools for Technology Transfer publication_identifier: eissn: - 1433-2787 issn: - 1433-2779 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10206' relation: shorter_version status: public scopus_import: '1' status: public title: 'Into the unknown: Active monitoring of neural networks (extended version)' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2023' ... --- _id: '14920' abstract: - lang: eng text: "We consider fixpoint algorithms for two-player games on graphs with $\\omega$-regular winning conditions, where the environment is constrained by a strong transition fairness assumption. Strong transition fairness is a widely occurring special case of strong fairness, which requires that any execution is strongly fair with respect to a specified set of live edges: whenever the\r\nsource vertex of a live edge is visited infinitely often along a play, the edge itself is traversed infinitely often along the play as well. We show that, surprisingly, strong transition fairness retains the algorithmic characteristics of the fixpoint algorithms for $\\omega$-regular games -- the new algorithms have the same alternation depth as the classical algorithms but invoke a new type of predecessor operator. For Rabin games with $k$ pairs, the complexity of the new algorithm is $O(n^{k+2}k!)$ symbolic steps, which is independent of the number of live edges in the strong transition fairness assumption. Further, we show that GR(1) specifications with strong transition fairness assumptions can be solved with a 3-nested fixpoint algorithm, same as the usual algorithm. In contrast, strong fairness necessarily requires increasing the alternation depth depending on the number of fairness assumptions. We get symbolic algorithms for (generalized) Rabin, parity and GR(1) objectives under strong transition fairness assumptions as well as a direct symbolic algorithm for qualitative winning in stochastic\r\n$\\omega$-regular games that runs in $O(n^{k+2}k!)$ symbolic steps, improving the state of the art. Finally, we have implemented a BDD-based synthesis engine based on our algorithm. We show on a set of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and outperforms previous algorithms by orders of magnitude." acknowledgement: A previous version of this paper has appeared in TACAS 2022. Authors ordered alphabetically. T. Banerjee was interning with MPI-SWS when this research was conducted. R. Majumdar and A.-K. Schmuck are partially supported by DFG project 389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. article_number: '4' article_processing_charge: Yes article_type: original author: - first_name: Tamajit full_name: Banerjee, Tamajit last_name: Banerjee - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2023;2. doi:10.46298/theoretics.23.4 apa: Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., & Soudjani, S. (2023). Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. EPI Sciences. https://doi.org/10.46298/theoretics.23.4 chicago: Banerjee, Tamajit, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS. EPI Sciences, 2023. https://doi.org/10.46298/theoretics.23.4. ieee: T. Banerjee, R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani, “Fast symbolic algorithms for mega-regular games under strong transition fairness,” TheoretiCS, vol. 2. EPI Sciences, 2023. ista: Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. 2023. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2, 4. mla: Banerjee, Tamajit, et al. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS, vol. 2, 4, EPI Sciences, 2023, doi:10.46298/theoretics.23.4. short: T. Banerjee, R. Majumdar, K. Mallik, A.-K. Schmuck, S. Soudjani, TheoretiCS 2 (2023). date_created: 2024-01-31T13:40:49Z date_published: 2023-02-24T00:00:00Z date_updated: 2024-02-05T10:21:51Z day: '24' ddc: - '000' department: - _id: ToHe doi: 10.46298/theoretics.23.4 ec_funded: 1 external_id: arxiv: - '2202.07480' file: - access_level: open_access checksum: 2972d531122a6f15727b396110fb3f5c content_type: application/pdf creator: dernst date_created: 2024-02-05T10:19:35Z date_updated: 2024-02-05T10:19:35Z file_id: '14940' file_name: 2023_TheoretiCS_Banerjee.pdf file_size: 917076 relation: main_file success: 1 file_date_updated: 2024-02-05T10:19:35Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: TheoretiCS publication_identifier: issn: - 2751-4838 publication_status: published publisher: EPI Sciences quality_controlled: '1' status: public title: Fast symbolic algorithms for mega-regular games under strong transition fairness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2023' ... --- _id: '14411' abstract: - lang: eng text: "Partially specified Boolean networks (PSBNs) represent a promising framework for the qualitative modelling of biological systems in which the logic of interactions is not completely known. Phenotype control aims to stabilise the network in states exhibiting specific traits.\r\nIn this paper, we define the phenotype control problem in the context of asynchronous PSBNs and propose a novel semi-symbolic algorithm for solving this problem with permanent variable perturbations." acknowledgement: This work was supported by the Czech Foundation grant No. GA22-10845S, Grant Agency of Masaryk University grant No. MUNI/G/1771/2020, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. alternative_title: - LNBI article_processing_charge: No author: - first_name: Nikola full_name: Beneš, Nikola last_name: Beneš - first_name: Luboš full_name: Brim, Luboš last_name: Brim - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 - first_name: David full_name: Šafránek, David last_name: Šafránek - first_name: Eva full_name: Šmijáková, Eva last_name: Šmijáková citation: ama: 'Beneš N, Brim L, Pastva S, Šafránek D, Šmijáková E. Phenotype control of partially specified boolean networks. In: 21st International Conference on Computational Methods in Systems Biology. Vol 14137. Springer Nature; 2023:18-35. doi:10.1007/978-3-031-42697-1_2' apa: 'Beneš, N., Brim, L., Pastva, S., Šafránek, D., & Šmijáková, E. (2023). Phenotype control of partially specified boolean networks. In 21st International Conference on Computational Methods in Systems Biology (Vol. 14137, pp. 18–35). Luxembourg City, Luxembourg: Springer Nature. https://doi.org/10.1007/978-3-031-42697-1_2' chicago: Beneš, Nikola, Luboš Brim, Samuel Pastva, David Šafránek, and Eva Šmijáková. “Phenotype Control of Partially Specified Boolean Networks.” In 21st International Conference on Computational Methods in Systems Biology, 14137:18–35. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-42697-1_2. ieee: N. Beneš, L. Brim, S. Pastva, D. Šafránek, and E. Šmijáková, “Phenotype control of partially specified boolean networks,” in 21st International Conference on Computational Methods in Systems Biology, Luxembourg City, Luxembourg, 2023, vol. 14137, pp. 18–35. ista: 'Beneš N, Brim L, Pastva S, Šafránek D, Šmijáková E. 2023. Phenotype control of partially specified boolean networks. 21st International Conference on Computational Methods in Systems Biology. CMSB: Computational Methods in Systems Biology, LNBI, vol. 14137, 18–35.' mla: Beneš, Nikola, et al. “Phenotype Control of Partially Specified Boolean Networks.” 21st International Conference on Computational Methods in Systems Biology, vol. 14137, Springer Nature, 2023, pp. 18–35, doi:10.1007/978-3-031-42697-1_2. short: N. Beneš, L. Brim, S. Pastva, D. Šafránek, E. Šmijáková, in:, 21st International Conference on Computational Methods in Systems Biology, Springer Nature, 2023, pp. 18–35. conference: end_date: 2023-09-15 location: Luxembourg City, Luxembourg name: 'CMSB: Computational Methods in Systems Biology' start_date: 2023-09-13 date_created: 2023-10-08T22:01:18Z date_published: 2023-09-09T00:00:00Z date_updated: 2024-02-20T09:02:04Z day: '09' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-42697-1_2 ec_funded: 1 file: - access_level: open_access checksum: 6f71bdaedb770b52380222fd9f4d7937 content_type: application/pdf creator: spastva date_created: 2024-02-16T08:26:32Z date_updated: 2024-02-16T08:26:32Z file_id: '14997' file_name: cmsb2023.pdf file_size: 691582 relation: main_file success: 1 file_date_updated: 2024-02-16T08:26:32Z has_accepted_license: '1' intvolume: ' 14137' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 18-35 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 21st International Conference on Computational Methods in Systems Biology publication_identifier: eissn: - 1611-3349 isbn: - '9783031426964' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Phenotype control of partially specified boolean networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14137 year: '2023' ... --- _id: '14758' abstract: - lang: eng text: 'We present a flexible and efficient toolchain to symbolically solve (standard) Rabin games, fair-adversarial Rabin games, and 2 1/2 license type-player Rabin games. To our best knowledge, our tools are the first ones to be able to solve these problems. Furthermore, using these flexible game solvers as a back-end, we implemented a tool for computing correct-by-construction controllers for stochastic dynamical systems under LTL specifications. Our implementations use the recent theoretical result that all of these games can be solved using the same symbolic fixpoint algorithm but utilizing different, domain specific calculations of the involved predecessor operators. The main feature of our toolchain is the utilization of two programming abstractions: one to separate the symbolic fixpoint computations from the predecessor calculations, and another one to allow the integration of different BDD libraries as back-ends. In particular, we employ a multi-threaded execution of the fixpoint algorithm by using the multi-threaded BDD library Sylvan, which leads to enormous computational savings.' acknowledgement: 'Authors ordered alphabetically. R. Majumdar and A.-K. Schmuck are partially supported by DFG project 389792660 TRR 248-CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. M. Rychlicki is supported by the EPSRC project EP/V00252X/1. S. Soudjani is supported by the following projects: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047.' alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Mateusz full_name: Rychlicki, Mateusz last_name: Rychlicki - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: 'Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. In: 35th International Conference on Computer Aided Verification. Vol 13966. Springer Nature; 2023:3-15. doi:10.1007/978-3-031-37709-9_1' apa: 'Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.-K., & Soudjani, S. (2023). A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. In 35th International Conference on Computer Aided Verification (Vol. 13966, pp. 3–15). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-37709-9_1' chicago: Majumdar, Rupak, Kaushik Mallik, Mateusz Rychlicki, Anne-Kathrin Schmuck, and Sadegh Soudjani. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” In 35th International Conference on Computer Aided Verification, 13966:3–15. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-37709-9_1. ieee: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, and S. Soudjani, “A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties,” in 35th International Conference on Computer Aided Verification, Paris, France, 2023, vol. 13966, pp. 3–15. ista: 'Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. 2023. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. 35th International Conference on Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13966, 3–15.' mla: Majumdar, Rupak, et al. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” 35th International Conference on Computer Aided Verification, vol. 13966, Springer Nature, 2023, pp. 3–15, doi:10.1007/978-3-031-37709-9_1. short: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, S. Soudjani, in:, 35th International Conference on Computer Aided Verification, Springer Nature, 2023, pp. 3–15. conference: end_date: 2023-07-22 location: Paris, France name: 'CAV: Computer Aided Verification' start_date: 2023-07-17 date_created: 2024-01-08T13:18:00Z date_published: 2023-07-16T00:00:00Z date_updated: 2024-02-27T07:39:51Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-37709-9_1 ec_funded: 1 file: - access_level: open_access checksum: 1a361d83db0244fd32c03b544c294b5a content_type: application/pdf creator: dernst date_created: 2024-01-09T10:01:07Z date_updated: 2024-01-09T10:01:07Z file_id: '14765' file_name: 2023_LNCSCAV_Majumdar.pdf file_size: 405147 relation: main_file success: 1 file_date_updated: 2024-01-09T10:01:07Z has_accepted_license: '1' intvolume: ' 13966' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 3-15 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 35th International Conference on Computer Aided Verification publication_identifier: eisbn: - '9783031377099' eissn: - 1611-3349 isbn: - '9783031377082' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '14994' relation: research_data status: public scopus_import: '1' status: public title: A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13966 year: '2023' ... --- _id: '14994' abstract: - lang: eng text: This resource contains the artifacts for reproducing the experimental results presented in the paper titled "A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties" that has been submitted in CAV 2023. article_processing_charge: No author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Mateusz full_name: Rychlicki, Mateusz last_name: Rychlicki - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. 2023. doi:10.5281/ZENODO.7877790 apa: Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.-K., & Soudjani, S. (2023). A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. Zenodo. https://doi.org/10.5281/ZENODO.7877790 chicago: Majumdar, Rupak, Kaushik Mallik, Mateusz Rychlicki, Anne-Kathrin Schmuck, and Sadegh Soudjani. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7877790. ieee: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, and S. Soudjani, “A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties.” Zenodo, 2023. ista: Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. 2023. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties, Zenodo, 10.5281/ZENODO.7877790. mla: Majumdar, Rupak, et al. A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties. Zenodo, 2023, doi:10.5281/ZENODO.7877790. short: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, S. Soudjani, (2023). date_created: 2024-02-14T15:13:00Z date_published: 2023-04-28T00:00:00Z date_updated: 2024-02-27T07:39:51Z day: '28' ddc: - '000' department: - _id: ToHe doi: 10.5281/ZENODO.7877790 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7877790 month: '04' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14758' relation: used_in_publication status: public status: public title: A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '15023' abstract: - lang: eng text: Reinforcement learning has shown promising results in learning neural network policies for complicated control tasks. However, the lack of formal guarantees about the behavior of such policies remains an impediment to their deployment. We propose a novel method for learning a composition of neural network policies in stochastic environments, along with a formal certificate which guarantees that a specification over the policy's behavior is satisfied with the desired probability. Unlike prior work on verifiable RL, our approach leverages the compositional nature of logical specifications provided in SpectRL, to learn over graphs of probabilistic reach-avoid specifications. The formal guarantees are provided by learning neural network policies together with reach-avoid supermartingales (RASM) for the graph’s sub-tasks and then composing them into a global policy. We also derive a tighter lower bound compared to previous work on the probability of reach-avoidance implied by a RASM, which is required to find a compositional policy with an acceptable probabilistic threshold for complex tasks with multiple edge policies. We implement a prototype of our approach and evaluate it on a Stochastic Nine Rooms environment. acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093 (VAMOS) and the ERC-2020-\r\nCoG 863818 (FoRM-SMArt)." article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Abhinav full_name: Verma, Abhinav id: a235593c-d7fa-11eb-a0c5-b22ca3c66ee6 last_name: Verma - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Zikelic D, Lechner M, Verma A, Chatterjee K, Henzinger TA. Compositional policy learning in stochastic control systems with formal guarantees. In: 37th Conference on Neural Information Processing Systems. ; 2023.' apa: Zikelic, D., Lechner, M., Verma, A., Chatterjee, K., & Henzinger, T. A. (2023). Compositional policy learning in stochastic control systems with formal guarantees. In 37th Conference on Neural Information Processing Systems. New Orleans, LO, United States. chicago: Zikelic, Dorde, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee, and Thomas A Henzinger. “Compositional Policy Learning in Stochastic Control Systems with Formal Guarantees.” In 37th Conference on Neural Information Processing Systems, 2023. ieee: D. Zikelic, M. Lechner, A. Verma, K. Chatterjee, and T. A. Henzinger, “Compositional policy learning in stochastic control systems with formal guarantees,” in 37th Conference on Neural Information Processing Systems, New Orleans, LO, United States, 2023. ista: 'Zikelic D, Lechner M, Verma A, Chatterjee K, Henzinger TA. 2023. Compositional policy learning in stochastic control systems with formal guarantees. 37th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems.' mla: Zikelic, Dorde, et al. “Compositional Policy Learning in Stochastic Control Systems with Formal Guarantees.” 37th Conference on Neural Information Processing Systems, 2023. short: D. Zikelic, M. Lechner, A. Verma, K. Chatterjee, T.A. Henzinger, in:, 37th Conference on Neural Information Processing Systems, 2023. conference: end_date: 2023-12-16 location: New Orleans, LO, United States name: 'NeurIPS: Neural Information Processing Systems' start_date: 2023-12-10 date_created: 2024-02-25T09:23:24Z date_published: 2023-12-15T00:00:00Z date_updated: 2024-02-28T12:20:11Z day: '15' department: - _id: ToHe - _id: KrCh ec_funded: 1 external_id: arxiv: - '2312.01456' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2312.01456 month: '12' oa: 1 oa_version: Preprint project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 37th Conference on Neural Information Processing Systems publication_status: epub_ahead quality_controlled: '1' status: public title: Compositional policy learning in stochastic control systems with formal guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14076' abstract: - lang: eng text: Hyperproperties are properties that relate multiple execution traces. Previous work on monitoring hyperproperties focused on synchronous hyperproperties, usually specified in HyperLTL. When monitoring synchronous hyperproperties, all traces are assumed to proceed at the same speed. We introduce (multi-trace) prefix transducers and show how to use them for monitoring synchronous as well as, for the first time, asynchronous hyperproperties. Prefix transducers map multiple input traces into one or more output traces by incrementally matching prefixes of the input traces against expressions similar to regular expressions. The prefixes of different traces which are consumed by a single matching step of the monitor may have different lengths. The deterministic and executable nature of prefix transducers makes them more suitable as an intermediate formalism for runtime verification than logical specifications, which tend to be highly non-deterministic, especially in the case of asynchronous hyperproperties. We report on a set of experiments about monitoring asynchronous version of observational determinism. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank Ana Oliveira da Costa for commenting on a draft of the paper. alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Monitoring hyperproperties with prefix transducers. In: 23nd International Conference on Runtime Verification. Vol 14245. Springer Nature; 2023:168-190. doi:10.1007/978-3-031-44267-4_9' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Monitoring hyperproperties with prefix transducers. In 23nd International Conference on Runtime Verification (Vol. 14245, pp. 168–190). Thessaloniki, Greek: Springer Nature. https://doi.org/10.1007/978-3-031-44267-4_9' chicago: Chalupa, Marek, and Thomas A Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” In 23nd International Conference on Runtime Verification, 14245:168–90. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44267-4_9. ieee: M. Chalupa and T. A. Henzinger, “Monitoring hyperproperties with prefix transducers,” in 23nd International Conference on Runtime Verification, Thessaloniki, Greek, 2023, vol. 14245, pp. 168–190. ista: 'Chalupa M, Henzinger TA. 2023. Monitoring hyperproperties with prefix transducers. 23nd International Conference on Runtime Verification. RV: Conference on Runtime Verification, LNCS, vol. 14245, 168–190.' mla: Chalupa, Marek, and Thomas A. Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” 23nd International Conference on Runtime Verification, vol. 14245, Springer Nature, 2023, pp. 168–90, doi:10.1007/978-3-031-44267-4_9. short: M. Chalupa, T.A. Henzinger, in:, 23nd International Conference on Runtime Verification, Springer Nature, 2023, pp. 168–190. conference: end_date: 2023-10-07 location: Thessaloniki, Greek name: 'RV: Conference on Runtime Verification' start_date: 2023-10-04 date_created: 2023-08-16T20:46:08Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-02-28T12:33:08Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-44267-4_9 ec_funded: 1 file: - access_level: open_access checksum: ee33bd6f1a26f4dae7a8192584869fd8 content_type: application/pdf creator: dernst date_created: 2023-10-16T07:15:11Z date_updated: 2023-10-16T07:15:11Z file_id: '14430' file_name: 2023_LNCS_RV_Chalupa.pdf file_size: 867256 relation: main_file success: 1 file_date_updated: 2023-10-16T07:15:11Z has_accepted_license: '1' intvolume: ' 14245' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 168-190 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 23nd International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-031-44267-4 isbn: - 978-3-031-44266-7 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '15035' relation: research_data status: public status: public title: Monitoring hyperproperties with prefix transducers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14245 year: '2023' ... --- _id: '15035' abstract: - lang: eng text: "This artifact aims to reproduce experiments from the paper Monitoring Hyperproperties With Prefix Transducers accepted at RV'23, and give further pointers to implementation of prefix transducers.\r\nIt has two parts: a pre-compiled docker image and sources that one can use to compile (locally or in docker) the software and run the experiments." article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Chalupa M, Henzinger TA. Monitoring hyperproperties with prefix transducers. 2023. doi:10.5281/ZENODO.8191723 apa: Chalupa, M., & Henzinger, T. A. (2023). Monitoring hyperproperties with prefix transducers. Zenodo. https://doi.org/10.5281/ZENODO.8191723 chicago: Chalupa, Marek, and Thomas A Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8191723. ieee: M. Chalupa and T. A. Henzinger, “Monitoring hyperproperties with prefix transducers.” Zenodo, 2023. ista: Chalupa M, Henzinger TA. 2023. Monitoring hyperproperties with prefix transducers, Zenodo, 10.5281/ZENODO.8191723. mla: Chalupa, Marek, and Thomas A. Henzinger. Monitoring Hyperproperties with Prefix Transducers. Zenodo, 2023, doi:10.5281/ZENODO.8191723. short: M. Chalupa, T.A. Henzinger, (2023). date_created: 2024-02-28T07:34:34Z date_published: 2023-07-28T00:00:00Z date_updated: 2024-02-28T12:33:09Z day: '28' ddc: - '000' department: - _id: ToHe doi: 10.5281/ZENODO.8191723 ec_funded: 1 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.8191722 month: '07' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publisher: Zenodo related_material: record: - id: '14076' relation: used_in_publication status: public status: public title: Monitoring hyperproperties with prefix transducers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...