--- _id: '12854' abstract: - lang: eng text: "The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis.\r\nAt SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition." acknowledgement: This work was supported by the ERC-2020-AdG 10102009 grant. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Bubaak: Runtime monitoring of program verifiers. In: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:535-540. doi:10.1007/978-3-031-30820-8_32' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Bubaak: Runtime monitoring of program verifiers. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 535–540). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_32' chicago: 'Chalupa, Marek, and Thomas A Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” In Tools and Algorithms for the Construction and Analysis of Systems, 13994:535–40. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_32.' ieee: 'M. Chalupa and T. A. Henzinger, “Bubaak: Runtime monitoring of program verifiers,” in Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 535–540.' ista: 'Chalupa M, Henzinger TA. 2023. Bubaak: Runtime monitoring of program verifiers. Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 535–540.' mla: 'Chalupa, Marek, and Thomas A. Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 535–40, doi:10.1007/978-3-031-30820-8_32.' short: M. Chalupa, T.A. Henzinger, in:, Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 535–540. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-04-20T08:22:53Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:02:43Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_32 ec_funded: 1 file: - access_level: open_access checksum: 120d2c2a38384058ad0630fdf8288312 content_type: application/pdf creator: dernst date_created: 2023-04-25T06:58:36Z date_updated: 2023-04-25T06:58:36Z file_id: '12864' file_name: 2023_LNCS_Chalupa.pdf file_size: 16096413 relation: main_file success: 1 file_date_updated: 2023-04-25T06:58:36Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version page: 535-540 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eisbn: - '9783031308208' eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: 'Bubaak: Runtime monitoring of program verifiers' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12856' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. Vamos: Middleware for best-effort third-party monitoring. In: Fundamental Approaches to Software Engineering. Vol 13991. Springer Nature; 2023:260-281. doi:10.1007/978-3-031-30826-0_15' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). Vamos: Middleware for best-effort third-party monitoring. In Fundamental Approaches to Software Engineering (Vol. 13991, pp. 260–281). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30826-0_15' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” In Fundamental Approaches to Software Engineering, 13991:260–81. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30826-0_15.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, “Vamos: Middleware for best-effort third-party monitoring,” in Fundamental Approaches to Software Engineering, Paris, France, 2023, vol. 13991, pp. 260–281.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. Vamos: Middleware for best-effort third-party monitoring. Fundamental Approaches to Software Engineering. FASE: Fundamental Approaches to Software Engineering, LNCS, vol. 13991, 260–281.' mla: 'Chalupa, Marek, et al. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” Fundamental Approaches to Software Engineering, vol. 13991, Springer Nature, 2023, pp. 260–81, doi:10.1007/978-3-031-30826-0_15.' short: M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, in:, Fundamental Approaches to Software Engineering, Springer Nature, 2023, pp. 260–281. conference: end_date: 2023-04-27 location: Paris, France name: 'FASE: Fundamental Approaches to Software Engineering' start_date: 2023-04-22 date_created: 2023-04-20T08:29:42Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:19:07Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30826-0_15 ec_funded: 1 file: - access_level: open_access checksum: 17a7c8e08be609cf2408d37ea55e322c content_type: application/pdf creator: dernst date_created: 2023-04-25T07:16:36Z date_updated: 2023-04-25T07:16:36Z file_id: '12865' file_name: 2023_LNCS_ChalupaM.pdf file_size: 580828 relation: main_file success: 1 file_date_updated: 2023-04-25T07:16:36Z has_accepted_license: '1' intvolume: ' 13991' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 260-281 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Fundamental Approaches to Software Engineering publication_identifier: eisbn: - '9783031308260' eissn: - 1611-3349 isbn: - '9783031308253' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12407' relation: earlier_version status: public status: public title: 'Vamos: Middleware for best-effort third-party monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13991 year: '2023' ... --- _id: '12407' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\n\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093. \r\nThe authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions." alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria; 2023. doi:10.15479/AT:ISTA:12407' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12407' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12407.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 38p.' mla: 'Chalupa, Marek, et al. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12407.' short: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 2023.' date_created: 2023-01-27T03:18:08Z date_published: 2023-01-27T00:00:00Z date_updated: 2023-04-25T07:19:06Z day: '27' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:12407 ec_funded: 1 file: - access_level: open_access checksum: 55426e463fdeafe9777fc3ff635154c7 content_type: application/pdf creator: fmuehlbo date_created: 2023-01-27T03:18:34Z date_updated: 2023-01-27T03:18:34Z file_id: '12408' file_name: main.pdf file_size: 662409 relation: main_file success: 1 file_date_updated: 2023-01-27T03:18:34Z has_accepted_license: '1' keyword: - runtime monitoring - best effort - third party language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '38' project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication_identifier: eissn: - 2664-1690 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12856' relation: later_version status: public status: public title: 'VAMOS: Middleware for Best-Effort Third-Party Monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13142' abstract: - lang: eng text: Reinforcement learning has received much attention for learning controllers of deterministic systems. We consider a learner-verifier framework for stochastic control systems and survey recent methods that formally guarantee a conjunction of reachability and safety properties. Given a property and a lower bound on the probability of the property being satisfied, our framework jointly learns a control policy and a formal certificate to ensure the satisfaction of the property with a desired probability threshold. Both the control policy and the formal certificate are continuous functions from states to reals, which are learned as parameterized neural networks. While in the deterministic case, the certificates are invariant and barrier functions for safety, or Lyapunov and ranking functions for liveness, in the stochastic case the certificates are supermartingales. For certificate verification, we use interval arithmetic abstract interpretation to bound the expected values of neural network functions. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Chatterjee K, Henzinger TA, Lechner M, Zikelic D. A learner-verifier framework for neural network controllers and certificates of stochastic systems. In: Tools and Algorithms for the Construction and Analysis of Systems . Vol 13993. Springer Nature; 2023:3-25. doi:10.1007/978-3-031-30823-9_1' apa: 'Chatterjee, K., Henzinger, T. A., Lechner, M., & Zikelic, D. (2023). A learner-verifier framework for neural network controllers and certificates of stochastic systems. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13993, pp. 3–25). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30823-9_1' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Mathias Lechner, and Dorde Zikelic. “A Learner-Verifier Framework for Neural Network Controllers and Certificates of Stochastic Systems.” In Tools and Algorithms for the Construction and Analysis of Systems , 13993:3–25. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30823-9_1. ieee: K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic, “A learner-verifier framework for neural network controllers and certificates of stochastic systems,” in Tools and Algorithms for the Construction and Analysis of Systems , Paris, France, 2023, vol. 13993, pp. 3–25. ista: 'Chatterjee K, Henzinger TA, Lechner M, Zikelic D. 2023. A learner-verifier framework for neural network controllers and certificates of stochastic systems. Tools and Algorithms for the Construction and Analysis of Systems . TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13993, 3–25.' mla: Chatterjee, Krishnendu, et al. “A Learner-Verifier Framework for Neural Network Controllers and Certificates of Stochastic Systems.” Tools and Algorithms for the Construction and Analysis of Systems , vol. 13993, Springer Nature, 2023, pp. 3–25, doi:10.1007/978-3-031-30823-9_1. short: K. Chatterjee, T.A. Henzinger, M. Lechner, D. Zikelic, in:, Tools and Algorithms for the Construction and Analysis of Systems , Springer Nature, 2023, pp. 3–25. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-06-18T22:00:47Z date_published: 2023-04-22T00:00:00Z date_updated: 2023-06-19T08:30:54Z day: '22' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-031-30823-9_1 ec_funded: 1 file: - access_level: open_access checksum: 3d8a8bb24d211bc83360dfc2fd744307 content_type: application/pdf creator: dernst date_created: 2023-06-19T08:29:30Z date_updated: 2023-06-19T08:29:30Z file_id: '13150' file_name: 2023_LNCS_Chatterjee.pdf file_size: 528455 relation: main_file success: 1 file_date_updated: 2023-06-19T08:29:30Z has_accepted_license: '1' intvolume: ' 13993' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 3-25 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Tools and Algorithms for the Construction and Analysis of Systems ' publication_identifier: eissn: - 1611-3349 isbn: - '9783031308222' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A learner-verifier framework for neural network controllers and certificates of stochastic systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13993 year: '2023' ... --- _id: '13141' abstract: - lang: eng text: "We automatically compute a new class of environment assumptions in two-player turn-based finite graph games which characterize an “adequate cooperation” needed from the environment to allow the system player to win. Given an ω-regular winning condition Φ for the system player, we compute an ω-regular assumption Ψ for the environment player, such that (i) every environment strategy compliant with Ψ allows the system to fulfill Φ (sufficiency), (ii) Ψ\r\n can be fulfilled by the environment for every strategy of the system (implementability), and (iii) Ψ does not prevent any cooperative strategy choice (permissiveness).\r\nFor parity games, which are canonical representations of ω-regular games, we present a polynomial-time algorithm for the symbolic computation of adequately permissive assumptions and show that our algorithm runs faster and produces better assumptions than existing approaches—both theoretically and empirically. To the best of our knowledge, for ω\r\n-regular games, we provide the first algorithm to compute sufficient and implementable environment assumptions that are also permissive." alternative_title: - LNCS article_processing_charge: No author: - first_name: Ashwani full_name: Anand, Ashwani last_name: Anand - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Satya Prakash full_name: Nayak, Satya Prakash last_name: Nayak - first_name: Anne Kathrin full_name: Schmuck, Anne Kathrin last_name: Schmuck citation: ama: 'Anand A, Mallik K, Nayak SP, Schmuck AK. Computing adequately permissive assumptions for synthesis. In: TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:211-228. doi:10.1007/978-3-031-30820-8_15' apa: 'Anand, A., Mallik, K., Nayak, S. P., & Schmuck, A. K. (2023). Computing adequately permissive assumptions for synthesis. In TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 211–228). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_15' chicago: 'Anand, Ashwani, Kaushik Mallik, Satya Prakash Nayak, and Anne Kathrin Schmuck. “Computing Adequately Permissive Assumptions for Synthesis.” In TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, 13994:211–28. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_15.' ieee: 'A. Anand, K. Mallik, S. P. Nayak, and A. K. Schmuck, “Computing adequately permissive assumptions for synthesis,” in TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 211–228.' ista: 'Anand A, Mallik K, Nayak SP, Schmuck AK. 2023. Computing adequately permissive assumptions for synthesis. TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 211–228.' mla: 'Anand, Ashwani, et al. “Computing Adequately Permissive Assumptions for Synthesis.” TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 211–28, doi:10.1007/978-3-031-30820-8_15.' short: 'A. Anand, K. Mallik, S.P. Nayak, A.K. Schmuck, in:, TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 211–228.' conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-06-18T22:00:47Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-06-19T08:49:46Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_15 file: - access_level: open_access checksum: 60dcafc1b4f6f070be43bad3fe877974 content_type: application/pdf creator: dernst date_created: 2023-06-19T08:43:21Z date_updated: 2023-06-19T08:43:21Z file_id: '13151' file_name: 2023_LNCS_Anand.pdf file_size: 521425 relation: main_file success: 1 file_date_updated: 2023-06-19T08:43:21Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 211-228 publication: 'TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems' publication_identifier: eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Computing adequately permissive assumptions for synthesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12467' abstract: - lang: eng text: Safety and liveness are elementary concepts of computation, and the foundation of many verification paradigms. The safety-liveness classification of boolean properties characterizes whether a given property can be falsified by observing a finite prefix of an infinite computation trace (always for safety, never for liveness). In quantitative specification and verification, properties assign not truth values, but quantitative values to infinite traces (e.g., a cost, or the distance to a boolean property). We introduce quantitative safety and liveness, and we prove that our definitions induce conservative quantitative generalizations of both (1)~the safety-progress hierarchy of boolean properties and (2)~the safety-liveness decomposition of boolean properties. In particular, we show that every quantitative property can be written as the pointwise minimum of a quantitative safety property and a quantitative liveness property. Consequently, like boolean properties, also quantitative properties can be min-decomposed into safety and liveness parts, or alternatively, max-decomposed into co-safety and co-liveness parts. Moreover, quantitative properties can be approximated naturally. We prove that every quantitative property that has both safe and co-safe approximations can be monitored arbitrarily precisely by a monitor that uses only a finite number of states. acknowledgement: We thank the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093. alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Mazzocchi NA, Sarac NE. Quantitative safety and liveness. In: 26th International Conference Foundations of Software Science and Computation Structures. Vol 13992. Springer Nature; 2023:349-370. doi:10.1007/978-3-031-30829-1_17' apa: 'Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2023). Quantitative safety and liveness. In 26th International Conference Foundations of Software Science and Computation Structures (Vol. 13992, pp. 349–370). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30829-1_17' chicago: Henzinger, Thomas A, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Quantitative Safety and Liveness.” In 26th International Conference Foundations of Software Science and Computation Structures, 13992:349–70. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30829-1_17. ieee: T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Quantitative safety and liveness,” in 26th International Conference Foundations of Software Science and Computation Structures, Paris, France, 2023, vol. 13992, pp. 349–370. ista: 'Henzinger TA, Mazzocchi NA, Sarac NE. 2023. Quantitative safety and liveness. 26th International Conference Foundations of Software Science and Computation Structures. FOSSACS: Foundations of Software Science and Computation Structures, LNCS, vol. 13992, 349–370.' mla: Henzinger, Thomas A., et al. “Quantitative Safety and Liveness.” 26th International Conference Foundations of Software Science and Computation Structures, vol. 13992, Springer Nature, 2023, pp. 349–70, doi:10.1007/978-3-031-30829-1_17. short: T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 26th International Conference Foundations of Software Science and Computation Structures, Springer Nature, 2023, pp. 349–370. conference: end_date: 2023-04-27 location: Paris, France name: 'FOSSACS: Foundations of Software Science and Computation Structures' start_date: 2023-04-22 date_created: 2023-01-31T07:23:56Z date_published: 2023-04-21T00:00:00Z date_updated: 2023-07-14T11:20:27Z day: '21' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1007/978-3-031-30829-1_17 ec_funded: 1 external_id: arxiv: - '2301.11175' file: - access_level: open_access checksum: 981025aed580b6b27c426cb8856cf63e content_type: application/pdf creator: esarac date_created: 2023-01-31T07:22:21Z date_updated: 2023-01-31T07:22:21Z file_id: '12468' file_name: qsl.pdf file_size: 449027 relation: main_file success: 1 - access_level: open_access checksum: f16e2af1e0eb243158ab0f0fe74e7d5a content_type: application/pdf creator: dernst date_created: 2023-06-19T10:28:09Z date_updated: 2023-06-19T10:28:09Z file_id: '13153' file_name: 2023_LNCS_HenzingerT.pdf file_size: 1048171 relation: main_file success: 1 file_date_updated: 2023-06-19T10:28:09Z has_accepted_license: '1' intvolume: ' 13992' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 349-370 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 26th International Conference Foundations of Software Science and Computation Structures publication_identifier: eissn: - 1611-3349 isbn: - '9783031308284' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantitative safety and liveness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 13992 year: '2023' ... --- _id: '13292' abstract: - lang: eng text: The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time. acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093.\r\nWe thank Pierre Ganty for early discussions and the anonymous reviewers for their helpful comments.\r\n" alternative_title: - LIPIcs article_processing_charge: Yes author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Pavol full_name: Kebis, Pavol last_name: Kebis - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Kebis P, Mazzocchi NA, Sarac NE. Regular methods for operator precedence languages. In: 50th International Colloquium on Automata, Languages, and Programming. Vol 261. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023:129:1--129:20. doi:10.4230/LIPIcs.ICALP.2023.129' apa: 'Henzinger, T. A., Kebis, P., Mazzocchi, N. A., & Sarac, N. E. (2023). Regular methods for operator precedence languages. In 50th International Colloquium on Automata, Languages, and Programming (Vol. 261, p. 129:1--129:20). Paderborn, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2023.129' chicago: Henzinger, Thomas A, Pavol Kebis, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Regular Methods for Operator Precedence Languages.” In 50th International Colloquium on Automata, Languages, and Programming, 261:129:1--129:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.ICALP.2023.129. ieee: T. A. Henzinger, P. Kebis, N. A. Mazzocchi, and N. E. Sarac, “Regular methods for operator precedence languages,” in 50th International Colloquium on Automata, Languages, and Programming, Paderborn, Germany, 2023, vol. 261, p. 129:1--129:20. ista: 'Henzinger TA, Kebis P, Mazzocchi NA, Sarac NE. 2023. Regular methods for operator precedence languages. 50th International Colloquium on Automata, Languages, and Programming. ICALP: International Colloquium on Automata, Languages, and Programming, LIPIcs, vol. 261, 129:1--129:20.' mla: Henzinger, Thomas A., et al. “Regular Methods for Operator Precedence Languages.” 50th International Colloquium on Automata, Languages, and Programming, vol. 261, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, p. 129:1--129:20, doi:10.4230/LIPIcs.ICALP.2023.129. short: T.A. Henzinger, P. Kebis, N.A. Mazzocchi, N.E. Sarac, in:, 50th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, p. 129:1--129:20. conference: end_date: 2023-07-14 location: Paderborn, Germany name: 'ICALP: International Colloquium on Automata, Languages, and Programming' start_date: 2023-07-10 date_created: 2023-07-24T15:11:41Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-07-31T08:38:38Z day: '05' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.4230/LIPIcs.ICALP.2023.129 ec_funded: 1 external_id: arxiv: - '2305.03447' file: - access_level: open_access checksum: 5d4c8932ef3450615a53b9bb15d92eb2 content_type: application/pdf creator: esarac date_created: 2023-07-24T15:11:05Z date_updated: 2023-07-24T15:11:05Z file_id: '13293' file_name: icalp23.pdf file_size: 859379 relation: main_file success: 1 file_date_updated: 2023-07-24T15:11:05Z has_accepted_license: '1' intvolume: ' 261' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 129:1--129:20 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 50th International Colloquium on Automata, Languages, and Programming publication_identifier: eissn: - 1868-8969 isbn: - '9783959772785' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' status: public title: Regular methods for operator precedence languages tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 261 year: '2023' ... --- _id: '12704' abstract: - lang: eng text: Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning, are capable of making adversarial training suitable for real-world robot applications. We evaluate three different robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment to mobile robot navigation and gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative impact on the nominal accuracy caused by adversarial training still outweighs the improved robustness by an order of magnitude. We conclude that although progress is happening, further advances in robust learning methods are necessary before they can benefit robot learning tasks in practice. acknowledgement: "We thank Christoph Lampert for inspiring this work. The\r\nviews and conclusions contained in this document are those of\r\nthe authors and should not be interpreted as representing the\r\nofficial policies, either expressed or implied, of the United States\r\nAir Force or the U.S. Government. The U.S. Government is\r\nauthorized to reproduce and distribute reprints for Government\r\npurposes notwithstanding any copyright notation herein." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 2023;8(3):1595-1602. doi:10.1109/LRA.2023.3240930 apa: Lechner, M., Amini, A., Rus, D., & Henzinger, T. A. (2023). Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LRA.2023.3240930 chicago: Lechner, Mathias, Alexander Amini, Daniela Rus, and Thomas A Henzinger. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/LRA.2023.3240930. ieee: M. Lechner, A. Amini, D. Rus, and T. A. Henzinger, “Revisiting the adversarial robustness-accuracy tradeoff in robot learning,” IEEE Robotics and Automation Letters, vol. 8, no. 3. Institute of Electrical and Electronics Engineers, pp. 1595–1602, 2023. ista: Lechner M, Amini A, Rus D, Henzinger TA. 2023. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 8(3), 1595–1602. mla: Lechner, Mathias, et al. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters, vol. 8, no. 3, Institute of Electrical and Electronics Engineers, 2023, pp. 1595–602, doi:10.1109/LRA.2023.3240930. short: M. Lechner, A. Amini, D. Rus, T.A. Henzinger, IEEE Robotics and Automation Letters 8 (2023) 1595–1602. date_created: 2023-03-05T23:01:04Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:36:50Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/LRA.2023.3240930 external_id: arxiv: - '2204.07373' isi: - '000936534100012' file: - access_level: open_access checksum: 5a75dcd326ea66685de2b1aaec259e85 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T12:22:23Z date_updated: 2023-03-07T12:22:23Z file_id: '12714' file_name: 2023_IEEERobAutLetters_Lechner.pdf file_size: 944052 relation: main_file success: 1 file_date_updated: 2023-03-07T12:22:23Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1595-1602 publication: IEEE Robotics and Automation Letters publication_identifier: eissn: - 2377-3766 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' related_material: record: - id: '11366' relation: earlier_version status: public scopus_import: '1' status: public title: Revisiting the adversarial robustness-accuracy tradeoff in robot learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2023' ... --- _id: '12876' abstract: - lang: eng text: "Motivation: The problem of model inference is of fundamental importance to systems biology. Logical models (e.g. Boolean networks; BNs) represent a computationally attractive approach capable of handling large biological networks. The models are typically inferred from experimental data. However, even with a substantial amount of experimental data supported by some prior knowledge, existing inference methods often focus on a small sample of admissible candidate models only.\r\n\r\nResults: We propose Boolean network sketches as a new formal instrument for the inference of Boolean networks. A sketch integrates (typically partial) knowledge about the network’s topology and the update logic (obtained through, e.g. a biological knowledge base or a literature search), as well as further assumptions about the properties of the network’s transitions (e.g. the form of its attractor landscape), and additional restrictions on the model dynamics given by the measured experimental data. Our new BNs inference algorithm starts with an ‘initial’ sketch, which is extended by adding restrictions representing experimental data to a ‘data-informed’ sketch and subsequently computes all BNs consistent with the data-informed sketch. Our algorithm is based on a symbolic representation and coloured model-checking. Our approach is unique in its ability to cover a broad spectrum of knowledge and efficiently produce a compact representation of all inferred BNs. We evaluate the method on a non-trivial collection of real-world and simulated data." acknowledgement: This work was partially supported by GACR [grant No. GA22-10845S]; and Grant Agency of Masaryk University [grant No. MUNI/G/1771/2020]. This work was partially supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie [Grant Agreement No. 101034413 to S.P.]. article_number: btad158 article_processing_charge: No article_type: original author: - first_name: Nikola full_name: Beneš, Nikola last_name: Beneš - first_name: Luboš full_name: Brim, Luboš last_name: Brim - first_name: Ondřej full_name: Huvar, Ondřej last_name: Huvar - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva - first_name: David full_name: Šafránek, David last_name: Šafránek citation: ama: 'Beneš N, Brim L, Huvar O, Pastva S, Šafránek D. Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. 2023;39(4). doi:10.1093/bioinformatics/btad158' apa: 'Beneš, N., Brim, L., Huvar, O., Pastva, S., & Šafránek, D. (2023). Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. Oxford Academic. https://doi.org/10.1093/bioinformatics/btad158' chicago: 'Beneš, Nikola, Luboš Brim, Ondřej Huvar, Samuel Pastva, and David Šafránek. “Boolean Network Sketches: A Unifying Framework for Logical Model Inference.” Bioinformatics. Oxford Academic, 2023. https://doi.org/10.1093/bioinformatics/btad158.' ieee: 'N. Beneš, L. Brim, O. Huvar, S. Pastva, and D. Šafránek, “Boolean network sketches: A unifying framework for logical model inference,” Bioinformatics, vol. 39, no. 4. Oxford Academic, 2023.' ista: 'Beneš N, Brim L, Huvar O, Pastva S, Šafránek D. 2023. Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. 39(4), btad158.' mla: 'Beneš, Nikola, et al. “Boolean Network Sketches: A Unifying Framework for Logical Model Inference.” Bioinformatics, vol. 39, no. 4, btad158, Oxford Academic, 2023, doi:10.1093/bioinformatics/btad158.' short: N. Beneš, L. Brim, O. Huvar, S. Pastva, D. Šafránek, Bioinformatics 39 (2023). date_created: 2023-04-30T22:01:05Z date_published: 2023-04-03T00:00:00Z date_updated: 2023-08-01T14:27:28Z day: '03' ddc: - '000' department: - _id: ToHe doi: 10.1093/bioinformatics/btad158 ec_funded: 1 external_id: isi: - '000976610800001' pmid: - '37004199' file: - access_level: open_access checksum: 2cb90ddf781baefddf47eac4b54e2a03 content_type: application/pdf creator: dernst date_created: 2023-05-02T07:39:04Z date_updated: 2023-05-02T07:39:04Z file_id: '12886' file_name: 2023_Bioinformatics_Benes.pdf file_size: 478740 relation: main_file success: 1 file_date_updated: 2023-05-02T07:39:04Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Bioinformatics publication_identifier: eissn: - 1367-4811 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://doi.org/10.5281/zenodo.7688740 scopus_import: '1' status: public title: 'Boolean network sketches: A unifying framework for logical model inference' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2023' ... --- _id: '14242' abstract: - lang: eng text: We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs. acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. Research was sponsored by the United\r\nStates Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-\r\n1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied,\r\nof the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright\r\nnotation herein. The research was also funded in part by the AI2050 program at Schmidt Futures (Grant G-22-63172) and Capgemini SE." article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Daniela full_name: Rus, Daniela last_name: Rus citation: ama: 'Lechner M, Zikelic D, Chatterjee K, Henzinger TA, Rus D. Quantization-aware interval bound propagation for training certifiably robust quantized neural networks. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol 37. Association for the Advancement of Artificial Intelligence; 2023:14964-14973. doi:10.1609/aaai.v37i12.26747' apa: 'Lechner, M., Zikelic, D., Chatterjee, K., Henzinger, T. A., & Rus, D. (2023). Quantization-aware interval bound propagation for training certifiably robust quantized neural networks. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (Vol. 37, pp. 14964–14973). Washington, DC, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v37i12.26747' chicago: Lechner, Mathias, Dorde Zikelic, Krishnendu Chatterjee, Thomas A Henzinger, and Daniela Rus. “Quantization-Aware Interval Bound Propagation for Training Certifiably Robust Quantized Neural Networks.” In Proceedings of the 37th AAAI Conference on Artificial Intelligence, 37:14964–73. Association for the Advancement of Artificial Intelligence, 2023. https://doi.org/10.1609/aaai.v37i12.26747. ieee: M. Lechner, D. Zikelic, K. Chatterjee, T. A. Henzinger, and D. Rus, “Quantization-aware interval bound propagation for training certifiably robust quantized neural networks,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, United States, 2023, vol. 37, no. 12, pp. 14964–14973. ista: 'Lechner M, Zikelic D, Chatterjee K, Henzinger TA, Rus D. 2023. Quantization-aware interval bound propagation for training certifiably robust quantized neural networks. Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI: Conference on Artificial Intelligence vol. 37, 14964–14973.' mla: Lechner, Mathias, et al. “Quantization-Aware Interval Bound Propagation for Training Certifiably Robust Quantized Neural Networks.” Proceedings of the 37th AAAI Conference on Artificial Intelligence, vol. 37, no. 12, Association for the Advancement of Artificial Intelligence, 2023, pp. 14964–73, doi:10.1609/aaai.v37i12.26747. short: M. Lechner, D. Zikelic, K. Chatterjee, T.A. Henzinger, D. Rus, in:, Proceedings of the 37th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2023, pp. 14964–14973. conference: end_date: 2023-02-14 location: Washington, DC, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2023-02-07 date_created: 2023-08-27T22:01:17Z date_published: 2023-06-26T00:00:00Z date_updated: 2023-09-05T07:06:14Z day: '26' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v37i12.26747 ec_funded: 1 external_id: arxiv: - '2211.16187' intvolume: ' 37' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.16187 month: '06' oa: 1 oa_version: Preprint page: 14964-14973 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 37th AAAI Conference on Artificial Intelligence publication_identifier: isbn: - '9781577358800' publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: Quantization-aware interval bound propagation for training certifiably robust quantized neural networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2023' ... --- _id: '14243' abstract: - lang: eng text: 'Two-player zero-sum "graph games" are central in logic, verification, and multi-agent systems. The game proceeds by placing a token on a vertex of a graph, and allowing the players to move it to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In "bidding games", however, the players have budgets and in each turn, an auction (bidding) determines which player moves the token. So far, bidding games have only been studied as full-information games. In this work we initiate the study of partial-information bidding games: we study bidding games in which a player''s initial budget is drawn from a known probability distribution. We show that while for some bidding mechanisms and objectives, it is straightforward to adapt the results from the full-information setting to the partial-information setting, for others, the analysis is significantly more challenging, requires new techniques, and gives rise to interesting results. Specifically, we study games with "mean-payoff" objectives in combination with "poorman" bidding. We construct optimal strategies for a partially-informed player who plays against a fully-informed adversary. We show that, somewhat surprisingly, the "value" under pure strategies does not necessarily exist in such games.' acknowledgement: This research was supported in part by ISF grant no.1679/21, by the ERC CoG 863818 (ForM-SMArt), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Avni G, Jecker IR, Zikelic D. Bidding graph games with partially-observable budgets. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol 37. ; 2023:5464-5471. doi:10.1609/aaai.v37i5.25679' apa: Avni, G., Jecker, I. R., & Zikelic, D. (2023). Bidding graph games with partially-observable budgets. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (Vol. 37, pp. 5464–5471). Washington, DC, United States. https://doi.org/10.1609/aaai.v37i5.25679 chicago: Avni, Guy, Ismael R Jecker, and Dorde Zikelic. “Bidding Graph Games with Partially-Observable Budgets.” In Proceedings of the 37th AAAI Conference on Artificial Intelligence, 37:5464–71, 2023. https://doi.org/10.1609/aaai.v37i5.25679. ieee: G. Avni, I. R. Jecker, and D. Zikelic, “Bidding graph games with partially-observable budgets,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, United States, 2023, vol. 37, no. 5, pp. 5464–5471. ista: 'Avni G, Jecker IR, Zikelic D. 2023. Bidding graph games with partially-observable budgets. Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI: Conference on Artificial Intelligence vol. 37, 5464–5471.' mla: Avni, Guy, et al. “Bidding Graph Games with Partially-Observable Budgets.” Proceedings of the 37th AAAI Conference on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 5464–71, doi:10.1609/aaai.v37i5.25679. short: G. Avni, I.R. Jecker, D. Zikelic, in:, Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023, pp. 5464–5471. conference: end_date: 2023-02-14 location: Washington, DC, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2023-02-07 date_created: 2023-08-27T22:01:18Z date_published: 2023-06-27T00:00:00Z date_updated: 2023-09-05T08:37:00Z day: '27' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v37i5.25679 ec_funded: 1 external_id: arxiv: - '2211.13626' intvolume: ' 37' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1609/aaai.v37i5.25679 month: '06' oa: 1 oa_version: Published Version page: 5464-5471 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 37th AAAI Conference on Artificial Intelligence publication_identifier: isbn: - '9781577358800' publication_status: published quality_controlled: '1' scopus_import: '1' status: public title: Bidding graph games with partially-observable budgets type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2023' ... --- _id: '13310' abstract: - lang: eng text: Machine-learned systems are in widespread use for making decisions about humans, and it is important that they are fair, i.e., not biased against individuals based on sensitive attributes. We present runtime verification of algorithmic fairness for systems whose models are unknown, but are assumed to have a Markov chain structure. We introduce a specification language that can model many common algorithmic fairness properties, such as demographic parity, equal opportunity, and social burden. We build monitors that observe a long sequence of events as generated by a given system, and output, after each observation, a quantitative estimate of how fair or biased the system was on that run until that point in time. The estimate is proven to be correct modulo a variable error bound and a given confidence level, where the error bound gets tighter as the observed sequence gets longer. Our monitors are of two types, and use, respectively, frequentist and Bayesian statistical inference techniques. While the frequentist monitors compute estimates that are objectively correct with respect to the ground truth, the Bayesian monitors compute estimates that are correct subject to a given prior belief about the system’s model. Using a prototype implementation, we show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds, and if a college is fair in admitting students while maintaining a reasonable financial burden on the society. Although they exhibit different theoretical complexities in certain cases, in our experiments, both frequentist and Bayesian monitors took less than a millisecond to update their verdicts after each observation. acknowledgement: 'This work is supported by the European Research Council under Grant No.: ERC-2020-AdG101020093.' alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mahyar full_name: Karimi, Mahyar id: f1dedef5-2f78-11ee-989a-c4c97bccf506 last_name: Karimi orcid: 0009-0005-0820-1696 - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. Monitoring algorithmic fairness. In: Computer Aided Verification. Vol 13965. Springer Nature; 2023:358–382. doi:10.1007/978-3-031-37703-7_17' apa: 'Henzinger, T. A., Karimi, M., Kueffner, K., & Mallik, K. (2023). Monitoring algorithmic fairness. In Computer Aided Verification (Vol. 13965, pp. 358–382). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-37703-7_17' chicago: Henzinger, Thomas A, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik. “Monitoring Algorithmic Fairness.” In Computer Aided Verification, 13965:358–382. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-37703-7_17. ieee: T. A. Henzinger, M. Karimi, K. Kueffner, and K. Mallik, “Monitoring algorithmic fairness,” in Computer Aided Verification, Paris, France, 2023, vol. 13965, pp. 358–382. ista: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. 2023. Monitoring algorithmic fairness. Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13965, 358–382.' mla: Henzinger, Thomas A., et al. “Monitoring Algorithmic Fairness.” Computer Aided Verification, vol. 13965, Springer Nature, 2023, pp. 358–382, doi:10.1007/978-3-031-37703-7_17. short: T.A. Henzinger, M. Karimi, K. Kueffner, K. Mallik, in:, Computer Aided Verification, Springer Nature, 2023, pp. 358–382. conference: end_date: 2023-07-22 location: Paris, France name: 'CAV: Computer Aided Verification' start_date: 2023-07-17 date_created: 2023-07-25T18:32:40Z date_published: 2023-07-18T00:00:00Z date_updated: 2023-09-05T15:14:00Z day: '18' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1007/978-3-031-37703-7_17 ec_funded: 1 external_id: arxiv: - '2305.15979' file: - access_level: open_access checksum: ccaf94bf7d658ba012c016e11869b54c content_type: application/pdf creator: dernst date_created: 2023-07-31T08:11:20Z date_updated: 2023-07-31T08:11:20Z file_id: '13327' file_name: 2023_LNCS_CAV_HenzingerT.pdf file_size: 647760 relation: main_file success: 1 file_date_updated: 2023-07-31T08:11:20Z has_accepted_license: '1' intvolume: ' 13965' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 358–382 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Computer Aided Verification publication_identifier: eisbn: - '9783031377037' eissn: - 1611-3349 isbn: - '9783031377020' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Monitoring algorithmic fairness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13965 year: '2023' ... --- _id: '13221' abstract: - lang: eng text: The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totallyordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications. acknowledgement: We thank Christof Löding for pointing us to some results on PSpace-hardess of universality problems and the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093 and the Israel Science Foundation grant 2410/22. alternative_title: - LIPIcs article_number: '17' article_processing_charge: No author: - first_name: Udi full_name: Boker, Udi id: 31E297B6-F248-11E8-B48F-1D18A9856A87 last_name: Boker - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. Safety and liveness of quantitative automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.17' apa: 'Boker, U., Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2023). Safety and liveness of quantitative automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17' chicago: Boker, Udi, Thomas A Henzinger, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Safety and Liveness of Quantitative Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.17. ieee: U. Boker, T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Safety and liveness of quantitative automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Boker U, Henzinger TA, Mazzocchi NA, Sarac NE. 2023. Safety and liveness of quantitative automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 17.' mla: Boker, Udi, et al. “Safety and Liveness of Quantitative Automata.” 34th International Conference on Concurrency Theory, vol. 279, 17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.17. short: U. Boker, T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-23 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-18 date_created: 2023-07-14T10:00:15Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:14:03Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.17 ec_funded: 1 external_id: arxiv: - '2307.06016' file: - access_level: open_access checksum: d40e57a04448ea5c77d7e1cfb9590a81 content_type: application/pdf creator: esarac date_created: 2023-07-14T12:03:48Z date_updated: 2023-07-14T12:03:48Z file_id: '13224' file_name: CONCUR23.pdf file_size: 755529 relation: main_file success: 1 file_date_updated: 2023-07-14T12:03:48Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: eissn: - 1868-8969 isbn: - '9783959772990' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' status: public title: Safety and liveness of quantitative automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14405' abstract: - lang: eng text: We introduce hypernode automata as a new specification formalism for hyperproperties of concurrent systems. They are finite automata with nodes labeled with hypernode logic formulas and transitions labeled with actions. A hypernode logic formula specifies relations between sequences of variable values in different system executions. Unlike HyperLTL, hypernode logic takes an asynchronous view on execution traces by constraining the values and the order of value changes of each variable without correlating the timing of the changes. Different execution traces are synchronized solely through the transitions of hypernode automata. Hypernode automata naturally combine asynchronicity at the node level with synchronicity at the transition level. We show that the model-checking problem for hypernode automata is decidable over action-labeled Kripke structures, whose actions induce transitions of the specification automata. For this reason, hypernode automaton is a suitable formalism for specifying and verifying asynchronous hyperproperties, such as declassifying observational determinism in multi-threaded programs. acknowledgement: "This work was supported in part by the Austrian Science Fund (FWF) SFB project\r\nSpyCoDe F8502, by the FWF projects ZK-35 and W1255-N23, and by the ERC Advanced Grant\r\nVAMOS 101020093." alternative_title: - LIPIcs article_number: '21' article_processing_charge: Yes author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana full_name: Oliveira da Costa, Ana id: f347ec37-6676-11ee-b395-a888cb7b4fb4 last_name: Oliveira da Costa orcid: 0000-0002-8741-5799 citation: ama: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. Hypernode automata. In: 34th International Conference on Concurrency Theory. Vol 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.CONCUR.2023.21' apa: 'Bartocci, E., Henzinger, T. A., Nickovic, D., & Oliveira da Costa, A. (2023). Hypernode automata. In 34th International Conference on Concurrency Theory (Vol. 279). Antwerp, Belgium: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21' chicago: Bartocci, Ezio, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira da Costa. “Hypernode Automata.” In 34th International Conference on Concurrency Theory, Vol. 279. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.CONCUR.2023.21. ieee: E. Bartocci, T. A. Henzinger, D. Nickovic, and A. Oliveira da Costa, “Hypernode automata,” in 34th International Conference on Concurrency Theory, Antwerp, Belgium, 2023, vol. 279. ista: 'Bartocci E, Henzinger TA, Nickovic D, Oliveira da Costa A. 2023. Hypernode automata. 34th International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 279, 21.' mla: Bartocci, Ezio, et al. “Hypernode Automata.” 34th International Conference on Concurrency Theory, vol. 279, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.CONCUR.2023.21. short: E. Bartocci, T.A. Henzinger, D. Nickovic, A. Oliveira da Costa, in:, 34th International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-09-22 location: Antwerp, Belgium name: 'CONCUR: Conference on Concurrency Theory' start_date: 2023-09-19 date_created: 2023-10-08T22:01:16Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-10-09T07:43:44Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2023.21 ec_funded: 1 external_id: arxiv: - '2305.02836' file: - access_level: open_access checksum: 215765e40454d806174ac0a223e8d6fa content_type: application/pdf creator: dernst date_created: 2023-10-09T07:42:45Z date_updated: 2023-10-09T07:42:45Z file_id: '14413' file_name: 2023_LIPcs_Bartocci.pdf file_size: 795790 relation: main_file success: 1 file_date_updated: 2023-10-09T07:42:45Z has_accepted_license: '1' intvolume: ' 279' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 34th International Conference on Concurrency Theory publication_identifier: isbn: - '9783959772990' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Hypernode automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 279 year: '2023' ... --- _id: '14454' abstract: - lang: eng text: As AI and machine-learned software are used increasingly for making decisions that affect humans, it is imperative that they remain fair and unbiased in their decisions. To complement design-time bias mitigation measures, runtime verification techniques have been introduced recently to monitor the algorithmic fairness of deployed systems. Previous monitoring techniques assume full observability of the states of the (unknown) monitored system. Moreover, they can monitor only fairness properties that are specified as arithmetic expressions over the probabilities of different events. In this work, we extend fairness monitoring to systems modeled as partially observed Markov chains (POMC), and to specifications containing arithmetic expressions over the expected values of numerical functions on event sequences. The only assumptions we make are that the underlying POMC is aperiodic and starts in the stationary distribution, with a bound on its mixing time being known. These assumptions enable us to estimate a given property for the entire distribution of possible executions of the monitored POMC, by observing only a single execution. Our monitors observe a long run of the system and, after each new observation, output updated PAC-estimates of how fair or biased the system is. The monitors are computationally lightweight and, using a prototype implementation, we demonstrate their effectiveness on several real-world examples. acknowledgement: 'This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Kueffner K, Mallik K. Monitoring algorithmic fairness under partial observations. In: 23rd International Conference on Runtime Verification. Vol 14245. Springer Nature; 2023:291-311. doi:10.1007/978-3-031-44267-4_15' apa: 'Henzinger, T. A., Kueffner, K., & Mallik, K. (2023). Monitoring algorithmic fairness under partial observations. In 23rd International Conference on Runtime Verification (Vol. 14245, pp. 291–311). Thessaloniki, Greece: Springer Nature. https://doi.org/10.1007/978-3-031-44267-4_15' chicago: Henzinger, Thomas A, Konstantin Kueffner, and Kaushik Mallik. “Monitoring Algorithmic Fairness under Partial Observations.” In 23rd International Conference on Runtime Verification, 14245:291–311. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44267-4_15. ieee: T. A. Henzinger, K. Kueffner, and K. Mallik, “Monitoring algorithmic fairness under partial observations,” in 23rd International Conference on Runtime Verification, Thessaloniki, Greece, 2023, vol. 14245, pp. 291–311. ista: 'Henzinger TA, Kueffner K, Mallik K. 2023. Monitoring algorithmic fairness under partial observations. 23rd International Conference on Runtime Verification. RV: Conference on Runtime Verification, LNCS, vol. 14245, 291–311.' mla: Henzinger, Thomas A., et al. “Monitoring Algorithmic Fairness under Partial Observations.” 23rd International Conference on Runtime Verification, vol. 14245, Springer Nature, 2023, pp. 291–311, doi:10.1007/978-3-031-44267-4_15. short: T.A. Henzinger, K. Kueffner, K. Mallik, in:, 23rd International Conference on Runtime Verification, Springer Nature, 2023, pp. 291–311. conference: end_date: 2023-10-06 location: Thessaloniki, Greece name: 'RV: Conference on Runtime Verification' start_date: 2023-10-03 date_created: 2023-10-29T23:01:15Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-10-31T11:48:20Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-031-44267-4_15 ec_funded: 1 external_id: arxiv: - '2308.00341' intvolume: ' 14245' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2308.00341 month: '10' oa: 1 oa_version: Preprint page: 291-311 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 23rd International Conference on Runtime Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783031442667' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Monitoring algorithmic fairness under partial observations type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14245 year: '2023' ... --- _id: '14518' abstract: - lang: eng text: We consider bidding games, a class of two-player zero-sum graph games. The game proceeds as follows. Both players have bounded budgets. A token is placed on a vertex of a graph, in each turn the players simultaneously submit bids, and the higher bidder moves the token, where we break bidding ties in favor of Player 1. Player 1 wins the game iff the token visits a designated target vertex. We consider, for the first time, poorman discrete-bidding in which the granularity of the bids is restricted and the higher bid is paid to the bank. Previous work either did not impose granularity restrictions or considered Richman bidding (bids are paid to the opponent). While the latter mechanisms are technically more accessible, the former is more appealing from a practical standpoint. Our study focuses on threshold budgets, which is the necessary and sufficient initial budget required for Player 1 to ensure winning against a given Player 2 budget. We first show existence of thresholds. In DAGs, we show that threshold budgets can be approximated with error bounds by thresholds under continuous-bidding and that they exhibit a periodic behavior. We identify closed-form solutions in special cases. We implement and experiment with an algorithm to find threshold budgets. acknowledgement: This research was supported in part by ISF grant no. 1679/21, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Suman full_name: Sadhukhan, Suman last_name: Sadhukhan - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. Reachability poorman discrete-bidding games. In: Frontiers in Artificial Intelligence and Applications. Vol 372. IOS Press; 2023:141-148. doi:10.3233/FAIA230264' apa: 'Avni, G., Meggendorfer, T., Sadhukhan, S., Tkadlec, J., & Zikelic, D. (2023). Reachability poorman discrete-bidding games. In Frontiers in Artificial Intelligence and Applications (Vol. 372, pp. 141–148). Krakow, Poland: IOS Press. https://doi.org/10.3233/FAIA230264' chicago: Avni, Guy, Tobias Meggendorfer, Suman Sadhukhan, Josef Tkadlec, and Dorde Zikelic. “Reachability Poorman Discrete-Bidding Games.” In Frontiers in Artificial Intelligence and Applications, 372:141–48. IOS Press, 2023. https://doi.org/10.3233/FAIA230264. ieee: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, and D. Zikelic, “Reachability poorman discrete-bidding games,” in Frontiers in Artificial Intelligence and Applications, Krakow, Poland, 2023, vol. 372, pp. 141–148. ista: 'Avni G, Meggendorfer T, Sadhukhan S, Tkadlec J, Zikelic D. 2023. Reachability poorman discrete-bidding games. Frontiers in Artificial Intelligence and Applications. ECAI: European Conference on Artificial Intelligence vol. 372, 141–148.' mla: Avni, Guy, et al. “Reachability Poorman Discrete-Bidding Games.” Frontiers in Artificial Intelligence and Applications, vol. 372, IOS Press, 2023, pp. 141–48, doi:10.3233/FAIA230264. short: G. Avni, T. Meggendorfer, S. Sadhukhan, J. Tkadlec, D. Zikelic, in:, Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 141–148. conference: end_date: 2023-10-04 location: Krakow, Poland name: 'ECAI: European Conference on Artificial Intelligence' start_date: 2023-09-30 date_created: 2023-11-12T23:00:56Z date_published: 2023-09-28T00:00:00Z date_updated: 2023-11-13T10:18:45Z day: '28' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.3233/FAIA230264 ec_funded: 1 external_id: arxiv: - '2307.15218' file: - access_level: open_access checksum: 1390ca38480fa4cf286b0f1a42e8c12f content_type: application/pdf creator: dernst date_created: 2023-11-13T10:16:10Z date_updated: 2023-11-13T10:16:10Z file_id: '14529' file_name: 2023_FAIA_Avni.pdf file_size: 501011 relation: main_file success: 1 file_date_updated: 2023-11-13T10:16:10Z has_accepted_license: '1' intvolume: ' 372' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '09' oa: 1 oa_version: Published Version page: 141-148 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Frontiers in Artificial Intelligence and Applications publication_identifier: isbn: - '9781643684369' issn: - 0922-6389 publication_status: published publisher: IOS Press quality_controlled: '1' scopus_import: '1' status: public title: Reachability poorman discrete-bidding games tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2023' ... --- _id: '14559' abstract: - lang: eng text: We consider the problem of learning control policies in discrete-time stochastic systems which guarantee that the system stabilizes within some specified stabilization region with probability 1. Our approach is based on the novel notion of stabilizing ranking supermartingales (sRSMs) that we introduce in this work. Our sRSMs overcome the limitation of methods proposed in previous works whose applicability is restricted to systems in which the stabilizing region cannot be left once entered under any control policy. We present a learning procedure that learns a control policy together with an sRSM that formally certifies probability 1 stability, both learned as neural networks. We show that this procedure can also be adapted to formally verifying that, under a given Lipschitz continuous control policy, the stochastic system stabilizes within some stabilizing region with probability 1. Our experimental evaluation shows that our learning procedure can successfully learn provably stabilizing policies in practice. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Matin full_name: Ansaripour, Matin last_name: Ansaripour - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. Learning provably stabilizing neural controllers for discrete-time stochastic systems. In: 21st International Symposium on Automated Technology for Verification and Analysis. Vol 14215. Springer Nature; 2023:357-379. doi:10.1007/978-3-031-45329-8_17' apa: 'Ansaripour, M., Chatterjee, K., Henzinger, T. A., Lechner, M., & Zikelic, D. (2023). Learning provably stabilizing neural controllers for discrete-time stochastic systems. In 21st International Symposium on Automated Technology for Verification and Analysis (Vol. 14215, pp. 357–379). Singapore, Singapore: Springer Nature. https://doi.org/10.1007/978-3-031-45329-8_17' chicago: Ansaripour, Matin, Krishnendu Chatterjee, Thomas A Henzinger, Mathias Lechner, and Dorde Zikelic. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” In 21st International Symposium on Automated Technology for Verification and Analysis, 14215:357–79. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-45329-8_17. ieee: M. Ansaripour, K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic, “Learning provably stabilizing neural controllers for discrete-time stochastic systems,” in 21st International Symposium on Automated Technology for Verification and Analysis, Singapore, Singapore, 2023, vol. 14215, pp. 357–379. ista: 'Ansaripour M, Chatterjee K, Henzinger TA, Lechner M, Zikelic D. 2023. Learning provably stabilizing neural controllers for discrete-time stochastic systems. 21st International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 14215, 357–379.' mla: Ansaripour, Matin, et al. “Learning Provably Stabilizing Neural Controllers for Discrete-Time Stochastic Systems.” 21st International Symposium on Automated Technology for Verification and Analysis, vol. 14215, Springer Nature, 2023, pp. 357–79, doi:10.1007/978-3-031-45329-8_17. short: M. Ansaripour, K. Chatterjee, T.A. Henzinger, M. Lechner, D. Zikelic, in:, 21st International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2023, pp. 357–379. conference: end_date: 2023-10-27 location: Singapore, Singapore name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2023-10-24 date_created: 2023-11-19T23:00:56Z date_published: 2023-10-22T00:00:00Z date_updated: 2023-11-20T08:30:20Z day: '22' department: - _id: ToHe - _id: KrCh doi: 10.1007/978-3-031-45329-8_17 ec_funded: 1 intvolume: ' 14215' language: - iso: eng month: '10' oa_version: None page: 357-379 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 21st International Symposium on Automated Technology for Verification and Analysis publication_identifier: eissn: - 1611-3349 isbn: - '9783031453281' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Learning provably stabilizing neural controllers for discrete-time stochastic systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14215 year: '2023' ... --- _id: '13228' abstract: - lang: eng text: A machine-learned system that is fair in static decision-making tasks may have biased societal impacts in the long-run. This may happen when the system interacts with humans and feedback patterns emerge, reinforcing old biases in the system and creating new biases. While existing works try to identify and mitigate long-run biases through smart system design, we introduce techniques for monitoring fairness in real time. Our goal is to build and deploy a monitor that will continuously observe a long sequence of events generated by the system in the wild, and will output, with each event, a verdict on how fair the system is at the current point in time. The advantages of monitoring are two-fold. Firstly, fairness is evaluated at run-time, which is important because unfair behaviors may not be eliminated a priori, at design-time, due to partial knowledge about the system and the environment, as well as uncertainties and dynamic changes in the system and the environment, such as the unpredictability of human behavior. Secondly, monitors are by design oblivious to how the monitored system is constructed, which makes them suitable to be used as trusted third-party fairness watchdogs. They function as computationally lightweight statistical estimators, and their correctness proofs rely on the rigorous analysis of the stochastic process that models the assumptions about the underlying dynamics of the system. We show, both in theory and experiments, how monitors can warn us (1) if a bank’s credit policy over time has created an unfair distribution of credit scores among the population, and (2) if a resource allocator’s allocation policy over time has made unfair allocations. Our experiments demonstrate that the monitors introduce very low overhead. We believe that runtime monitoring is an important and mathematically rigorous new addition to the fairness toolbox. acknowledgement: 'The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions. This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mahyar full_name: Karimi, Mahyar last_name: Karimi - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. Runtime monitoring of dynamic fairness properties. In: FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. Association for Computing Machinery; 2023:604-614. doi:10.1145/3593013.3594028' apa: 'Henzinger, T. A., Karimi, M., Kueffner, K., & Mallik, K. (2023). Runtime monitoring of dynamic fairness properties. In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 604–614). Chicago, IL, United States: Association for Computing Machinery. https://doi.org/10.1145/3593013.3594028' chicago: 'Henzinger, Thomas A, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik. “Runtime Monitoring of Dynamic Fairness Properties.” In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 604–14. Association for Computing Machinery, 2023. https://doi.org/10.1145/3593013.3594028.' ieee: 'T. A. Henzinger, M. Karimi, K. Kueffner, and K. Mallik, “Runtime monitoring of dynamic fairness properties,” in FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, United States, 2023, pp. 604–614.' ista: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. 2023. Runtime monitoring of dynamic fairness properties. FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. FAccT: Conference on Fairness, Accountability and Transparency, 604–614.' mla: 'Henzinger, Thomas A., et al. “Runtime Monitoring of Dynamic Fairness Properties.” FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–14, doi:10.1145/3593013.3594028.' short: 'T.A. Henzinger, M. Karimi, K. Kueffner, K. Mallik, in:, FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–614.' conference: end_date: 2023-06-15 location: Chicago, IL, United States name: 'FAccT: Conference on Fairness, Accountability and Transparency' start_date: 2023-06-12 date_created: 2023-07-16T22:01:09Z date_published: 2023-06-12T00:00:00Z date_updated: 2023-12-13T11:30:31Z day: '12' ddc: - '000' department: - _id: ToHe doi: 10.1145/3593013.3594028 ec_funded: 1 external_id: arxiv: - '2305.04699' isi: - '001062819300057' file: - access_level: open_access checksum: 96c759db9cdf94b81e37871a66a6ff48 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:43:10Z date_updated: 2023-07-18T07:43:10Z file_id: '13245' file_name: 2023_ACM_HenzingerT.pdf file_size: 4100596 relation: main_file success: 1 file_date_updated: 2023-07-18T07:43:10Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 604-614 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 'FAccT ''23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency' publication_identifier: isbn: - '9781450372527' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Runtime monitoring of dynamic fairness properties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13263' abstract: - lang: eng text: "Motivation: Boolean networks are simple but efficient mathematical formalism for modelling complex biological systems. However, having only two levels of activation is sometimes not enough to fully capture the dynamics of real-world biological systems. Hence, the need for multi-valued networks (MVNs), a generalization of Boolean networks. Despite the importance of MVNs for modelling biological systems, only limited progress has been made on developing theories, analysis methods, and tools that can support them. In particular, the recent use of trap spaces in Boolean networks made a great impact on the field of systems biology, but there has been no similar concept defined and studied for MVNs to date.\r\n\r\nResults: In this work, we generalize the concept of trap spaces in Boolean networks to that in MVNs. We then develop the theory and the analysis methods for trap spaces in MVNs. In particular, we implement all proposed methods in a Python package called trapmvn. Not only showing the applicability of our approach via a realistic case study, we also evaluate the time efficiency of the method on a large collection of real-world models. The experimental results confirm the time efficiency, which we believe enables more accurate analysis on larger and more complex multi-valued models." acknowledgement: This work was supported by L’Institut Carnot STAR, Marseille, France, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. [101034413]. article_processing_charge: Yes article_type: original author: - first_name: Van Giang full_name: Trinh, Van Giang last_name: Trinh - first_name: Belaid full_name: Benhamou, Belaid last_name: Benhamou - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 citation: ama: 'Trinh VG, Benhamou B, Henzinger TA, Pastva S. Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. 2023;39(Supplement_1):i513-i522. doi:10.1093/bioinformatics/btad262' apa: 'Trinh, V. G., Benhamou, B., Henzinger, T. A., & Pastva, S. (2023). Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. Oxford Academic. https://doi.org/10.1093/bioinformatics/btad262' chicago: 'Trinh, Van Giang, Belaid Benhamou, Thomas A Henzinger, and Samuel Pastva. “Trap Spaces of Multi-Valued Networks: Definition, Computation, and Applications.” Bioinformatics. Oxford Academic, 2023. https://doi.org/10.1093/bioinformatics/btad262.' ieee: 'V. G. Trinh, B. Benhamou, T. A. Henzinger, and S. Pastva, “Trap spaces of multi-valued networks: Definition, computation, and applications,” Bioinformatics, vol. 39, no. Supplement_1. Oxford Academic, pp. i513–i522, 2023.' ista: 'Trinh VG, Benhamou B, Henzinger TA, Pastva S. 2023. Trap spaces of multi-valued networks: Definition, computation, and applications. Bioinformatics. 39(Supplement_1), i513–i522.' mla: 'Trinh, Van Giang, et al. “Trap Spaces of Multi-Valued Networks: Definition, Computation, and Applications.” Bioinformatics, vol. 39, no. Supplement_1, Oxford Academic, 2023, pp. i513–22, doi:10.1093/bioinformatics/btad262.' short: V.G. Trinh, B. Benhamou, T.A. Henzinger, S. Pastva, Bioinformatics 39 (2023) i513–i522. date_created: 2023-07-23T22:01:12Z date_published: 2023-06-30T00:00:00Z date_updated: 2023-12-13T11:41:52Z day: '30' ddc: - '000' department: - _id: ToHe doi: 10.1093/bioinformatics/btad262 ec_funded: 1 external_id: isi: - '001027457000060' pmid: - '37387165' file: - access_level: open_access checksum: ba3abe1171df1958413b7c7f957f5486 content_type: application/pdf creator: dernst date_created: 2023-07-31T11:09:05Z date_updated: 2023-07-31T11:09:05Z file_id: '13335' file_name: 2023_Bioinformatics_Trinh.pdf file_size: 641736 relation: main_file success: 1 file_date_updated: 2023-07-31T11:09:05Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: Supplement_1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: i513-i522 pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Bioinformatics publication_identifier: eissn: - 1367-4811 issn: - 1367-4803 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://github.com/giang-trinh/trap-mvn scopus_import: '1' status: public title: 'Trap spaces of multi-valued networks: Definition, computation, and applications' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2023' ... --- _id: '14400' abstract: - lang: eng text: "We consider the problem of computing the maximal probability of satisfying an \r\n-regular specification for stochastic, continuous-state, nonlinear systems evolving in discrete time. The problem reduces, after automata-theoretic constructions, to finding the maximal probability of satisfying a parity condition on a (possibly hybrid) state space. While characterizing the exact satisfaction probability is open, we show that a lower bound on this probability can be obtained by (I) computing an under-approximation of the qualitative winning region, i.e., states from which the parity condition can be enforced almost surely, and (II) computing the maximal probability of reaching this qualitative winning region.\r\nThe heart of our approach is a technique to symbolically compute the under-approximation of the qualitative winning region in step (I) via a finite-state abstraction of the original system as a \r\n-player parity game. Our abstraction procedure uses only the support of the probabilistic evolution; it does not use precise numerical transition probabilities. We prove that the winning set in the abstract -player game induces an under-approximation of the qualitative winning region in the original synthesis problem, along with a policy to solve it. By combining these contributions with (a) a symbolic fixpoint algorithm to solve \r\n-player games and (b) existing techniques for reachability policy synthesis in stochastic nonlinear systems, we get an abstraction-based algorithm for finding a lower bound on the maximal satisfaction probability.\r\nWe have implemented the abstraction-based algorithm in Mascot-SDS, where we combined the outlined abstraction step with our tool Genie (Majumdar et al., 2023) that solves \r\n-player parity games (through a reduction to Rabin games) more efficiently than existing algorithms. We evaluated our implementation on the nonlinear model of a perturbed bistable switch from the literature. We show empirically that the lower bound on the winning region computed by our approach is precise, by comparing against an over-approximation of the qualitative winning region. Moreover, our implementation outperforms a recently proposed tool for solving this problem by a large margin." acknowledgement: "We thank Daniel Hausmann and Nir Piterman for their valuable comments on an earlier version of the manuscript of our other paper [22] where we present, among other things, the parity fixpoint for 2 1/2-player games (for a slightly more general class of games) with a different and indirect proof of correctness. Based on their comments we observed that, unlike the other fixpoints that we present in [22], the parity fixpoint does not follow the exact same structure as its counterpart for 2-player games, which we also use int his paper.\r\nWe also thank Thejaswini Raghavan for observing that our symbolic parity fixpoint algorithm can be solved in quasi-polynomial time using recent improved algorithms for solving \r\n-calculus expressions. This significantly improved the complexity bounds of our algorithm in this paper.\r\nThe work of R. Majumdar and A.-K. Schmuck are partially supported by DFG, Germany project 389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG, Germany project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. S. Soudjani is supported by the following projects: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047." article_number: '101430' article_processing_charge: No article_type: original author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Anne Kathrin full_name: Schmuck, Anne Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: 'Majumdar R, Mallik K, Schmuck AK, Soudjani S. Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. 2023;51. doi:10.1016/j.nahs.2023.101430' apa: 'Majumdar, R., Mallik, K., Schmuck, A. K., & Soudjani, S. (2023). Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. Elsevier. https://doi.org/10.1016/j.nahs.2023.101430' chicago: 'Majumdar, Rupak, Kaushik Mallik, Anne Kathrin Schmuck, and Sadegh Soudjani. “Symbolic Control for Stochastic Systems via Finite Parity Games.” Nonlinear Analysis: Hybrid Systems. Elsevier, 2023. https://doi.org/10.1016/j.nahs.2023.101430.' ieee: 'R. Majumdar, K. Mallik, A. K. Schmuck, and S. Soudjani, “Symbolic control for stochastic systems via finite parity games,” Nonlinear Analysis: Hybrid Systems, vol. 51. Elsevier, 2023.' ista: 'Majumdar R, Mallik K, Schmuck AK, Soudjani S. 2023. Symbolic control for stochastic systems via finite parity games. Nonlinear Analysis: Hybrid Systems. 51, 101430.' mla: 'Majumdar, Rupak, et al. “Symbolic Control for Stochastic Systems via Finite Parity Games.” Nonlinear Analysis: Hybrid Systems, vol. 51, 101430, Elsevier, 2023, doi:10.1016/j.nahs.2023.101430.' short: 'R. Majumdar, K. Mallik, A.K. Schmuck, S. Soudjani, Nonlinear Analysis: Hybrid Systems 51 (2023).' date_created: 2023-10-08T22:01:15Z date_published: 2023-09-27T00:00:00Z date_updated: 2023-12-13T12:58:56Z day: '27' department: - _id: ToHe doi: 10.1016/j.nahs.2023.101430 ec_funded: 1 external_id: arxiv: - '2101.00834' isi: - '001093188100001' intvolume: ' 51' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.nahs.2023.101430 month: '09' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 'Nonlinear Analysis: Hybrid Systems' publication_identifier: issn: - 1751-570X publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Symbolic control for stochastic systems via finite parity games type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 51 year: '2023' ... --- _id: '14718' abstract: - lang: eng text: 'Binary decision diagrams (BDDs) are one of the fundamental data structures in formal methods and computer science in general. However, the performance of BDD-based algorithms greatly depends on memory latency due to the reliance on large hash tables and thus, by extension, on the speed of random memory access. This hinders the full utilisation of resources available on modern CPUs, since the absolute memory latency has not improved significantly for at least a decade. In this paper, we explore several implementation techniques that improve the performance of BDD manipulation either through enhanced memory locality or by partially eliminating random memory access. On a benchmark suite of 600+ BDDs derived from real-world applications, we demonstrate runtime that is comparable or better than parallelising the same operations on eight CPU cores. ' acknowledgement: "This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413 and the\r\n“VAMOS” grant ERC-2020-AdG 101020093." article_processing_charge: No author: - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Pastva S, Henzinger TA. Binary decision diagrams on modern hardware. In: Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design. TU Vienna Academic Press; 2023:122-131. doi:10.34727/2023/isbn.978-3-85448-060-0_20' apa: 'Pastva, S., & Henzinger, T. A. (2023). Binary decision diagrams on modern hardware. In Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design (pp. 122–131). Ames, IA, United States: TU Vienna Academic Press. https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20' chicago: Pastva, Samuel, and Thomas A Henzinger. “Binary Decision Diagrams on Modern Hardware.” In Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, 122–31. TU Vienna Academic Press, 2023. https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20. ieee: S. Pastva and T. A. Henzinger, “Binary decision diagrams on modern hardware,” in Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, Ames, IA, United States, 2023, pp. 122–131. ista: 'Pastva S, Henzinger TA. 2023. Binary decision diagrams on modern hardware. Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design. FMCAD: Conference on Formal Methods in Computer-aided design, 122–131.' mla: Pastva, Samuel, and Thomas A. Henzinger. “Binary Decision Diagrams on Modern Hardware.” Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, TU Vienna Academic Press, 2023, pp. 122–31, doi:10.34727/2023/isbn.978-3-85448-060-0_20. short: S. Pastva, T.A. Henzinger, in:, Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design, TU Vienna Academic Press, 2023, pp. 122–131. conference: end_date: 2023-10-27 location: Ames, IA, United States name: 'FMCAD: Conference on Formal Methods in Computer-aided design' start_date: 2023-10-25 date_created: 2023-12-31T23:01:03Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-02T08:16:28Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.34727/2023/isbn.978-3-85448-060-0_20 ec_funded: 1 file: - access_level: open_access checksum: 818d6e13dd508f3a04f0941081022e5d content_type: application/pdf creator: dernst date_created: 2024-01-02T08:14:23Z date_updated: 2024-01-02T08:14:23Z file_id: '14721' file_name: 2023_FMCAD_Pastva.pdf file_size: 524321 relation: main_file success: 1 file_date_updated: 2024-01-02T08:14:23Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 122-131 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Proceedings of the 23rd Conference on Formal Methods in Computer-Aided Design publication_identifier: isbn: - '9783854480600' publication_status: published publisher: TU Vienna Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Binary decision diagrams on modern hardware tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14830' abstract: - lang: eng text: We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold p in [0,1] over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on 3 stochastic non-linear reinforcement learning tasks. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Vol 37. Association for the Advancement of Artificial Intelligence; 2023:11926-11935. doi:10.1609/aaai.v37i10.26407' apa: 'Zikelic, D., Lechner, M., Henzinger, T. A., & Chatterjee, K. (2023). Learning control policies for stochastic systems with reach-avoid guarantees. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (Vol. 37, pp. 11926–11935). Washington, DC, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v37i10.26407' chicago: Zikelic, Dorde, Mathias Lechner, Thomas A Henzinger, and Krishnendu Chatterjee. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” In Proceedings of the 37th AAAI Conference on Artificial Intelligence, 37:11926–35. Association for the Advancement of Artificial Intelligence, 2023. https://doi.org/10.1609/aaai.v37i10.26407. ieee: D. Zikelic, M. Lechner, T. A. Henzinger, and K. Chatterjee, “Learning control policies for stochastic systems with reach-avoid guarantees,” in Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, United States, 2023, vol. 37, no. 10, pp. 11926–11935. ista: 'Zikelic D, Lechner M, Henzinger TA, Chatterjee K. 2023. Learning control policies for stochastic systems with reach-avoid guarantees. Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI: Conference on Artificial Intelligence vol. 37, 11926–11935.' mla: Zikelic, Dorde, et al. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” Proceedings of the 37th AAAI Conference on Artificial Intelligence, vol. 37, no. 10, Association for the Advancement of Artificial Intelligence, 2023, pp. 11926–35, doi:10.1609/aaai.v37i10.26407. short: D. Zikelic, M. Lechner, T.A. Henzinger, K. Chatterjee, in:, Proceedings of the 37th AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, 2023, pp. 11926–11935. conference: end_date: 2023-02-14 location: Washington, DC, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2023-02-07 date_created: 2024-01-18T07:44:31Z date_published: 2023-06-26T00:00:00Z date_updated: 2024-01-22T14:08:29Z day: '26' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v37i10.26407 ec_funded: 1 external_id: arxiv: - '2210.05308' intvolume: ' 37' issue: '10' keyword: - General Medicine language: - iso: eng month: '06' oa_version: Preprint page: 11926-11935 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 37th AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' related_material: record: - id: '14600' relation: earlier_version status: public status: public title: Learning control policies for stochastic systems with reach-avoid guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2023' ... --- _id: '13234' abstract: - lang: eng text: Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. We consider the problem of monitoring the classification decisions of neural networks in the presence of novel classes. For this purpose, we generalize our recently proposed abstraction-based monitor from binary output to real-valued quantitative output. This quantitative output enables new applications, two of which we investigate in the paper. As our first application, we introduce an algorithmic framework for active monitoring of a neural network, which allows us to learn new classes dynamically and yet maintain high monitoring performance. As our second application, we present an offline procedure to retrain the neural network to improve the monitor’s detection performance without deteriorating the network’s classification accuracy. Our experimental evaluation demonstrates both the benefits of our active monitoring framework in dynamic scenarios and the effectiveness of the retraining procedure. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, by DIREC - Digital Research Centre Denmark, and by the Villum Investigator Grant S4OS. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Kueffner K, Lukina A, Schilling C, Henzinger TA. Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. 2023;25:575-592. doi:10.1007/s10009-023-00711-4' apa: 'Kueffner, K., Lukina, A., Schilling, C., & Henzinger, T. A. (2023). Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. Springer Nature. https://doi.org/10.1007/s10009-023-00711-4' chicago: 'Kueffner, Konstantin, Anna Lukina, Christian Schilling, and Thomas A Henzinger. “Into the Unknown: Active Monitoring of Neural Networks (Extended Version).” International Journal on Software Tools for Technology Transfer. Springer Nature, 2023. https://doi.org/10.1007/s10009-023-00711-4.' ieee: 'K. Kueffner, A. Lukina, C. Schilling, and T. A. Henzinger, “Into the unknown: Active monitoring of neural networks (extended version),” International Journal on Software Tools for Technology Transfer, vol. 25. Springer Nature, pp. 575–592, 2023.' ista: 'Kueffner K, Lukina A, Schilling C, Henzinger TA. 2023. Into the unknown: Active monitoring of neural networks (extended version). International Journal on Software Tools for Technology Transfer. 25, 575–592.' mla: 'Kueffner, Konstantin, et al. “Into the Unknown: Active Monitoring of Neural Networks (Extended Version).” International Journal on Software Tools for Technology Transfer, vol. 25, Springer Nature, 2023, pp. 575–92, doi:10.1007/s10009-023-00711-4.' short: K. Kueffner, A. Lukina, C. Schilling, T.A. Henzinger, International Journal on Software Tools for Technology Transfer 25 (2023) 575–592. date_created: 2023-07-16T22:01:11Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-01-30T12:06:57Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/s10009-023-00711-4 ec_funded: 1 external_id: arxiv: - '2009.06429' isi: - '001020160000001' file: - access_level: open_access checksum: 3c4b347f39412a76872f9a6f30101f94 content_type: application/pdf creator: dernst date_created: 2024-01-30T12:06:07Z date_updated: 2024-01-30T12:06:07Z file_id: '14903' file_name: 2023_JourSoftwareTools_Kueffner.pdf file_size: 13387667 relation: main_file success: 1 file_date_updated: 2024-01-30T12:06:07Z has_accepted_license: '1' intvolume: ' 25' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 575-592 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: International Journal on Software Tools for Technology Transfer publication_identifier: eissn: - 1433-2787 issn: - 1433-2779 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10206' relation: shorter_version status: public scopus_import: '1' status: public title: 'Into the unknown: Active monitoring of neural networks (extended version)' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2023' ... --- _id: '14920' abstract: - lang: eng text: "We consider fixpoint algorithms for two-player games on graphs with $\\omega$-regular winning conditions, where the environment is constrained by a strong transition fairness assumption. Strong transition fairness is a widely occurring special case of strong fairness, which requires that any execution is strongly fair with respect to a specified set of live edges: whenever the\r\nsource vertex of a live edge is visited infinitely often along a play, the edge itself is traversed infinitely often along the play as well. We show that, surprisingly, strong transition fairness retains the algorithmic characteristics of the fixpoint algorithms for $\\omega$-regular games -- the new algorithms have the same alternation depth as the classical algorithms but invoke a new type of predecessor operator. For Rabin games with $k$ pairs, the complexity of the new algorithm is $O(n^{k+2}k!)$ symbolic steps, which is independent of the number of live edges in the strong transition fairness assumption. Further, we show that GR(1) specifications with strong transition fairness assumptions can be solved with a 3-nested fixpoint algorithm, same as the usual algorithm. In contrast, strong fairness necessarily requires increasing the alternation depth depending on the number of fairness assumptions. We get symbolic algorithms for (generalized) Rabin, parity and GR(1) objectives under strong transition fairness assumptions as well as a direct symbolic algorithm for qualitative winning in stochastic\r\n$\\omega$-regular games that runs in $O(n^{k+2}k!)$ symbolic steps, improving the state of the art. Finally, we have implemented a BDD-based synthesis engine based on our algorithm. We show on a set of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and outperforms previous algorithms by orders of magnitude." acknowledgement: A previous version of this paper has appeared in TACAS 2022. Authors ordered alphabetically. T. Banerjee was interning with MPI-SWS when this research was conducted. R. Majumdar and A.-K. Schmuck are partially supported by DFG project 389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. article_number: '4' article_processing_charge: Yes article_type: original author: - first_name: Tamajit full_name: Banerjee, Tamajit last_name: Banerjee - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2023;2. doi:10.46298/theoretics.23.4 apa: Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., & Soudjani, S. (2023). Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. EPI Sciences. https://doi.org/10.46298/theoretics.23.4 chicago: Banerjee, Tamajit, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS. EPI Sciences, 2023. https://doi.org/10.46298/theoretics.23.4. ieee: T. Banerjee, R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani, “Fast symbolic algorithms for mega-regular games under strong transition fairness,” TheoretiCS, vol. 2. EPI Sciences, 2023. ista: Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. 2023. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2, 4. mla: Banerjee, Tamajit, et al. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS, vol. 2, 4, EPI Sciences, 2023, doi:10.46298/theoretics.23.4. short: T. Banerjee, R. Majumdar, K. Mallik, A.-K. Schmuck, S. Soudjani, TheoretiCS 2 (2023). date_created: 2024-01-31T13:40:49Z date_published: 2023-02-24T00:00:00Z date_updated: 2024-02-05T10:21:51Z day: '24' ddc: - '000' department: - _id: ToHe doi: 10.46298/theoretics.23.4 ec_funded: 1 external_id: arxiv: - '2202.07480' file: - access_level: open_access checksum: 2972d531122a6f15727b396110fb3f5c content_type: application/pdf creator: dernst date_created: 2024-02-05T10:19:35Z date_updated: 2024-02-05T10:19:35Z file_id: '14940' file_name: 2023_TheoretiCS_Banerjee.pdf file_size: 917076 relation: main_file success: 1 file_date_updated: 2024-02-05T10:19:35Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: TheoretiCS publication_identifier: issn: - 2751-4838 publication_status: published publisher: EPI Sciences quality_controlled: '1' status: public title: Fast symbolic algorithms for mega-regular games under strong transition fairness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2023' ... --- _id: '14411' abstract: - lang: eng text: "Partially specified Boolean networks (PSBNs) represent a promising framework for the qualitative modelling of biological systems in which the logic of interactions is not completely known. Phenotype control aims to stabilise the network in states exhibiting specific traits.\r\nIn this paper, we define the phenotype control problem in the context of asynchronous PSBNs and propose a novel semi-symbolic algorithm for solving this problem with permanent variable perturbations." acknowledgement: This work was supported by the Czech Foundation grant No. GA22-10845S, Grant Agency of Masaryk University grant No. MUNI/G/1771/2020, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. alternative_title: - LNBI article_processing_charge: No author: - first_name: Nikola full_name: Beneš, Nikola last_name: Beneš - first_name: Luboš full_name: Brim, Luboš last_name: Brim - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva orcid: 0000-0003-1993-0331 - first_name: David full_name: Šafránek, David last_name: Šafránek - first_name: Eva full_name: Šmijáková, Eva last_name: Šmijáková citation: ama: 'Beneš N, Brim L, Pastva S, Šafránek D, Šmijáková E. Phenotype control of partially specified boolean networks. In: 21st International Conference on Computational Methods in Systems Biology. Vol 14137. Springer Nature; 2023:18-35. doi:10.1007/978-3-031-42697-1_2' apa: 'Beneš, N., Brim, L., Pastva, S., Šafránek, D., & Šmijáková, E. (2023). Phenotype control of partially specified boolean networks. In 21st International Conference on Computational Methods in Systems Biology (Vol. 14137, pp. 18–35). Luxembourg City, Luxembourg: Springer Nature. https://doi.org/10.1007/978-3-031-42697-1_2' chicago: Beneš, Nikola, Luboš Brim, Samuel Pastva, David Šafránek, and Eva Šmijáková. “Phenotype Control of Partially Specified Boolean Networks.” In 21st International Conference on Computational Methods in Systems Biology, 14137:18–35. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-42697-1_2. ieee: N. Beneš, L. Brim, S. Pastva, D. Šafránek, and E. Šmijáková, “Phenotype control of partially specified boolean networks,” in 21st International Conference on Computational Methods in Systems Biology, Luxembourg City, Luxembourg, 2023, vol. 14137, pp. 18–35. ista: 'Beneš N, Brim L, Pastva S, Šafránek D, Šmijáková E. 2023. Phenotype control of partially specified boolean networks. 21st International Conference on Computational Methods in Systems Biology. CMSB: Computational Methods in Systems Biology, LNBI, vol. 14137, 18–35.' mla: Beneš, Nikola, et al. “Phenotype Control of Partially Specified Boolean Networks.” 21st International Conference on Computational Methods in Systems Biology, vol. 14137, Springer Nature, 2023, pp. 18–35, doi:10.1007/978-3-031-42697-1_2. short: N. Beneš, L. Brim, S. Pastva, D. Šafránek, E. Šmijáková, in:, 21st International Conference on Computational Methods in Systems Biology, Springer Nature, 2023, pp. 18–35. conference: end_date: 2023-09-15 location: Luxembourg City, Luxembourg name: 'CMSB: Computational Methods in Systems Biology' start_date: 2023-09-13 date_created: 2023-10-08T22:01:18Z date_published: 2023-09-09T00:00:00Z date_updated: 2024-02-20T09:02:04Z day: '09' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-42697-1_2 ec_funded: 1 file: - access_level: open_access checksum: 6f71bdaedb770b52380222fd9f4d7937 content_type: application/pdf creator: spastva date_created: 2024-02-16T08:26:32Z date_updated: 2024-02-16T08:26:32Z file_id: '14997' file_name: cmsb2023.pdf file_size: 691582 relation: main_file success: 1 file_date_updated: 2024-02-16T08:26:32Z has_accepted_license: '1' intvolume: ' 14137' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 18-35 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 21st International Conference on Computational Methods in Systems Biology publication_identifier: eissn: - 1611-3349 isbn: - '9783031426964' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Phenotype control of partially specified boolean networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14137 year: '2023' ... --- _id: '14758' abstract: - lang: eng text: 'We present a flexible and efficient toolchain to symbolically solve (standard) Rabin games, fair-adversarial Rabin games, and 2 1/2 license type-player Rabin games. To our best knowledge, our tools are the first ones to be able to solve these problems. Furthermore, using these flexible game solvers as a back-end, we implemented a tool for computing correct-by-construction controllers for stochastic dynamical systems under LTL specifications. Our implementations use the recent theoretical result that all of these games can be solved using the same symbolic fixpoint algorithm but utilizing different, domain specific calculations of the involved predecessor operators. The main feature of our toolchain is the utilization of two programming abstractions: one to separate the symbolic fixpoint computations from the predecessor calculations, and another one to allow the integration of different BDD libraries as back-ends. In particular, we employ a multi-threaded execution of the fixpoint algorithm by using the multi-threaded BDD library Sylvan, which leads to enormous computational savings.' acknowledgement: 'Authors ordered alphabetically. R. Majumdar and A.-K. Schmuck are partially supported by DFG project 389792660 TRR 248-CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093. M. Rychlicki is supported by the EPSRC project EP/V00252X/1. S. Soudjani is supported by the following projects: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047.' alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Mateusz full_name: Rychlicki, Mateusz last_name: Rychlicki - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: 'Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. In: 35th International Conference on Computer Aided Verification. Vol 13966. Springer Nature; 2023:3-15. doi:10.1007/978-3-031-37709-9_1' apa: 'Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.-K., & Soudjani, S. (2023). A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. In 35th International Conference on Computer Aided Verification (Vol. 13966, pp. 3–15). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-37709-9_1' chicago: Majumdar, Rupak, Kaushik Mallik, Mateusz Rychlicki, Anne-Kathrin Schmuck, and Sadegh Soudjani. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” In 35th International Conference on Computer Aided Verification, 13966:3–15. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-37709-9_1. ieee: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, and S. Soudjani, “A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties,” in 35th International Conference on Computer Aided Verification, Paris, France, 2023, vol. 13966, pp. 3–15. ista: 'Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. 2023. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. 35th International Conference on Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13966, 3–15.' mla: Majumdar, Rupak, et al. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” 35th International Conference on Computer Aided Verification, vol. 13966, Springer Nature, 2023, pp. 3–15, doi:10.1007/978-3-031-37709-9_1. short: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, S. Soudjani, in:, 35th International Conference on Computer Aided Verification, Springer Nature, 2023, pp. 3–15. conference: end_date: 2023-07-22 location: Paris, France name: 'CAV: Computer Aided Verification' start_date: 2023-07-17 date_created: 2024-01-08T13:18:00Z date_published: 2023-07-16T00:00:00Z date_updated: 2024-02-27T07:39:51Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-37709-9_1 ec_funded: 1 file: - access_level: open_access checksum: 1a361d83db0244fd32c03b544c294b5a content_type: application/pdf creator: dernst date_created: 2024-01-09T10:01:07Z date_updated: 2024-01-09T10:01:07Z file_id: '14765' file_name: 2023_LNCSCAV_Majumdar.pdf file_size: 405147 relation: main_file success: 1 file_date_updated: 2024-01-09T10:01:07Z has_accepted_license: '1' intvolume: ' 13966' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 3-15 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 35th International Conference on Computer Aided Verification publication_identifier: eisbn: - '9783031377099' eissn: - 1611-3349 isbn: - '9783031377082' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '14994' relation: research_data status: public scopus_import: '1' status: public title: A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13966 year: '2023' ... --- _id: '14994' abstract: - lang: eng text: This resource contains the artifacts for reproducing the experimental results presented in the paper titled "A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties" that has been submitted in CAV 2023. article_processing_charge: No author: - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Mateusz full_name: Rychlicki, Mateusz last_name: Rychlicki - first_name: Anne-Kathrin full_name: Schmuck, Anne-Kathrin last_name: Schmuck - first_name: Sadegh full_name: Soudjani, Sadegh last_name: Soudjani citation: ama: Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. 2023. doi:10.5281/ZENODO.7877790 apa: Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.-K., & Soudjani, S. (2023). A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties. Zenodo. https://doi.org/10.5281/ZENODO.7877790 chicago: Majumdar, Rupak, Kaushik Mallik, Mateusz Rychlicki, Anne-Kathrin Schmuck, and Sadegh Soudjani. “A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7877790. ieee: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, and S. Soudjani, “A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties.” Zenodo, 2023. ista: Majumdar R, Mallik K, Rychlicki M, Schmuck A-K, Soudjani S. 2023. A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties, Zenodo, 10.5281/ZENODO.7877790. mla: Majumdar, Rupak, et al. A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties. Zenodo, 2023, doi:10.5281/ZENODO.7877790. short: R. Majumdar, K. Mallik, M. Rychlicki, A.-K. Schmuck, S. Soudjani, (2023). date_created: 2024-02-14T15:13:00Z date_published: 2023-04-28T00:00:00Z date_updated: 2024-02-27T07:39:51Z day: '28' ddc: - '000' department: - _id: ToHe doi: 10.5281/ZENODO.7877790 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7877790 month: '04' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '14758' relation: used_in_publication status: public status: public title: A flexible toolchain for symbolic rabin games under fair and stochastic uncertainties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '15023' abstract: - lang: eng text: Reinforcement learning has shown promising results in learning neural network policies for complicated control tasks. However, the lack of formal guarantees about the behavior of such policies remains an impediment to their deployment. We propose a novel method for learning a composition of neural network policies in stochastic environments, along with a formal certificate which guarantees that a specification over the policy's behavior is satisfied with the desired probability. Unlike prior work on verifiable RL, our approach leverages the compositional nature of logical specifications provided in SpectRL, to learn over graphs of probabilistic reach-avoid specifications. The formal guarantees are provided by learning neural network policies together with reach-avoid supermartingales (RASM) for the graph’s sub-tasks and then composing them into a global policy. We also derive a tighter lower bound compared to previous work on the probability of reach-avoidance implied by a RASM, which is required to find a compositional policy with an acceptable probabilistic threshold for complex tasks with multiple edge policies. We implement a prototype of our approach and evaluate it on a Stochastic Nine Rooms environment. acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093 (VAMOS) and the ERC-2020-\r\nCoG 863818 (FoRM-SMArt)." article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Abhinav full_name: Verma, Abhinav id: a235593c-d7fa-11eb-a0c5-b22ca3c66ee6 last_name: Verma - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Zikelic D, Lechner M, Verma A, Chatterjee K, Henzinger TA. Compositional policy learning in stochastic control systems with formal guarantees. In: 37th Conference on Neural Information Processing Systems. ; 2023.' apa: Zikelic, D., Lechner, M., Verma, A., Chatterjee, K., & Henzinger, T. A. (2023). Compositional policy learning in stochastic control systems with formal guarantees. In 37th Conference on Neural Information Processing Systems. New Orleans, LO, United States. chicago: Zikelic, Dorde, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee, and Thomas A Henzinger. “Compositional Policy Learning in Stochastic Control Systems with Formal Guarantees.” In 37th Conference on Neural Information Processing Systems, 2023. ieee: D. Zikelic, M. Lechner, A. Verma, K. Chatterjee, and T. A. Henzinger, “Compositional policy learning in stochastic control systems with formal guarantees,” in 37th Conference on Neural Information Processing Systems, New Orleans, LO, United States, 2023. ista: 'Zikelic D, Lechner M, Verma A, Chatterjee K, Henzinger TA. 2023. Compositional policy learning in stochastic control systems with formal guarantees. 37th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems.' mla: Zikelic, Dorde, et al. “Compositional Policy Learning in Stochastic Control Systems with Formal Guarantees.” 37th Conference on Neural Information Processing Systems, 2023. short: D. Zikelic, M. Lechner, A. Verma, K. Chatterjee, T.A. Henzinger, in:, 37th Conference on Neural Information Processing Systems, 2023. conference: end_date: 2023-12-16 location: New Orleans, LO, United States name: 'NeurIPS: Neural Information Processing Systems' start_date: 2023-12-10 date_created: 2024-02-25T09:23:24Z date_published: 2023-12-15T00:00:00Z date_updated: 2024-02-28T12:20:11Z day: '15' department: - _id: ToHe - _id: KrCh ec_funded: 1 external_id: arxiv: - '2312.01456' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2312.01456 month: '12' oa: 1 oa_version: Preprint project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 37th Conference on Neural Information Processing Systems publication_status: epub_ahead quality_controlled: '1' status: public title: Compositional policy learning in stochastic control systems with formal guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14076' abstract: - lang: eng text: Hyperproperties are properties that relate multiple execution traces. Previous work on monitoring hyperproperties focused on synchronous hyperproperties, usually specified in HyperLTL. When monitoring synchronous hyperproperties, all traces are assumed to proceed at the same speed. We introduce (multi-trace) prefix transducers and show how to use them for monitoring synchronous as well as, for the first time, asynchronous hyperproperties. Prefix transducers map multiple input traces into one or more output traces by incrementally matching prefixes of the input traces against expressions similar to regular expressions. The prefixes of different traces which are consumed by a single matching step of the monitor may have different lengths. The deterministic and executable nature of prefix transducers makes them more suitable as an intermediate formalism for runtime verification than logical specifications, which tend to be highly non-deterministic, especially in the case of asynchronous hyperproperties. We report on a set of experiments about monitoring asynchronous version of observational determinism. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank Ana Oliveira da Costa for commenting on a draft of the paper. alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Monitoring hyperproperties with prefix transducers. In: 23nd International Conference on Runtime Verification. Vol 14245. Springer Nature; 2023:168-190. doi:10.1007/978-3-031-44267-4_9' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Monitoring hyperproperties with prefix transducers. In 23nd International Conference on Runtime Verification (Vol. 14245, pp. 168–190). Thessaloniki, Greek: Springer Nature. https://doi.org/10.1007/978-3-031-44267-4_9' chicago: Chalupa, Marek, and Thomas A Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” In 23nd International Conference on Runtime Verification, 14245:168–90. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-44267-4_9. ieee: M. Chalupa and T. A. Henzinger, “Monitoring hyperproperties with prefix transducers,” in 23nd International Conference on Runtime Verification, Thessaloniki, Greek, 2023, vol. 14245, pp. 168–190. ista: 'Chalupa M, Henzinger TA. 2023. Monitoring hyperproperties with prefix transducers. 23nd International Conference on Runtime Verification. RV: Conference on Runtime Verification, LNCS, vol. 14245, 168–190.' mla: Chalupa, Marek, and Thomas A. Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” 23nd International Conference on Runtime Verification, vol. 14245, Springer Nature, 2023, pp. 168–90, doi:10.1007/978-3-031-44267-4_9. short: M. Chalupa, T.A. Henzinger, in:, 23nd International Conference on Runtime Verification, Springer Nature, 2023, pp. 168–190. conference: end_date: 2023-10-07 location: Thessaloniki, Greek name: 'RV: Conference on Runtime Verification' start_date: 2023-10-04 date_created: 2023-08-16T20:46:08Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-02-28T12:33:08Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-44267-4_9 ec_funded: 1 file: - access_level: open_access checksum: ee33bd6f1a26f4dae7a8192584869fd8 content_type: application/pdf creator: dernst date_created: 2023-10-16T07:15:11Z date_updated: 2023-10-16T07:15:11Z file_id: '14430' file_name: 2023_LNCS_RV_Chalupa.pdf file_size: 867256 relation: main_file success: 1 file_date_updated: 2023-10-16T07:15:11Z has_accepted_license: '1' intvolume: ' 14245' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 168-190 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 23nd International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-031-44267-4 isbn: - 978-3-031-44266-7 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '15035' relation: research_data status: public status: public title: Monitoring hyperproperties with prefix transducers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14245 year: '2023' ... --- _id: '15035' abstract: - lang: eng text: "This artifact aims to reproduce experiments from the paper Monitoring Hyperproperties With Prefix Transducers accepted at RV'23, and give further pointers to implementation of prefix transducers.\r\nIt has two parts: a pre-compiled docker image and sources that one can use to compile (locally or in docker) the software and run the experiments." article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Chalupa M, Henzinger TA. Monitoring hyperproperties with prefix transducers. 2023. doi:10.5281/ZENODO.8191723 apa: Chalupa, M., & Henzinger, T. A. (2023). Monitoring hyperproperties with prefix transducers. Zenodo. https://doi.org/10.5281/ZENODO.8191723 chicago: Chalupa, Marek, and Thomas A Henzinger. “Monitoring Hyperproperties with Prefix Transducers.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.8191723. ieee: M. Chalupa and T. A. Henzinger, “Monitoring hyperproperties with prefix transducers.” Zenodo, 2023. ista: Chalupa M, Henzinger TA. 2023. Monitoring hyperproperties with prefix transducers, Zenodo, 10.5281/ZENODO.8191723. mla: Chalupa, Marek, and Thomas A. Henzinger. Monitoring Hyperproperties with Prefix Transducers. Zenodo, 2023, doi:10.5281/ZENODO.8191723. short: M. Chalupa, T.A. Henzinger, (2023). date_created: 2024-02-28T07:34:34Z date_published: 2023-07-28T00:00:00Z date_updated: 2024-02-28T12:33:09Z day: '28' ddc: - '000' department: - _id: ToHe doi: 10.5281/ZENODO.8191723 ec_funded: 1 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.8191722 month: '07' oa: 1 oa_version: Published Version project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publisher: Zenodo related_material: record: - id: '14076' relation: used_in_publication status: public status: public title: Monitoring hyperproperties with prefix transducers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '10774' abstract: - lang: eng text: We study the problem of specifying sequential information-flow properties of systems. Information-flow properties are hyperproperties, as they compare different traces of a system. Sequential information-flow properties can express changes, over time, in the information-flow constraints. For example, information-flow constraints during an initialization phase of a system may be different from information-flow constraints that are required during the operation phase. We formalize several variants of interpreting sequential information-flow constraints, which arise from different assumptions about what can be observed of the system. For this purpose, we introduce a first-order logic, called Hypertrace Logic, with both trace and time quantifiers for specifying linear-time hyperproperties. We prove that HyperLTL, which corresponds to a fragment of Hypertrace Logic with restricted quantifier prefixes, cannot specify the majority of the studied variants of sequential information flow, including all variants in which the transition between sequential phases (such as initialization and operation) happens asynchronously. Our results rely on new equivalences between sets of traces that cannot be distinguished by certain classes of formulas from Hypertrace Logic. This presents a new approach to proving inexpressiveness results for HyperLTL. acknowledgement: This work was funded in part by the Wittgenstein Award Z211-N23 of the Austrian Science Fund (FWF) and by the FWF project W1255-N23. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana Oliveira full_name: Da Costa, Ana Oliveira last_name: Da Costa citation: ama: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. Flavors of sequential information flow. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 13182. Springer Nature; 2022:1-19. doi:10.1007/978-3-030-94583-1_1' apa: 'Bartocci, E., Ferrere, T., Henzinger, T. A., Nickovic, D., & Da Costa, A. O. (2022). Flavors of sequential information flow. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 13182, pp. 1–19). Philadelphia, PA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-94583-1_1' chicago: Bartocci, Ezio, Thomas Ferrere, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira Da Costa. “Flavors of Sequential Information Flow.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13182:1–19. Springer Nature, 2022. https://doi.org/10.1007/978-3-030-94583-1_1. ieee: E. Bartocci, T. Ferrere, T. A. Henzinger, D. Nickovic, and A. O. Da Costa, “Flavors of sequential information flow,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Philadelphia, PA, United States, 2022, vol. 13182, pp. 1–19. ista: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. 2022. Flavors of sequential information flow. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). VMCAI: Verifcation, Model Checking, and Abstract Interpretation, LNCS, vol. 13182, 1–19.' mla: Bartocci, Ezio, et al. “Flavors of Sequential Information Flow.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13182, Springer Nature, 2022, pp. 1–19, doi:10.1007/978-3-030-94583-1_1. short: E. Bartocci, T. Ferrere, T.A. Henzinger, D. Nickovic, A.O. Da Costa, in:, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Nature, 2022, pp. 1–19. conference: end_date: 2022-01-18 location: Philadelphia, PA, United States name: 'VMCAI: Verifcation, Model Checking, and Abstract Interpretation' start_date: 2022-01-16 date_created: 2022-02-20T23:01:34Z date_published: 2022-01-14T00:00:00Z date_updated: 2022-08-05T09:02:56Z day: '14' department: - _id: ToHe doi: 10.1007/978-3-030-94583-1_1 external_id: arxiv: - '2105.02013' intvolume: ' 13182' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2105.02013' month: '01' oa: 1 oa_version: Preprint page: 1-19 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) publication_identifier: eissn: - '16113349' isbn: - '9783030945824' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Flavors of sequential information flow type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13182 year: '2022' ... --- _id: '12010' abstract: - lang: eng text: World models learn behaviors in a latent imagination space to enhance the sample-efficiency of deep reinforcement learning (RL) algorithms. While learning world models for high-dimensional observations (e.g., pixel inputs) has become practicable on standard RL benchmarks and some games, their effectiveness in real-world robotics applications has not been explored. In this paper, we investigate how such agents generalize to real-world autonomous vehicle control tasks, where advanced model-free deep RL algorithms fail. In particular, we set up a series of time-lap tasks for an F1TENTH racing robot, equipped with a high-dimensional LiDAR sensor, on a set of test tracks with a gradual increase in their complexity. In this continuous-control setting, we show that model-based agents capable of learning in imagination substantially outperform model-free agents with respect to performance, sample efficiency, successful task completion, and generalization. Moreover, we show that the generalization ability of model-based agents strongly depends on the choice of their observation model. We provide extensive empirical evidence for the effectiveness of world models provided with long enough memory horizons in sim2real tasks. acknowledgement: L.B. was supported by the Doctoral College Resilient Embedded Systems. M.L. was supported in part by the ERC2020-AdG 101020093 and the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). R.H. and D.R. were supported by The Boeing Company and the Office of Naval Research (ONR) Grant N00014-18-1-2830. R.G. was partially supported by the Horizon-2020 ECSEL Project grant No. 783163 (iDev40) and A.B. by FFG Project ADEX. article_processing_charge: No author: - first_name: Axel full_name: Brunnbauer, Axel last_name: Brunnbauer - first_name: Luigi full_name: Berducci, Luigi last_name: Berducci - first_name: Andreas full_name: Brandstatter, Andreas last_name: Brandstatter - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Brunnbauer A, Berducci L, Brandstatter A, et al. Latent imagination facilitates zero-shot transfer in autonomous racing. In: 2022 International Conference on Robotics and Automation. IEEE; 2022:7513-7520. doi:10.1109/ICRA46639.2022.9811650' apa: 'Brunnbauer, A., Berducci, L., Brandstatter, A., Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2022). Latent imagination facilitates zero-shot transfer in autonomous racing. In 2022 International Conference on Robotics and Automation (pp. 7513–7520). Philadelphia, PA, United States: IEEE. https://doi.org/10.1109/ICRA46639.2022.9811650' chicago: Brunnbauer, Axel, Luigi Berducci, Andreas Brandstatter, Mathias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. “Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing.” In 2022 International Conference on Robotics and Automation, 7513–20. IEEE, 2022. https://doi.org/10.1109/ICRA46639.2022.9811650. ieee: A. Brunnbauer et al., “Latent imagination facilitates zero-shot transfer in autonomous racing,” in 2022 International Conference on Robotics and Automation, Philadelphia, PA, United States, 2022, pp. 7513–7520. ista: 'Brunnbauer A, Berducci L, Brandstatter A, Lechner M, Hasani R, Rus D, Grosu R. 2022. Latent imagination facilitates zero-shot transfer in autonomous racing. 2022 International Conference on Robotics and Automation. ICRA: International Conference on Robotics and Automation, 7513–7520.' mla: Brunnbauer, Axel, et al. “Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing.” 2022 International Conference on Robotics and Automation, IEEE, 2022, pp. 7513–20, doi:10.1109/ICRA46639.2022.9811650. short: A. Brunnbauer, L. Berducci, A. Brandstatter, M. Lechner, R. Hasani, D. Rus, R. Grosu, in:, 2022 International Conference on Robotics and Automation, IEEE, 2022, pp. 7513–7520. conference: end_date: 2022-05-27 location: Philadelphia, PA, United States name: 'ICRA: International Conference on Robotics and Automation' start_date: 2022-05-23 date_created: 2022-09-04T22:02:02Z date_published: 2022-07-12T00:00:00Z date_updated: 2022-09-05T08:46:12Z day: '12' department: - _id: ToHe doi: 10.1109/ICRA46639.2022.9811650 ec_funded: 1 external_id: arxiv: - '2103.04909' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2103.04909 month: '07' oa: 1 oa_version: Preprint page: 7513-7520 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2022 International Conference on Robotics and Automation publication_identifier: isbn: - '9781728196817' issn: - 1050-4729 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Latent imagination facilitates zero-shot transfer in autonomous racing type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '12171' abstract: - lang: eng text: 'We propose an algorithmic approach for synthesizing linear hybrid automata from time-series data. Unlike existing approaches, our approach provides a whole family of models with the same discrete structure but different dynamics. Each model in the family is guaranteed to capture the input data up to a precision error ε, in the following sense: For each time series, the model contains an execution that is ε-close to the data points. Our construction allows to effectively choose a model from this family with minimal precision error ε. We demonstrate the algorithm’s efficiency and its ability to find precise models in two case studies.' acknowledgement: This work was supported in part by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 847635, by the ERC-2020-AdG 101020093, by DIREC - Digital Research Centre Denmark, and by the Villum Investigator Grant S4OS. alternative_title: - LNCS article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Garcia Soto M, Henzinger TA, Schilling C. Synthesis of parametric hybrid automata from time series. In: 20th International Symposium on Automated Technology for Verification and Analysis. Vol 13505. Springer Nature; 2022:337-353. doi:10.1007/978-3-031-19992-9_22' apa: 'Garcia Soto, M., Henzinger, T. A., & Schilling, C. (2022). Synthesis of parametric hybrid automata from time series. In 20th International Symposium on Automated Technology for Verification and Analysis (Vol. 13505, pp. 337–353). Virtual: Springer Nature. https://doi.org/10.1007/978-3-031-19992-9_22' chicago: Garcia Soto, Miriam, Thomas A Henzinger, and Christian Schilling. “Synthesis of Parametric Hybrid Automata from Time Series.” In 20th International Symposium on Automated Technology for Verification and Analysis, 13505:337–53. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-19992-9_22. ieee: M. Garcia Soto, T. A. Henzinger, and C. Schilling, “Synthesis of parametric hybrid automata from time series,” in 20th International Symposium on Automated Technology for Verification and Analysis, Virtual, 2022, vol. 13505, pp. 337–353. ista: 'Garcia Soto M, Henzinger TA, Schilling C. 2022. Synthesis of parametric hybrid automata from time series. 20th International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 13505, 337–353.' mla: Garcia Soto, Miriam, et al. “Synthesis of Parametric Hybrid Automata from Time Series.” 20th International Symposium on Automated Technology for Verification and Analysis, vol. 13505, Springer Nature, 2022, pp. 337–53, doi:10.1007/978-3-031-19992-9_22. short: M. Garcia Soto, T.A. Henzinger, C. Schilling, in:, 20th International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2022, pp. 337–353. conference: end_date: 2022-10-28 location: Virtual name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2022-10-25 date_created: 2023-01-12T12:11:16Z date_published: 2022-10-21T00:00:00Z date_updated: 2023-02-13T09:27:55Z day: '21' department: - _id: ToHe doi: 10.1007/978-3-031-19992-9_22 ec_funded: 1 external_id: arxiv: - '2208.06383' intvolume: ' 13505' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2208.06383 month: '10' oa: 1 oa_version: Preprint page: 337-353 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 20th International Symposium on Automated Technology for Verification and Analysis publication_identifier: eisbn: - '9783031199929' eissn: - 1611-3349 isbn: - '9783031199912' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Synthesis of parametric hybrid automata from time series type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13505 year: '2022' ... --- _id: '12508' abstract: - lang: eng text: "We explore the notion of history-determinism in the context of timed automata (TA). History-deterministic automata are those in which nondeterminism can be resolved on the fly, based on the run constructed thus far. History-determinism is a robust property that admits different game-based characterisations, and history-deterministic specifications allow for game-based verification without an expensive determinization step.\r\nWe show yet another characterisation of history-determinism in terms of fair simulation, at the general level of labelled transition systems: a system is history-deterministic precisely if and only if it fairly simulates all language smaller systems.\r\nFor timed automata over infinite timed words it is known that universality is undecidable for Büchi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed universality, inclusion, and synthesis all remain decidable and are ExpTime-complete.\r\nFor the subclass of TA with safety or reachability acceptance, we show that checking whether such an automaton is history-deterministic is decidable (in ExpTime), and history-deterministic TA with safety acceptance are effectively determinizable without introducing new automata states." acknowledgement: "Thomas A. Henzinger: This work was supported in part by the ERC-2020-AdG 101020093.\r\nPatrick Totzke: acknowledges support from the EPSRC, project no. EP/V025848/1.\r\n" alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Karoliina full_name: Lehtinen, Karoliina last_name: Lehtinen - first_name: Patrick full_name: Totzke, Patrick last_name: Totzke citation: ama: 'Henzinger TA, Lehtinen K, Totzke P. History-deterministic timed automata. In: 33rd International Conference on Concurrency Theory. Vol 243. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022:14:1-14:21. doi:10.4230/LIPIcs.CONCUR.2022.14' apa: 'Henzinger, T. A., Lehtinen, K., & Totzke, P. (2022). History-deterministic timed automata. In 33rd International Conference on Concurrency Theory (Vol. 243, p. 14:1-14:21). Warsaw, Poland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2022.14' chicago: Henzinger, Thomas A, Karoliina Lehtinen, and Patrick Totzke. “History-Deterministic Timed Automata.” In 33rd International Conference on Concurrency Theory, 243:14:1-14:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. https://doi.org/10.4230/LIPIcs.CONCUR.2022.14. ieee: T. A. Henzinger, K. Lehtinen, and P. Totzke, “History-deterministic timed automata,” in 33rd International Conference on Concurrency Theory, Warsaw, Poland, 2022, vol. 243, p. 14:1-14:21. ista: 'Henzinger TA, Lehtinen K, Totzke P. 2022. History-deterministic timed automata. 33rd International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 243, 14:1-14:21.' mla: Henzinger, Thomas A., et al. “History-Deterministic Timed Automata.” 33rd International Conference on Concurrency Theory, vol. 243, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, p. 14:1-14:21, doi:10.4230/LIPIcs.CONCUR.2022.14. short: T.A. Henzinger, K. Lehtinen, P. Totzke, in:, 33rd International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, p. 14:1-14:21. conference: end_date: 2022-09-16 location: Warsaw, Poland name: 'CONCUR: Conference on Concurrency Theory' start_date: 2022-09-13 date_created: 2023-02-05T17:24:23Z date_published: 2022-09-06T00:00:00Z date_updated: 2023-02-06T09:23:31Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2022.14 ec_funded: 1 file: - access_level: open_access checksum: 9e97e15628f66b2ad77f535bb0327dee content_type: application/pdf creator: dernst date_created: 2023-02-06T09:21:09Z date_updated: 2023-02-06T09:21:09Z file_id: '12520' file_name: 2022_LIPICs_Henzinger2.pdf file_size: 717940 relation: main_file success: 1 file_date_updated: 2023-02-06T09:21:09Z has_accepted_license: '1' intvolume: ' 243' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 14:1-14:21 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 33rd International Conference on Concurrency Theory publication_identifier: isbn: - '9783959772464' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: History-deterministic timed automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 243 year: '2022' ... --- _id: '12509' abstract: - lang: eng text: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We summarize how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games. acknowledgement: "Guy Avni: Work partially supported by the Israel Science Foundation, ISF grant agreement\r\nno 1679/21.\r\nThomas A. Henzinger: This work was supported in part by the ERC-2020-AdG 101020093.\r\nWe would like to thank all our collaborators Milad Aghajohari, Ventsislav Chonev, Rasmus Ibsen-Jensen, Ismäel Jecker, Petr Novotný, Josef Tkadlec, and Ðorđe Žikelić; we hope the collaboration was as fun and meaningful for you as it was for us." article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Avni G, Henzinger TA. An updated survey of bidding games on graphs. In: 47th International Symposium on Mathematical Foundations of Computer Science. Vol 241. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022:3:1-3:6. doi:10.4230/LIPIcs.MFCS.2022.3' apa: 'Avni, G., & Henzinger, T. A. (2022). An updated survey of bidding games on graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (Vol. 241, p. 3:1-3:6). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2022.3' chicago: 'Avni, Guy, and Thomas A Henzinger. “An Updated Survey of Bidding Games on Graphs.” In 47th International Symposium on Mathematical Foundations of Computer Science, 241:3:1-3:6. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. https://doi.org/10.4230/LIPIcs.MFCS.2022.3.' ieee: G. Avni and T. A. Henzinger, “An updated survey of bidding games on graphs,” in 47th International Symposium on Mathematical Foundations of Computer Science, Vienna, Austria, 2022, vol. 241, p. 3:1-3:6. ista: 'Avni G, Henzinger TA. 2022. An updated survey of bidding games on graphs. 47th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer ScienceLeibniz International Proceedings in Informatics (LIPIcs) vol. 241, 3:1-3:6.' mla: Avni, Guy, and Thomas A. Henzinger. “An Updated Survey of Bidding Games on Graphs.” 47th International Symposium on Mathematical Foundations of Computer Science, vol. 241, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, p. 3:1-3:6, doi:10.4230/LIPIcs.MFCS.2022.3. short: G. Avni, T.A. Henzinger, in:, 47th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, p. 3:1-3:6. conference: end_date: 2022-08-26 location: Vienna, Austria name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2022-08-22 date_created: 2023-02-05T17:26:01Z date_published: 2022-08-22T00:00:00Z date_updated: 2023-02-06T09:16:54Z day: '22' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.MFCS.2022.3 ec_funded: 1 file: - access_level: open_access checksum: 1888ec9421622f9526fbec2de035f132 content_type: application/pdf creator: dernst date_created: 2023-02-06T09:13:04Z date_updated: 2023-02-06T09:13:04Z file_id: '12519' file_name: 2022_LIPICs_Avni.pdf file_size: 624586 relation: main_file success: 1 file_date_updated: 2023-02-06T09:13:04Z has_accepted_license: '1' intvolume: ' 241' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3:1-3:6 place: Dagstuhl, Germany project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 47th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959772563' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' series_title: Leibniz International Proceedings in Informatics (LIPIcs) status: public title: An updated survey of bidding games on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 241 year: '2022' ... --- _id: '11366' abstract: - lang: eng text: "Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not\r\ncome for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off\r\nbut inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in\r\nconjunction with adversarial robot learning can make adversarial training suitable for real-world robot applications. We evaluate a wide variety of robot learning tasks ranging from autonomous driving in a high-fidelity environment\r\namenable to sim-to-real deployment, to mobile robot gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative side-effects caused by\r\nadversarial training still outweigh the improvements by an order of magnitude. We conclude that more substantial advances in robust learning methods are necessary before they can benefit robot learning tasks in practice." acknowledgement: "This work was supported in parts by the ERC-2020-AdG 101020093, National Science Foundation (NSF), and JP\r\nMorgan Graduate Fellowships. We thank Christoph Lampert for inspiring this work.\r\n" article_number: '2204.07373' article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. arXiv. doi:10.48550/arXiv.2204.07373 apa: Lechner, M., Amini, A., Rus, D., & Henzinger, T. A. (n.d.). Revisiting the adversarial robustness-accuracy tradeoff in robot learning. arXiv. https://doi.org/10.48550/arXiv.2204.07373 chicago: Lechner, Mathias, Alexander Amini, Daniela Rus, and Thomas A Henzinger. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2204.07373. ieee: M. Lechner, A. Amini, D. Rus, and T. A. Henzinger, “Revisiting the adversarial robustness-accuracy tradeoff in robot learning,” arXiv. . ista: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. arXiv, 2204.07373. mla: Lechner, Mathias, et al. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” ArXiv, 2204.07373, doi:10.48550/arXiv.2204.07373. short: M. Lechner, A. Amini, D. Rus, T.A. Henzinger, ArXiv (n.d.). date_created: 2022-05-12T13:20:17Z date_published: 2022-04-15T00:00:00Z date_updated: 2023-08-01T13:36:50Z day: '15' department: - _id: ToHe doi: 10.48550/arXiv.2204.07373 ec_funded: 1 external_id: arxiv: - '2204.07373' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.07373 month: '04' oa: 1 oa_version: Preprint project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: arXiv publication_status: submitted related_material: record: - id: '11362' relation: dissertation_contains status: public - id: '12704' relation: later_version status: public status: public title: Revisiting the adversarial robustness-accuracy tradeoff in robot learning type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '10891' abstract: - lang: eng text: We present a formal framework for the online black-box monitoring of software using monitors with quantitative verdict functions. Quantitative verdict functions have several advantages. First, quantitative monitors can be approximate, i.e., the value of the verdict function does not need to correspond exactly to the value of the property under observation. Second, quantitative monitors can be quantified universally, i.e., for every possible observed behavior, the monitor tries to make the best effort to estimate the value of the property under observation. Third, quantitative monitors can watch boolean as well as quantitative properties, such as average response time. Fourth, quantitative monitors can use non-finite-state resources, such as counters. As a consequence, quantitative monitors can be compared according to how many resources they use (e.g., the number of counters) and how precisely they approximate the property under observation. This allows for a rich spectrum of cost-precision trade-offs in monitoring software. acknowledgement: The formal framework for quantitative monitoring which is presented in this invited talk was defined jointly with N. Ege Saraç at LICS 2021. This work was supported in part by the Wittgenstein Award Z211-N23 of the Austrian Science Fund. article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Henzinger TA. Quantitative monitoring of software. In: Software Verification. Vol 13124. LNCS. Springer Nature; 2022:3-6. doi:10.1007/978-3-030-95561-8_1' apa: 'Henzinger, T. A. (2022). Quantitative monitoring of software. In Software Verification (Vol. 13124, pp. 3–6). New Haven, CT, United States: Springer Nature. https://doi.org/10.1007/978-3-030-95561-8_1' chicago: Henzinger, Thomas A. “Quantitative Monitoring of Software.” In Software Verification, 13124:3–6. LNCS. Springer Nature, 2022. https://doi.org/10.1007/978-3-030-95561-8_1. ieee: T. A. Henzinger, “Quantitative monitoring of software,” in Software Verification, New Haven, CT, United States, 2022, vol. 13124, pp. 3–6. ista: 'Henzinger TA. 2022. Quantitative monitoring of software. Software Verification. NSV: Numerical Software VerificationLNCS vol. 13124, 3–6.' mla: Henzinger, Thomas A. “Quantitative Monitoring of Software.” Software Verification, vol. 13124, Springer Nature, 2022, pp. 3–6, doi:10.1007/978-3-030-95561-8_1. short: T.A. Henzinger, in:, Software Verification, Springer Nature, 2022, pp. 3–6. conference: end_date: 2021-10-19 location: New Haven, CT, United States name: 'NSV: Numerical Software Verification' start_date: 2021-10-18 date_created: 2022-03-20T23:01:40Z date_published: 2022-02-22T00:00:00Z date_updated: 2023-08-03T06:11:55Z day: '22' department: - _id: ToHe doi: 10.1007/978-3-030-95561-8_1 external_id: isi: - '000771713200001' intvolume: ' 13124' isi: 1 language: - iso: eng month: '02' oa_version: None page: 3-6 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Software Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783030955601' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: Quantitative monitoring of software type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13124 year: '2022' ... --- _id: '11355' abstract: - lang: eng text: "Contract-based design is a promising methodology for taming the complexity of developing sophisticated systems. A formal contract distinguishes between assumptions, which are constraints that the designer of a component puts on the environments in which the component can be used safely, and guarantees, which are promises that the designer asks from the team that implements the component. A theory of formal contracts can be formalized as an interface theory, which supports the composition and refinement of both assumptions and guarantees.\r\nAlthough there is a rich landscape of contract-based design methods that address functional and extra-functional properties, we present the first interface theory that is designed for ensuring system-wide security properties. Our framework provides a refinement relation and a composition operation that support both incremental design and independent implementability. We develop our theory for both stateless and stateful interfaces. We illustrate the applicability of our framework with an example inspired from the automotive domain." acknowledgement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 956123 and was funded in part by the FWF project W1255-N23 and by the ERC-2020-AdG 101020093. alternative_title: - LNCS article_processing_charge: No author: - first_name: Ezio full_name: Bartocci, Ezio last_name: Bartocci - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Ana Oliveira full_name: Da Costa, Ana Oliveira last_name: Da Costa citation: ama: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. Information-flow interfaces. In: Fundamental Approaches to Software Engineering. Vol 13241. Springer Nature; 2022:3-22. doi:10.1007/978-3-030-99429-7_1' apa: 'Bartocci, E., Ferrere, T., Henzinger, T. A., Nickovic, D., & Da Costa, A. O. (2022). Information-flow interfaces. In Fundamental Approaches to Software Engineering (Vol. 13241, pp. 3–22). Munich, Germany: Springer Nature. https://doi.org/10.1007/978-3-030-99429-7_1' chicago: Bartocci, Ezio, Thomas Ferrere, Thomas A Henzinger, Dejan Nickovic, and Ana Oliveira Da Costa. “Information-Flow Interfaces.” In Fundamental Approaches to Software Engineering, 13241:3–22. Springer Nature, 2022. https://doi.org/10.1007/978-3-030-99429-7_1. ieee: E. Bartocci, T. Ferrere, T. A. Henzinger, D. Nickovic, and A. O. Da Costa, “Information-flow interfaces,” in Fundamental Approaches to Software Engineering, Munich, Germany, 2022, vol. 13241, pp. 3–22. ista: 'Bartocci E, Ferrere T, Henzinger TA, Nickovic D, Da Costa AO. 2022. Information-flow interfaces. Fundamental Approaches to Software Engineering. FASE: Fundamental Approaches to Software Engineering, LNCS, vol. 13241, 3–22.' mla: Bartocci, Ezio, et al. “Information-Flow Interfaces.” Fundamental Approaches to Software Engineering, vol. 13241, Springer Nature, 2022, pp. 3–22, doi:10.1007/978-3-030-99429-7_1. short: E. Bartocci, T. Ferrere, T.A. Henzinger, D. Nickovic, A.O. Da Costa, in:, Fundamental Approaches to Software Engineering, Springer Nature, 2022, pp. 3–22. conference: end_date: 2022-04-07 location: Munich, Germany name: 'FASE: Fundamental Approaches to Software Engineering' start_date: 2022-04-02 date_created: 2022-05-08T22:01:44Z date_published: 2022-03-29T00:00:00Z date_updated: 2023-08-03T07:03:40Z day: '29' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-99429-7_1 ec_funded: 1 external_id: isi: - '000782393600001' file: - access_level: open_access checksum: 7f6f860b20b8de2a249e9c1b4eee15cf content_type: application/pdf creator: dernst date_created: 2022-05-09T06:52:44Z date_updated: 2022-05-09T06:52:44Z file_id: '11357' file_name: 2022_LNCS_Bartocci.pdf file_size: 479146 relation: main_file success: 1 file_date_updated: 2022-05-09T06:52:44Z has_accepted_license: '1' intvolume: ' 13241' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 3-22 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Fundamental Approaches to Software Engineering publication_identifier: eissn: - 1611-3349 isbn: - '9783030994280' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Information-flow interfaces tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13241 year: '2022' ... --- _id: '11775' abstract: - lang: eng text: 'Quantitative monitoring can be universal and approximate: For every finite sequence of observations, the specification provides a value and the monitor outputs a best-effort approximation of it. The quality of the approximation may depend on the resources that are available to the monitor. By taking to the limit the sequences of specification values and monitor outputs, we obtain precision-resource trade-offs also for limit monitoring. This paper provides a formal framework for studying such trade-offs using an abstract interpretation for monitors: For each natural number n, the aggregate semantics of a monitor at time n is an equivalence relation over all sequences of at most n observations so that two equivalent sequences are indistinguishable to the monitor and thus mapped to the same output. This abstract interpretation of quantitative monitors allows us to measure the number of equivalence classes (or “resource use”) that is necessary for a certain precision up to a certain time, or at any time. Our framework offers several insights. For example, we identify a family of specifications for which any resource-optimal exact limit monitor is independent of any error permitted over finite traces. Moreover, we present a specification for which any resource-optimal approximate limit monitor does not minimize its resource use at any time. ' acknowledgement: We thank the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093. alternative_title: - LNCS article_processing_charge: Yes author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Mazzocchi NA, Sarac NE. Abstract monitors for quantitative specifications. In: 22nd International Conference on Runtime Verification. Vol 13498. Springer Nature; 2022:200-220. doi:10.1007/978-3-031-17196-3_11' apa: 'Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2022). Abstract monitors for quantitative specifications. In 22nd International Conference on Runtime Verification (Vol. 13498, pp. 200–220). Tbilisi, Georgia: Springer Nature. https://doi.org/10.1007/978-3-031-17196-3_11' chicago: Henzinger, Thomas A, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Abstract Monitors for Quantitative Specifications.” In 22nd International Conference on Runtime Verification, 13498:200–220. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-17196-3_11. ieee: T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Abstract monitors for quantitative specifications,” in 22nd International Conference on Runtime Verification, Tbilisi, Georgia, 2022, vol. 13498, pp. 200–220. ista: 'Henzinger TA, Mazzocchi NA, Sarac NE. 2022. Abstract monitors for quantitative specifications. 22nd International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 13498, 200–220.' mla: Henzinger, Thomas A., et al. “Abstract Monitors for Quantitative Specifications.” 22nd International Conference on Runtime Verification, vol. 13498, Springer Nature, 2022, pp. 200–20, doi:10.1007/978-3-031-17196-3_11. short: T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 22nd International Conference on Runtime Verification, Springer Nature, 2022, pp. 200–220. conference: end_date: 2022-09-30 location: Tbilisi, Georgia name: 'RV: Runtime Verification' start_date: 2022-09-28 date_created: 2022-08-08T17:09:09Z date_published: 2022-09-23T00:00:00Z date_updated: 2023-08-03T13:38:46Z day: '23' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1007/978-3-031-17196-3_11 ec_funded: 1 external_id: isi: - '000866539700011' file: - access_level: open_access checksum: 05c7dcfbb9053a98f46441fb2eccb213 content_type: application/pdf creator: dernst date_created: 2023-01-20T07:34:50Z date_updated: 2023-01-20T07:34:50Z file_id: '12317' file_name: 2022_LNCS_RV_Henzinger.pdf file_size: 477110 relation: main_file success: 1 file_date_updated: 2023-01-20T07:34:50Z has_accepted_license: '1' intvolume: ' 13498' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 200-220 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 22nd International Conference on Runtime Verification publication_identifier: issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Abstract monitors for quantitative specifications tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13498 year: '2022' ... --- _id: '12147' abstract: - lang: eng text: Continuous-time neural networks are a class of machine learning systems that can tackle representation learning on spatiotemporal decision-making tasks. These models are typically represented by continuous differential equations. However, their expressive power when they are deployed on computers is bottlenecked by numerical differential equation solvers. This limitation has notably slowed down the scaling and understanding of numerous natural physical phenomena such as the dynamics of nervous systems. Ideally, we would circumvent this bottleneck by solving the given dynamical system in closed form. This is known to be intractable in general. Here, we show that it is possible to closely approximate the interaction between neurons and synapses—the building blocks of natural and artificial neural networks—constructed by liquid time-constant networks efficiently in closed form. To this end, we compute a tightly bounded approximation of the solution of an integral appearing in liquid time-constant dynamics that has had no known closed-form solution so far. This closed-form solution impacts the design of continuous-time and continuous-depth neural models. For instance, since time appears explicitly in closed form, the formulation relaxes the need for complex numerical solvers. Consequently, we obtain models that are between one and five orders of magnitude faster in training and inference compared with differential equation-based counterparts. More importantly, in contrast to ordinary differential equation-based continuous networks, closed-form networks can scale remarkably well compared with other deep learning instances. Lastly, as these models are derived from liquid networks, they show good performance in time-series modelling compared with advanced recurrent neural network models. acknowledgement: This research was supported in part by the AI2050 program at Schmidt Futures (grant G-22-63172), the Boeing Company, and the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under cooperative agreement number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation herein. This work was further supported by The Boeing Company and Office of Naval Research grant N00014-18-1-2830. M.T. is supported by the Poul Due Jensen Foundation, grant 883901. M.L. was supported in part by the Austrian Science Fund under grant Z211-N23 (Wittgenstein Award). A.A. was supported by the National Science Foundation Graduate Research Fellowship Program. We thank T.-H. Wang, P. Kao, M. Chahine, W. Xiao, X. Li, L. Yin and Y. Ben for useful suggestions and for testing of CfC models to confirm the results across other domains. article_processing_charge: No article_type: original author: - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Lucas full_name: Liebenwein, Lucas last_name: Liebenwein - first_name: Aaron full_name: Ray, Aaron last_name: Ray - first_name: Max full_name: Tschaikowski, Max last_name: Tschaikowski - first_name: Gerald full_name: Teschl, Gerald last_name: Teschl - first_name: Daniela full_name: Rus, Daniela last_name: Rus citation: ama: Hasani R, Lechner M, Amini A, et al. Closed-form continuous-time neural networks. Nature Machine Intelligence. 2022;4(11):992-1003. doi:10.1038/s42256-022-00556-7 apa: Hasani, R., Lechner, M., Amini, A., Liebenwein, L., Ray, A., Tschaikowski, M., … Rus, D. (2022). Closed-form continuous-time neural networks. Nature Machine Intelligence. Springer Nature. https://doi.org/10.1038/s42256-022-00556-7 chicago: Hasani, Ramin, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Aaron Ray, Max Tschaikowski, Gerald Teschl, and Daniela Rus. “Closed-Form Continuous-Time Neural Networks.” Nature Machine Intelligence. Springer Nature, 2022. https://doi.org/10.1038/s42256-022-00556-7. ieee: R. Hasani et al., “Closed-form continuous-time neural networks,” Nature Machine Intelligence, vol. 4, no. 11. Springer Nature, pp. 992–1003, 2022. ista: Hasani R, Lechner M, Amini A, Liebenwein L, Ray A, Tschaikowski M, Teschl G, Rus D. 2022. Closed-form continuous-time neural networks. Nature Machine Intelligence. 4(11), 992–1003. mla: Hasani, Ramin, et al. “Closed-Form Continuous-Time Neural Networks.” Nature Machine Intelligence, vol. 4, no. 11, Springer Nature, 2022, pp. 992–1003, doi:10.1038/s42256-022-00556-7. short: R. Hasani, M. Lechner, A. Amini, L. Liebenwein, A. Ray, M. Tschaikowski, G. Teschl, D. Rus, Nature Machine Intelligence 4 (2022) 992–1003. date_created: 2023-01-12T12:07:21Z date_published: 2022-11-15T00:00:00Z date_updated: 2023-08-04T09:00:10Z day: '15' ddc: - '000' department: - _id: ToHe doi: 10.1038/s42256-022-00556-7 external_id: arxiv: - '2106.13898' isi: - '000884215600003' file: - access_level: open_access checksum: b4789122ce04bfb4ac042390f59aaa8b content_type: application/pdf creator: dernst date_created: 2023-01-24T09:49:44Z date_updated: 2023-01-24T09:49:44Z file_id: '12355' file_name: 2022_NatureMachineIntelligence_Hasani.pdf file_size: 3259553 relation: main_file success: 1 file_date_updated: 2023-01-24T09:49:44Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '11' keyword: - Artificial Intelligence - Computer Networks and Communications - Computer Vision and Pattern Recognition - Human-Computer Interaction - Software language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 992-1003 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Nature Machine Intelligence publication_identifier: issn: - 2522-5839 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s42256-022-00597-y scopus_import: '1' status: public title: Closed-form continuous-time neural networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 4 year: '2022' ... --- _id: '11362' abstract: - lang: eng text: "Deep learning has enabled breakthroughs in challenging computing problems and has emerged as the standard problem-solving tool for computer vision and natural language processing tasks.\r\nOne exception to this trend is safety-critical tasks where robustness and resilience requirements contradict the black-box nature of neural networks. \r\nTo deploy deep learning methods for these tasks, it is vital to provide guarantees on neural network agents' safety and robustness criteria. \r\nThis can be achieved by developing formal verification methods to verify the safety and robustness properties of neural networks.\r\n\r\nOur goal is to design, develop and assess safety verification methods for neural networks to improve their reliability and trustworthiness in real-world applications.\r\nThis thesis establishes techniques for the verification of compressed and adversarially trained models as well as the design of novel neural networks for verifiably safe decision-making.\r\n\r\nFirst, we establish the problem of verifying quantized neural networks. Quantization is a technique that trades numerical precision for the computational efficiency of running a neural network and is widely adopted in industry.\r\nWe show that neglecting the reduced precision when verifying a neural network can lead to wrong conclusions about the robustness and safety of the network, highlighting that novel techniques for quantized network verification are necessary. We introduce several bit-exact verification methods explicitly designed for quantized neural networks and experimentally confirm on realistic networks that the network's robustness and other formal properties are affected by the quantization.\r\n\r\nFurthermore, we perform a case study providing evidence that adversarial training, a standard technique for making neural networks more robust, has detrimental effects on the network's performance. This robustness-accuracy tradeoff has been studied before regarding the accuracy obtained on classification datasets where each data point is independent of all other data points. On the other hand, we investigate the tradeoff empirically in robot learning settings where a both, a high accuracy and a high robustness, are desirable.\r\nOur results suggest that the negative side-effects of adversarial training outweigh its robustness benefits in practice.\r\n\r\nFinally, we consider the problem of verifying safety when running a Bayesian neural network policy in a feedback loop with systems over the infinite time horizon. Bayesian neural networks are probabilistic models for learning uncertainties in the data and are therefore often used on robotic and healthcare applications where data is inherently stochastic.\r\nWe introduce a method for recalibrating Bayesian neural networks so that they yield probability distributions over safe decisions only.\r\nOur method learns a safety certificate that guarantees safety over the infinite time horizon to determine which decisions are safe in every possible state of the system.\r\nWe demonstrate the effectiveness of our approach on a series of reinforcement learning benchmarks." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner citation: ama: Lechner M. Learning verifiable representations. 2022. doi:10.15479/at:ista:11362 apa: Lechner, M. (2022). Learning verifiable representations. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11362 chicago: Lechner, Mathias. “Learning Verifiable Representations.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11362. ieee: M. Lechner, “Learning verifiable representations,” Institute of Science and Technology Austria, 2022. ista: Lechner M. 2022. Learning verifiable representations. Institute of Science and Technology Austria. mla: Lechner, Mathias. Learning Verifiable Representations. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11362. short: M. Lechner, Learning Verifiable Representations, Institute of Science and Technology Austria, 2022. date_created: 2022-05-12T07:14:01Z date_published: 2022-05-12T00:00:00Z date_updated: 2023-08-17T06:58:38Z day: '12' ddc: - '004' degree_awarded: PhD department: - _id: GradSch - _id: ToHe doi: 10.15479/at:ista:11362 ec_funded: 1 file: - access_level: closed checksum: 8eefa9c7c10ca7e1a2ccdd731962a645 content_type: application/zip creator: mlechner date_created: 2022-05-13T12:33:26Z date_updated: 2022-05-13T12:49:00Z file_id: '11378' file_name: src.zip file_size: 13210143 relation: source_file - access_level: open_access checksum: 1b9e1e5a9a83ed9d89dad2f5133dc026 content_type: application/pdf creator: mlechner date_created: 2022-05-16T08:02:28Z date_updated: 2022-05-17T15:19:39Z file_id: '11382' file_name: thesis_main-a2.pdf file_size: 2732536 relation: main_file file_date_updated: 2022-05-17T15:19:39Z has_accepted_license: '1' keyword: - neural networks - verification - machine learning language: - iso: eng license: https://creativecommons.org/licenses/by-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: '124' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication_identifier: isbn: - 978-3-99078-017-6 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10665' relation: part_of_dissertation status: public - id: '10667' relation: part_of_dissertation status: public - id: '11366' relation: part_of_dissertation status: public - id: '7808' relation: part_of_dissertation status: public - id: '10666' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 title: Learning verifiable representations tmp: image: /image/cc_by_nd.png legal_code_url: https://creativecommons.org/licenses/by-nd/4.0/legalcode name: Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) short: CC BY-ND (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '12302' abstract: - lang: eng text: 'We propose a novel algorithm to decide the language inclusion between (nondeterministic) Büchi automata, a PSPACE-complete problem. Our approach, like others before, leverage a notion of quasiorder to prune the search for a counterexample by discarding candidates which are subsumed by others for the quasiorder. Discarded candidates are guaranteed to not compromise the completeness of the algorithm. The novelty of our work lies in the quasiorder used to discard candidates. We introduce FORQs (family of right quasiorders) that we obtain by adapting the notion of family of right congruences put forward by Maler and Staiger in 1993. We define a FORQ-based inclusion algorithm which we prove correct and instantiate it for a specific FORQ, called the structural FORQ, induced by the Büchi automaton to the right of the inclusion sign. The resulting implementation, called FORKLIFT, scales up better than the state-of-the-art on a variety of benchmarks including benchmarks from program verification and theorem proving for word combinatorics. Artifact: https://doi.org/10.5281/zenodo.6552870' acknowledgement: This work was partially funded by the ESF Investing in your future, the Madrid regional project S2018/TCS-4339 BLOQUES, the Spanish project PGC2018-102210-B-I00 BOSCO, the Ramón y Cajal fellowship RYC-2016-20281, and the ERC grant PR1001ERC02. alternative_title: - LNCS article_processing_charge: No author: - first_name: Kyveli full_name: Doveri, Kyveli last_name: Doveri - first_name: Pierre full_name: Ganty, Pierre last_name: Ganty - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi citation: ama: 'Doveri K, Ganty P, Mazzocchi NA. FORQ-based language inclusion formal testing. In: Computer Aided Verification. Vol 13372. Springer Nature; 2022:109-129. doi:10.1007/978-3-031-13188-2_6' apa: 'Doveri, K., Ganty, P., & Mazzocchi, N. A. (2022). FORQ-based language inclusion formal testing. In Computer Aided Verification (Vol. 13372, pp. 109–129). Haifa, Israel: Springer Nature. https://doi.org/10.1007/978-3-031-13188-2_6' chicago: Doveri, Kyveli, Pierre Ganty, and Nicolas Adrien Mazzocchi. “FORQ-Based Language Inclusion Formal Testing.” In Computer Aided Verification, 13372:109–29. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-13188-2_6. ieee: K. Doveri, P. Ganty, and N. A. Mazzocchi, “FORQ-based language inclusion formal testing,” in Computer Aided Verification, Haifa, Israel, 2022, vol. 13372, pp. 109–129. ista: 'Doveri K, Ganty P, Mazzocchi NA. 2022. FORQ-based language inclusion formal testing. Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13372, 109–129.' mla: Doveri, Kyveli, et al. “FORQ-Based Language Inclusion Formal Testing.” Computer Aided Verification, vol. 13372, Springer Nature, 2022, pp. 109–29, doi:10.1007/978-3-031-13188-2_6. short: K. Doveri, P. Ganty, N.A. Mazzocchi, in:, Computer Aided Verification, Springer Nature, 2022, pp. 109–129. conference: end_date: 2022-08-10 location: Haifa, Israel name: 'CAV: Computer Aided Verification' start_date: 2022-08-07 date_created: 2023-01-16T10:06:31Z date_published: 2022-08-06T00:00:00Z date_updated: 2023-09-05T15:13:36Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-13188-2_6 ec_funded: 1 external_id: arxiv: - '2207.13549' isi: - '000870310500006' file: - access_level: open_access checksum: edc363b1be5447a09063e115c247918a content_type: application/pdf creator: dernst date_created: 2023-01-30T12:51:02Z date_updated: 2023-01-30T12:51:02Z file_id: '12465' file_name: 2022_LNCS_Doveri.pdf file_size: 497682 relation: main_file success: 1 file_date_updated: 2023-01-30T12:51:02Z has_accepted_license: '1' intvolume: ' 13372' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 109-129 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Computer Aided Verification publication_identifier: eisbn: - '9783031131882' eissn: - 1611-3349 isbn: - '9783031131875' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: FORQ-based language inclusion formal testing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13372 year: '2022' ... --- _id: '12175' abstract: - lang: eng text: An automaton is history-deterministic (HD) if one can safely resolve its non-deterministic choices on the fly. In a recent paper, Henzinger, Lehtinen and Totzke studied this in the context of Timed Automata [9], where it was conjectured that the class of timed ω-languages recognised by HD-timed automata strictly extends that of deterministic ones. We provide a proof for this fact. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, the EPSRC project EP/V025848/1, and the EPSRC project EP/X017796/1. alternative_title: - LNCS article_processing_charge: No author: - first_name: Sougata full_name: Bose, Sougata last_name: Bose - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Karoliina full_name: Lehtinen, Karoliina last_name: Lehtinen - first_name: Sven full_name: Schewe, Sven last_name: Schewe - first_name: Patrick full_name: Totzke, Patrick last_name: Totzke citation: ama: 'Bose S, Henzinger TA, Lehtinen K, Schewe S, Totzke P. History-deterministic timed automata are not determinizable. In: 16th International Conference on Reachability Problems. Vol 13608. Springer Nature; 2022:67-76. doi:10.1007/978-3-031-19135-0_5' apa: 'Bose, S., Henzinger, T. A., Lehtinen, K., Schewe, S., & Totzke, P. (2022). History-deterministic timed automata are not determinizable. In 16th International Conference on Reachability Problems (Vol. 13608, pp. 67–76). Kaiserslautern, Germany: Springer Nature. https://doi.org/10.1007/978-3-031-19135-0_5' chicago: Bose, Sougata, Thomas A Henzinger, Karoliina Lehtinen, Sven Schewe, and Patrick Totzke. “History-Deterministic Timed Automata Are Not Determinizable.” In 16th International Conference on Reachability Problems, 13608:67–76. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-19135-0_5. ieee: S. Bose, T. A. Henzinger, K. Lehtinen, S. Schewe, and P. Totzke, “History-deterministic timed automata are not determinizable,” in 16th International Conference on Reachability Problems, Kaiserslautern, Germany, 2022, vol. 13608, pp. 67–76. ista: 'Bose S, Henzinger TA, Lehtinen K, Schewe S, Totzke P. 2022. History-deterministic timed automata are not determinizable. 16th International Conference on Reachability Problems. RC: Reachability Problems, LNCS, vol. 13608, 67–76.' mla: Bose, Sougata, et al. “History-Deterministic Timed Automata Are Not Determinizable.” 16th International Conference on Reachability Problems, vol. 13608, Springer Nature, 2022, pp. 67–76, doi:10.1007/978-3-031-19135-0_5. short: S. Bose, T.A. Henzinger, K. Lehtinen, S. Schewe, P. Totzke, in:, 16th International Conference on Reachability Problems, Springer Nature, 2022, pp. 67–76. conference: end_date: 2022-10-21 location: Kaiserslautern, Germany name: 'RC: Reachability Problems' start_date: 2022-10-17 date_created: 2023-01-12T12:11:57Z date_published: 2022-10-12T00:00:00Z date_updated: 2023-09-05T15:12:08Z day: '12' department: - _id: ToHe doi: 10.1007/978-3-031-19135-0_5 ec_funded: 1 intvolume: ' 13608' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.science/hal-03849398/ month: '10' oa: 1 oa_version: Preprint page: 67-76 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 16th International Conference on Reachability Problems publication_identifier: eisbn: - '9783031191350' eissn: - 1611-3349 isbn: - '9783031191343' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: History-deterministic timed automata are not determinizable type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13608 year: '2022' ... --- _id: '12510' abstract: - lang: eng text: "We introduce a new statistical verification algorithm that formally quantifies the behavioral robustness of any time-continuous process formulated as a continuous-depth model. Our algorithm solves a set of global optimization (Go) problems over a given time horizon to construct a tight enclosure (Tube) of the set of all process executions starting from a ball of initial states. We call our algorithm GoTube. Through its construction, GoTube ensures that the bounding tube is conservative up to a desired probability and up to a desired tightness.\r\n GoTube is implemented in JAX and optimized to scale to complex continuous-depth neural network models. Compared to advanced reachability analysis tools for time-continuous neural networks, GoTube does not accumulate overapproximation errors between time steps and avoids the infamous wrapping effect inherent in symbolic techniques. We show that GoTube substantially outperforms state-of-the-art verification tools in terms of the size of the initial ball, speed, time-horizon, task completion, and scalability on a large set of experiments.\r\n GoTube is stable and sets the state-of-the-art in terms of its ability to scale to time horizons well beyond what has been previously possible." acknowledgement: SG is funded by the Austrian Science Fund (FWF) project number W1255-N23. ML and TH are supported in part by FWF under grant Z211-N23 (Wittgenstein Award) and the ERC-2020-AdG 101020093. SS is supported by NSF awards DCL-2040599, CCF-1918225, and CPS-1446832. RH and DR are partially supported by Boeing. RG is partially supported by Horizon-2020 ECSEL Project grant No. 783163 (iDev40). article_processing_charge: No article_type: original author: - first_name: Sophie A. full_name: Gruenbacher, Sophie A. last_name: Gruenbacher - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Scott A. full_name: Smolka, Scott A. last_name: Smolka - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Gruenbacher SA, Lechner M, Hasani R, et al. GoTube: Scalable statistical verification of continuous-depth models. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(6):6755-6764. doi:10.1609/aaai.v36i6.20631' apa: 'Gruenbacher, S. A., Lechner, M., Hasani, R., Rus, D., Henzinger, T. A., Smolka, S. A., & Grosu, R. (2022). GoTube: Scalable statistical verification of continuous-depth models. Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i6.20631' chicago: 'Gruenbacher, Sophie A., Mathias Lechner, Ramin Hasani, Daniela Rus, Thomas A Henzinger, Scott A. Smolka, and Radu Grosu. “GoTube: Scalable Statistical Verification of Continuous-Depth Models.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2022. https://doi.org/10.1609/aaai.v36i6.20631.' ieee: 'S. A. Gruenbacher et al., “GoTube: Scalable statistical verification of continuous-depth models,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 6. Association for the Advancement of Artificial Intelligence, pp. 6755–6764, 2022.' ista: 'Gruenbacher SA, Lechner M, Hasani R, Rus D, Henzinger TA, Smolka SA, Grosu R. 2022. GoTube: Scalable statistical verification of continuous-depth models. Proceedings of the AAAI Conference on Artificial Intelligence. 36(6), 6755–6764.' mla: 'Gruenbacher, Sophie A., et al. “GoTube: Scalable Statistical Verification of Continuous-Depth Models.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 6, Association for the Advancement of Artificial Intelligence, 2022, pp. 6755–64, doi:10.1609/aaai.v36i6.20631.' short: S.A. Gruenbacher, M. Lechner, R. Hasani, D. Rus, T.A. Henzinger, S.A. Smolka, R. Grosu, Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022) 6755–6764. date_created: 2023-02-05T17:27:42Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-09-26T10:46:59Z day: '28' department: - _id: ToHe doi: 10.1609/aaai.v36i6.20631 ec_funded: 1 external_id: arxiv: - '2107.08467' intvolume: ' 36' issue: '6' keyword: - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2107.08467 month: '06' oa: 1 oa_version: Preprint page: 6755-6764 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '978577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: 'GoTube: Scalable statistical verification of continuous-depth models' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2022' ... --- _id: '12511' abstract: - lang: eng text: "We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic either consider only specialized forms of stochasticity or make restrictive assumptions on the system, rendering them inapplicable to learning algorithms with neural network policies. \r\n In this work, we present an approach for general nonlinear stochastic control problems with two novel aspects: (a) instead of classical stochastic extensions of Lyapunov functions, we use ranking supermartingales (RSMs) to certify a.s. asymptotic stability, and (b) we present a method for learning neural network RSMs. \r\n We prove that our approach guarantees a.s. asymptotic stability of the system and\r\n provides the first method to obtain bounds on the stabilization time, which stochastic Lyapunov functions do not.\r\n Finally, we validate our approach experimentally on a set of nonlinear stochastic reinforcement learning environments with neural network policies." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme\r\nunder the Marie Skłodowska-Curie Grant Agreement No. 665385." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Zikelic D, Chatterjee K, Henzinger TA. Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(7):7326-7336. doi:10.1609/aaai.v36i7.20695 apa: Lechner, M., Zikelic, D., Chatterjee, K., & Henzinger, T. A. (2022). Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i7.20695 chicago: Lechner, Mathias, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A Henzinger. “Stability Verification in Stochastic Control Systems via Neural Network Supermartingales.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2022. https://doi.org/10.1609/aaai.v36i7.20695. ieee: M. Lechner, D. Zikelic, K. Chatterjee, and T. A. Henzinger, “Stability verification in stochastic control systems via neural network supermartingales,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7. Association for the Advancement of Artificial Intelligence, pp. 7326–7336, 2022. ista: Lechner M, Zikelic D, Chatterjee K, Henzinger TA. 2022. Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. 36(7), 7326–7336. mla: Lechner, Mathias, et al. “Stability Verification in Stochastic Control Systems via Neural Network Supermartingales.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, Association for the Advancement of Artificial Intelligence, 2022, pp. 7326–36, doi:10.1609/aaai.v36i7.20695. short: M. Lechner, D. Zikelic, K. Chatterjee, T.A. Henzinger, Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022) 7326–7336. date_created: 2023-02-05T17:29:50Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '28' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v36i7.20695 ec_funded: 1 external_id: arxiv: - '2112.09495' intvolume: ' 36' issue: '7' keyword: - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2112.09495 month: '06' oa: 1 oa_version: Preprint page: 7326-7336 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '9781577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability verification in stochastic control systems via neural network supermartingales type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2022' ... --- _id: '14601' abstract: - lang: eng text: "In this work, we address the problem of learning provably stable neural\r\nnetwork policies for stochastic control systems. While recent work has\r\ndemonstrated the feasibility of certifying given policies using martingale\r\ntheory, the problem of how to learn such policies is little explored. Here, we\r\nstudy the effectiveness of jointly learning a policy together with a martingale\r\ncertificate that proves its stability using a single learning algorithm. We\r\nobserve that the joint optimization problem becomes easily stuck in local\r\nminima when starting from a randomly initialized policy. Our results suggest\r\nthat some form of pre-training of the policy is required for the joint\r\noptimization to repair and verify the policy successfully." article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Zikelic D, Lechner M, Chatterjee K, Henzinger TA. Learning stabilizing policies in stochastic control systems. arXiv. doi:10.48550/arXiv.2205.11991 apa: Zikelic, D., Lechner, M., Chatterjee, K., & Henzinger, T. A. (n.d.). Learning stabilizing policies in stochastic control systems. arXiv. https://doi.org/10.48550/arXiv.2205.11991 chicago: Zikelic, Dorde, Mathias Lechner, Krishnendu Chatterjee, and Thomas A Henzinger. “Learning Stabilizing Policies in Stochastic Control Systems.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2205.11991. ieee: D. Zikelic, M. Lechner, K. Chatterjee, and T. A. Henzinger, “Learning stabilizing policies in stochastic control systems,” arXiv. . ista: Zikelic D, Lechner M, Chatterjee K, Henzinger TA. Learning stabilizing policies in stochastic control systems. arXiv, 10.48550/arXiv.2205.11991. mla: Zikelic, Dorde, et al. “Learning Stabilizing Policies in Stochastic Control Systems.” ArXiv, doi:10.48550/arXiv.2205.11991. short: D. Zikelic, M. Lechner, K. Chatterjee, T.A. Henzinger, ArXiv (n.d.). date_created: 2023-11-24T13:22:30Z date_published: 2022-05-24T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '24' department: - _id: KrCh - _id: ToHe doi: 10.48550/arXiv.2205.11991 ec_funded: 1 external_id: arxiv: - '2205.11991' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2205.11991 month: '05' oa: 1 oa_version: Preprint project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '14539' relation: dissertation_contains status: public status: public title: Learning stabilizing policies in stochastic control systems type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '14600' abstract: - lang: eng text: We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks. article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. doi:10.48550/ARXIV.2210.05308 apa: Zikelic, D., Lechner, M., Henzinger, T. A., & Chatterjee, K. (n.d.). Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. https://doi.org/10.48550/ARXIV.2210.05308 chicago: Zikelic, Dorde, Mathias Lechner, Thomas A Henzinger, and Krishnendu Chatterjee. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, n.d. https://doi.org/10.48550/ARXIV.2210.05308. ieee: D. Zikelic, M. Lechner, T. A. Henzinger, and K. Chatterjee, “Learning control policies for stochastic systems with reach-avoid guarantees,” arXiv. . ista: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv, 10.48550/ARXIV.2210.05308. mla: Zikelic, Dorde, et al. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, doi:10.48550/ARXIV.2210.05308. short: D. Zikelic, M. Lechner, T.A. Henzinger, K. Chatterjee, ArXiv (n.d.). date_created: 2023-11-24T13:10:09Z date_published: 2022-11-29T00:00:00Z date_updated: 2024-01-22T14:08:29Z day: '29' department: - _id: KrCh - _id: ToHe doi: 10.48550/ARXIV.2210.05308 ec_funded: 1 external_id: arxiv: - '2210.05308' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2210.05308 month: '11' oa: 1 oa_version: Preprint project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '14539' relation: dissertation_contains status: public - id: '14830' relation: later_version status: public status: public title: Learning control policies for stochastic systems with reach-avoid guarantees tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10153' abstract: - lang: eng text: "Gradual typing is a principled means for mixing typed and untyped code. But typed and untyped code often exhibit different programming patterns. There is already substantial research investigating gradually giving types to code exhibiting typical untyped patterns, and some research investigating gradually removing types from code exhibiting typical typed patterns. This paper investigates how to extend these established gradual-typing concepts to give formal guarantees not only about how to change types as code evolves but also about how to change such programming patterns as well.\r\n\r\nIn particular, we explore mixing untyped \"structural\" code with typed \"nominal\" code in an object-oriented language. But whereas previous work only allowed \"nominal\" objects to be treated as \"structural\" objects, we also allow \"structural\" objects to dynamically acquire certain nominal types, namely interfaces. We present a calculus that supports such \"cross-paradigm\" code migration and interoperation in a manner satisfying both the static and dynamic gradual guarantees, and demonstrate that the calculus can be implemented efficiently." acknowledgement: "We thank the reviewers for their valuable suggestions towards improving the paper. We also \r\nthank Mae Milano and Adrian Sampson, as well as the members of the Programming Languages Discussion Group at Cornell University and of the Programming Research Laboratory at Northeastern University, for their helpful feedback on preliminary findings of this work.\r\n\r\nThis material is based upon work supported in part by the National Science Foundation (NSF) through grant CCF-1350182 and the Austrian Science Fund (FWF) through grant Z211-N23 (Wittgenstein~Award).\r\nAny opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the FWF." article_number: '127' article_processing_charge: No article_type: original author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Ross full_name: Tate, Ross last_name: Tate citation: ama: Mühlböck F, Tate R. Transitioning from structural to nominal code with efficient gradual typing. Proceedings of the ACM on Programming Languages. 2021;5. doi:10.1145/3485504 apa: 'Mühlböck, F., & Tate, R. (2021). Transitioning from structural to nominal code with efficient gradual typing. Proceedings of the ACM on Programming Languages. Chicago, IL, United States: Association for Computing Machinery. https://doi.org/10.1145/3485504' chicago: Mühlböck, Fabian, and Ross Tate. “Transitioning from Structural to Nominal Code with Efficient Gradual Typing.” Proceedings of the ACM on Programming Languages. Association for Computing Machinery, 2021. https://doi.org/10.1145/3485504. ieee: F. Mühlböck and R. Tate, “Transitioning from structural to nominal code with efficient gradual typing,” Proceedings of the ACM on Programming Languages, vol. 5. Association for Computing Machinery, 2021. ista: Mühlböck F, Tate R. 2021. Transitioning from structural to nominal code with efficient gradual typing. Proceedings of the ACM on Programming Languages. 5, 127. mla: Mühlböck, Fabian, and Ross Tate. “Transitioning from Structural to Nominal Code with Efficient Gradual Typing.” Proceedings of the ACM on Programming Languages, vol. 5, 127, Association for Computing Machinery, 2021, doi:10.1145/3485504. short: F. Mühlböck, R. Tate, Proceedings of the ACM on Programming Languages 5 (2021). conference: end_date: 2021-10-23 location: Chicago, IL, United States name: 'OOPSLA: Object-Oriented Programming, Systems, Languages, and Applications' start_date: 2021-10-17 date_created: 2021-10-19T12:48:44Z date_published: 2021-10-15T00:00:00Z date_updated: 2021-11-12T11:30:07Z day: '15' ddc: - '005' department: - _id: ToHe doi: 10.1145/3485504 file: - access_level: open_access checksum: 71011efd2da771cafdec7f0d9693f8c1 content_type: application/pdf creator: fmuehlbo date_created: 2021-10-19T12:52:23Z date_updated: 2021-10-19T12:52:23Z file_id: '10154' file_name: monnom-oopsla21.pdf file_size: 770269 relation: main_file success: 1 file_date_updated: 2021-10-19T12:52:23Z has_accepted_license: '1' intvolume: ' 5' keyword: - gradual typing - gradual guarantee - nominal - structural - call tags language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the ACM on Programming Languages publication_identifier: eissn: - 2475-1421 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Transitioning from structural to nominal code with efficient gradual typing tmp: image: /image/cc_by_nd.png legal_code_url: https://creativecommons.org/licenses/by-nd/4.0/legalcode name: Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) short: CC BY-ND (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 5 year: '2021' ... --- _id: '10669' abstract: - lang: eng text: "We show that Neural ODEs, an emerging class of timecontinuous neural networks, can be verified by solving a set of global-optimization problems. For this purpose, we introduce Stochastic Lagrangian Reachability (SLR), an\r\nabstraction-based technique for constructing a tight Reachtube (an over-approximation of the set of reachable states\r\nover a given time-horizon), and provide stochastic guarantees in the form of confidence intervals for the Reachtube bounds. SLR inherently avoids the infamous wrapping effect (accumulation of over-approximation errors) by performing local optimization steps to expand safe regions instead of repeatedly forward-propagating them as is done by deterministic reachability methods. To enable fast local optimizations, we introduce a novel forward-mode adjoint sensitivity method to compute gradients without the need for backpropagation. Finally, we establish asymptotic and non-asymptotic convergence rates for SLR." acknowledgement: "The authors would like to thank the reviewers for their insightful comments. RH and RG were partially supported by\r\nHorizon-2020 ECSEL Project grant No. 783163 (iDev40). RH was partially supported by Boeing. ML was supported\r\nin part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). SG was funded by FWF\r\nproject W1255-N23. JC was partially supported by NAWA Polish Returns grant PPN/PPO/2018/1/00029. SS was supported by NSF awards DCL-2040599, CCF-1918225, and CPS-1446832.\r\n" alternative_title: - Technical Tracks article_processing_charge: No author: - first_name: Sophie full_name: Grunbacher, Sophie last_name: Grunbacher - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Jacek full_name: Cyranka, Jacek last_name: Cyranka - first_name: Scott A full_name: Smolka, Scott A last_name: Smolka - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Grunbacher S, Hasani R, Lechner M, Cyranka J, Smolka SA, Grosu R. On the verification of neural ODEs with stochastic guarantees. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 35. AAAI Press; 2021:11525-11535.' apa: 'Grunbacher, S., Hasani, R., Lechner, M., Cyranka, J., Smolka, S. A., & Grosu, R. (2021). On the verification of neural ODEs with stochastic guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 11525–11535). Virtual: AAAI Press.' chicago: Grunbacher, Sophie, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A Smolka, and Radu Grosu. “On the Verification of Neural ODEs with Stochastic Guarantees.” In Proceedings of the AAAI Conference on Artificial Intelligence, 35:11525–35. AAAI Press, 2021. ieee: S. Grunbacher, R. Hasani, M. Lechner, J. Cyranka, S. A. Smolka, and R. Grosu, “On the verification of neural ODEs with stochastic guarantees,” in Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2021, vol. 35, no. 13, pp. 11525–11535. ista: 'Grunbacher S, Hasani R, Lechner M, Cyranka J, Smolka SA, Grosu R. 2021. On the verification of neural ODEs with stochastic guarantees. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI: Association for the Advancement of Artificial Intelligence, Technical Tracks, vol. 35, 11525–11535.' mla: Grunbacher, Sophie, et al. “On the Verification of Neural ODEs with Stochastic Guarantees.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 13, AAAI Press, 2021, pp. 11525–35. short: S. Grunbacher, R. Hasani, M. Lechner, J. Cyranka, S.A. Smolka, R. Grosu, in:, Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 2021, pp. 11525–11535. conference: end_date: 2021-02-09 location: Virtual name: 'AAAI: Association for the Advancement of Artificial Intelligence' start_date: 2021-02-02 date_created: 2022-01-25T15:47:20Z date_published: 2021-05-28T00:00:00Z date_updated: 2022-05-24T06:33:14Z day: '28' ddc: - '000' department: - _id: GradSch - _id: ToHe external_id: arxiv: - '2012.08863' file: - access_level: open_access checksum: 468d07041e282a1d46ffdae92f709630 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:38:08Z date_updated: 2022-01-26T07:38:08Z file_id: '10680' file_name: 17372-Article Text-20866-1-2-20210518.pdf file_size: 286906 relation: main_file success: 1 file_date_updated: 2022-01-26T07:38:08Z has_accepted_license: '1' intvolume: ' 35' issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://ojs.aaai.org/index.php/AAAI/article/view/17372 month: '05' oa: 1 oa_version: Published Version page: 11525-11535 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - 978-1-57735-866-4 issn: - 2159-5399 publication_status: published publisher: AAAI Press quality_controlled: '1' status: public title: On the verification of neural ODEs with stochastic guarantees type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2021' ... --- _id: '10671' abstract: - lang: eng text: We introduce a new class of time-continuous recurrent neural network models. Instead of declaring a learning system’s dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems modulated via nonlinear interlinked gates. The resulting models represent dynamical systems with varying (i.e., liquid) time-constants coupled to their hidden state, with outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks. To demonstrate these properties, we first take a theoretical approach to find bounds over their dynamics, and compute their expressive power by the trajectory length measure in a latent trajectory space. We then conduct a series of time-series prediction experiments to manifest the approximation capability of Liquid Time-Constant Networks (LTCs) compared to classical and modern RNNs. acknowledgement: "R.H. and D.R. are partially supported by Boeing. R.H. and R.G. were partially supported by the Horizon-2020 ECSEL\r\nProject grant No. 783163 (iDev40). M.L. was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). A.A. is supported by the National Science Foundation (NSF) Graduate Research Fellowship Program. This research work is partially drawn from the PhD dissertation of R.H." alternative_title: - Technical Tracks article_processing_charge: No author: - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. Liquid time-constant networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 35. AAAI Press; 2021:7657-7666.' apa: 'Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2021). Liquid time-constant networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 7657–7666). Virtual: AAAI Press.' chicago: Hasani, Ramin, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. “Liquid Time-Constant Networks.” In Proceedings of the AAAI Conference on Artificial Intelligence, 35:7657–66. AAAI Press, 2021. ieee: R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “Liquid time-constant networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2021, vol. 35, no. 9, pp. 7657–7666. ista: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. 2021. Liquid time-constant networks. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI: Association for the Advancement of Artificial Intelligence, Technical Tracks, vol. 35, 7657–7666.' mla: Hasani, Ramin, et al. “Liquid Time-Constant Networks.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, AAAI Press, 2021, pp. 7657–66. short: R. Hasani, M. Lechner, A. Amini, D. Rus, R. Grosu, in:, Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 2021, pp. 7657–7666. conference: end_date: 2021-02-09 location: Virtual name: 'AAAI: Association for the Advancement of Artificial Intelligence' start_date: 2021-02-02 date_created: 2022-01-25T15:48:36Z date_published: 2021-05-28T00:00:00Z date_updated: 2022-05-24T06:36:54Z day: '28' ddc: - '000' department: - _id: GradSch - _id: ToHe external_id: arxiv: - '2006.04439' file: - access_level: open_access checksum: 0f06995fba06dbcfa7ed965fc66027ff content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:36:03Z date_updated: 2022-01-26T07:36:03Z file_id: '10678' file_name: 16936-Article Text-20430-1-2-20210518 (1).pdf file_size: 4302669 relation: main_file success: 1 file_date_updated: 2022-01-26T07:36:03Z has_accepted_license: '1' intvolume: ' 35' issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://ojs.aaai.org/index.php/AAAI/article/view/16936 month: '05' oa: 1 oa_version: Published Version page: 7657-7666 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - 978-1-57735-866-4 issn: - 2159-5399 publication_status: published publisher: AAAI Press quality_controlled: '1' status: public title: Liquid time-constant networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2021' ... --- _id: '10668' abstract: - lang: eng text: 'Robustness to variations in lighting conditions is a key objective for any deep vision system. To this end, our paper extends the receptive field of convolutional neural networks with two residual components, ubiquitous in the visual processing system of vertebrates: On-center and off-center pathways, with an excitatory center and inhibitory surround; OOCS for short. The On-center pathway is excited by the presence of a light stimulus in its center, but not in its surround, whereas the Off-center pathway is excited by the absence of a light stimulus in its center, but not in its surround. We design OOCS pathways via a difference of Gaussians, with their variance computed analytically from the size of the receptive fields. OOCS pathways complement each other in their response to light stimuli, ensuring this way a strong edge-detection capability, and as a result an accurate and robust inference under challenging lighting conditions. We provide extensive empirical evidence showing that networks supplied with OOCS pathways gain accuracy and illumination-robustness from the novel edge representation, compared to other baselines.' acknowledgement: Z.B. is supported by the Doctoral College Resilient Embedded Systems, which is run jointly by the TU Wien’s Faculty of Informatics and the UAS Technikum Wien. R.G. is partially supported by the Horizon 2020 Era-Permed project Persorad, and ECSEL Project grant no. 783163 (iDev40). R.H and D.R were partially supported by Boeing and MIT. M.L. is supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). alternative_title: - PMLR article_processing_charge: No author: - first_name: Zahra full_name: Babaiee, Zahra last_name: Babaiee - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Babaiee Z, Hasani R, Lechner M, Rus D, Grosu R. On-off center-surround receptive fields for accurate and robust image classification. In: Proceedings of the 38th International Conference on Machine Learning. Vol 139. ML Research Press; 2021:478-489.' apa: 'Babaiee, Z., Hasani, R., Lechner, M., Rus, D., & Grosu, R. (2021). On-off center-surround receptive fields for accurate and robust image classification. In Proceedings of the 38th International Conference on Machine Learning (Vol. 139, pp. 478–489). Virtual: ML Research Press.' chicago: Babaiee, Zahra, Ramin Hasani, Mathias Lechner, Daniela Rus, and Radu Grosu. “On-off Center-Surround Receptive Fields for Accurate and Robust Image Classification.” In Proceedings of the 38th International Conference on Machine Learning, 139:478–89. ML Research Press, 2021. ieee: Z. Babaiee, R. Hasani, M. Lechner, D. Rus, and R. Grosu, “On-off center-surround receptive fields for accurate and robust image classification,” in Proceedings of the 38th International Conference on Machine Learning, Virtual, 2021, vol. 139, pp. 478–489. ista: 'Babaiee Z, Hasani R, Lechner M, Rus D, Grosu R. 2021. On-off center-surround receptive fields for accurate and robust image classification. Proceedings of the 38th International Conference on Machine Learning. ML: Machine Learning, PMLR, vol. 139, 478–489.' mla: Babaiee, Zahra, et al. “On-off Center-Surround Receptive Fields for Accurate and Robust Image Classification.” Proceedings of the 38th International Conference on Machine Learning, vol. 139, ML Research Press, 2021, pp. 478–89. short: Z. Babaiee, R. Hasani, M. Lechner, D. Rus, R. Grosu, in:, Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 478–489. conference: end_date: 2021-07-24 location: Virtual name: 'ML: Machine Learning' start_date: 2021-07-18 date_created: 2022-01-25T15:46:33Z date_published: 2021-07-01T00:00:00Z date_updated: 2022-05-04T15:02:27Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe file: - access_level: open_access checksum: d30eae62561bb517d9f978437d7677db content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:38:32Z date_updated: 2022-01-26T07:38:32Z file_id: '10681' file_name: babaiee21a.pdf file_size: 4246561 relation: main_file success: 1 file_date_updated: 2022-01-26T07:38:32Z has_accepted_license: '1' intvolume: ' 139' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/3.0/ main_file_link: - open_access: '1' url: https://proceedings.mlr.press/v139/babaiee21a month: '07' oa: 1 oa_version: Published Version page: 478-489 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 38th International Conference on Machine Learning publication_identifier: issn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' status: public title: On-off center-surround receptive fields for accurate and robust image classification tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 139 year: '2021' ... --- _id: '10670' abstract: - lang: eng text: "Imitation learning enables high-fidelity, vision-based learning of policies within rich, photorealistic environments. However, such techniques often rely on traditional discrete-time neural models and face difficulties in generalizing to domain shifts by failing to account for the causal relationships between the agent and the environment. In this paper, we propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks, specifically over their discrete-time counterparts. We evaluate our method in the context of visual-control learning of drones over a series of complex tasks, ranging from short- and long-term navigation, to chasing static and dynamic objects through photorealistic environments. Our results demonstrate that causal continuous-time\r\ndeep models can perform robust navigation tasks, where advanced recurrent models fail. These models learn complex causal control representations directly from raw visual inputs and scale to solve a variety of tasks using imitation learning." acknowledgement: "C.V., R.H. A.A. and D.R. are partially supported by Boeing and MIT. A.A. is supported by the National Science Foundation (NSF) Graduate Research Fellowship Program. M.L. is supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Research was sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors\r\nand should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.\r\n" alternative_title: - ' Advances in Neural Information Processing Systems' article_processing_charge: No author: - first_name: Charles J full_name: Vorbach, Charles J last_name: Vorbach - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Daniela full_name: Rus, Daniela last_name: Rus citation: ama: 'Vorbach CJ, Hasani R, Amini A, Lechner M, Rus D. Causal navigation by continuous-time neural networks. In: 35th Conference on Neural Information Processing Systems. ; 2021.' apa: Vorbach, C. J., Hasani, R., Amini, A., Lechner, M., & Rus, D. (2021). Causal navigation by continuous-time neural networks. In 35th Conference on Neural Information Processing Systems. Virtual. chicago: Vorbach, Charles J, Ramin Hasani, Alexander Amini, Mathias Lechner, and Daniela Rus. “Causal Navigation by Continuous-Time Neural Networks.” In 35th Conference on Neural Information Processing Systems, 2021. ieee: C. J. Vorbach, R. Hasani, A. Amini, M. Lechner, and D. Rus, “Causal navigation by continuous-time neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, 2021. ista: 'Vorbach CJ, Hasani R, Amini A, Lechner M, Rus D. 2021. Causal navigation by continuous-time neural networks. 35th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, .' mla: Vorbach, Charles J., et al. “Causal Navigation by Continuous-Time Neural Networks.” 35th Conference on Neural Information Processing Systems, 2021. short: C.J. Vorbach, R. Hasani, A. Amini, M. Lechner, D. Rus, in:, 35th Conference on Neural Information Processing Systems, 2021. conference: end_date: 2021-12-10 location: Virtual name: 'NeurIPS: Neural Information Processing Systems' start_date: 2021-12-06 date_created: 2022-01-25T15:47:50Z date_published: 2021-12-01T00:00:00Z date_updated: 2022-01-26T14:33:31Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe external_id: arxiv: - '2106.08314' file: - access_level: open_access checksum: be81f0ade174a8c9b2d4fe09590b2021 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:37:24Z date_updated: 2022-01-26T07:37:24Z file_id: '10679' file_name: NeurIPS-2021-causal-navigation-by-continuous-time-neural-networks-Paper.pdf file_size: 6841228 relation: main_file success: 1 file_date_updated: 2022-01-26T07:37:24Z has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2021/hash/67ba02d73c54f0b83c05507b7fb7267f-Abstract.html month: '12' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 35th Conference on Neural Information Processing Systems publication_status: published quality_controlled: '1' status: public title: Causal navigation by continuous-time neural networks tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10688' abstract: - lang: eng text: "Civl is a static verifier for concurrent programs designed around the conceptual framework of layered refinement,\r\nwhich views the task of verifying a program as a sequence of program simplification steps each justified by its own invariant. Civl verifies a layered concurrent program that compactly expresses all the programs in this sequence and the supporting invariants. This paper presents the design and implementation of the Civl verifier." acknowledgement: This research was performed while Bernhard Kragl was at IST Austria, supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). alternative_title: - Conference Series article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 - first_name: Shaz full_name: Qadeer, Shaz last_name: Qadeer citation: ama: 'Kragl B, Qadeer S. The Civl verifier. In: Ruzica P, Whalen MW, eds. Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design. Vol 2. TU Wien Academic Press; 2021:143–152. doi:10.34727/2021/isbn.978-3-85448-046-4_23' apa: 'Kragl, B., & Qadeer, S. (2021). The Civl verifier. In P. Ruzica & M. W. Whalen (Eds.), Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design (Vol. 2, pp. 143–152). Virtual: TU Wien Academic Press. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23' chicago: Kragl, Bernhard, and Shaz Qadeer. “The Civl Verifier.” In Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design, edited by Piskac Ruzica and Michael W. Whalen, 2:143–152. TU Wien Academic Press, 2021. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23. ieee: B. Kragl and S. Qadeer, “The Civl verifier,” in Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design, Virtual, 2021, vol. 2, pp. 143–152. ista: 'Kragl B, Qadeer S. 2021. The Civl verifier. Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, Conference Series, vol. 2, 143–152.' mla: Kragl, Bernhard, and Shaz Qadeer. “The Civl Verifier.” Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design, edited by Piskac Ruzica and Michael W. Whalen, vol. 2, TU Wien Academic Press, 2021, pp. 143–152, doi:10.34727/2021/isbn.978-3-85448-046-4_23. short: B. Kragl, S. Qadeer, in:, P. Ruzica, M.W. Whalen (Eds.), Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2021, pp. 143–152. conference: end_date: 2021-10-22 location: Virtual name: 'FMCAD: Formal Methods in Computer-Aided Design' start_date: 2021-10-20 date_created: 2022-01-26T08:01:30Z date_published: 2021-10-01T00:00:00Z date_updated: 2022-01-26T08:20:41Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.34727/2021/isbn.978-3-85448-046-4_23 editor: - first_name: Piskac full_name: Ruzica, Piskac last_name: Ruzica - first_name: Michael W. full_name: Whalen, Michael W. last_name: Whalen file: - access_level: open_access checksum: 35438ac9f9750340b7f8ae4ae3220d9f content_type: application/pdf creator: cchlebak date_created: 2022-01-26T08:04:29Z date_updated: 2022-01-26T08:04:29Z file_id: '10689' file_name: 2021_FCAD2021_Kragl.pdf file_size: 390555 relation: main_file success: 1 file_date_updated: 2022-01-26T08:04:29Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 143–152 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design publication_identifier: isbn: - 978-3-85448-046-4 publication_status: published publisher: TU Wien Academic Press quality_controlled: '1' status: public title: The Civl verifier tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 2 year: '2021' ... --- _id: '9281' abstract: - lang: eng text: We comment on two formal proofs of Fermat's sum of two squares theorem, written using the Mathematical Components libraries of the Coq proof assistant. The first one follows Zagier's celebrated one-sentence proof; the second follows David Christopher's recent new proof relying on partition-theoretic arguments. Both formal proofs rely on a general property of involutions of finite sets, of independent interest. The proof technique consists for the most part of automating recurrent tasks (such as case distinctions and computations on natural numbers) via ad hoc tactics. article_number: '2103.11389' article_processing_charge: No author: - first_name: Guillaume full_name: Dubach, Guillaume id: D5C6A458-10C4-11EA-ABF4-A4B43DDC885E last_name: Dubach orcid: 0000-0001-6892-8137 - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 citation: ama: Dubach G, Mühlböck F. Formal verification of Zagier’s one-sentence proof. arXiv. doi:10.48550/arXiv.2103.11389 apa: Dubach, G., & Mühlböck, F. (n.d.). Formal verification of Zagier’s one-sentence proof. arXiv. https://doi.org/10.48550/arXiv.2103.11389 chicago: Dubach, Guillaume, and Fabian Mühlböck. “Formal Verification of Zagier’s One-Sentence Proof.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2103.11389. ieee: G. Dubach and F. Mühlböck, “Formal verification of Zagier’s one-sentence proof,” arXiv. . ista: Dubach G, Mühlböck F. Formal verification of Zagier’s one-sentence proof. arXiv, 2103.11389. mla: Dubach, Guillaume, and Fabian Mühlböck. “Formal Verification of Zagier’s One-Sentence Proof.” ArXiv, 2103.11389, doi:10.48550/arXiv.2103.11389. short: G. Dubach, F. Mühlböck, ArXiv (n.d.). date_created: 2021-03-23T05:38:48Z date_published: 2021-03-21T00:00:00Z date_updated: 2023-05-03T10:26:45Z day: '21' department: - _id: LaEr - _id: ToHe doi: 10.48550/arXiv.2103.11389 ec_funded: 1 external_id: arxiv: - '2103.11389' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.11389 month: '03' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: arXiv publication_status: submitted related_material: record: - id: '9946' relation: other status: public status: public title: Formal verification of Zagier's one-sentence proof type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '10665' abstract: - lang: eng text: "Formal verification of neural networks is an active topic of research, and recent advances have significantly increased the size of the networks that verification tools can handle. However, most methods are designed for verification of an idealized model of the actual network which works over real arithmetic and ignores rounding imprecisions. This idealization is in stark contrast to network quantization, which is a technique that trades numerical precision for computational efficiency and is, therefore, often applied in practice. Neglecting rounding errors of such low-bit quantized neural networks has been shown to lead to wrong conclusions about the network’s correctness. Thus, the desired approach for verifying quantized neural networks would be one that takes these rounding errors\r\ninto account. In this paper, we show that verifying the bitexact implementation of quantized neural networks with bitvector specifications is PSPACE-hard, even though verifying idealized real-valued networks and satisfiability of bit-vector specifications alone are each in NP. Furthermore, we explore several practical heuristics toward closing the complexity gap between idealized and bit-exact verification. In particular, we propose three techniques for making SMT-based verification of quantized neural networks more scalable. Our experiments demonstrate that our proposed methods allow a speedup of up to three orders of magnitude over existing approaches." acknowledgement: "This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein\r\nAward), ERC CoG 863818 (FoRM-SMArt), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.\r\n" alternative_title: - Technical Tracks article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Henzinger TA, Lechner M, Zikelic D. Scalable verification of quantized neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 35. AAAI Press; 2021:3787-3795.' apa: 'Henzinger, T. A., Lechner, M., & Zikelic, D. (2021). Scalable verification of quantized neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, pp. 3787–3795). Virtual: AAAI Press.' chicago: Henzinger, Thomas A, Mathias Lechner, and Dorde Zikelic. “Scalable Verification of Quantized Neural Networks.” In Proceedings of the AAAI Conference on Artificial Intelligence, 35:3787–95. AAAI Press, 2021. ieee: T. A. Henzinger, M. Lechner, and D. Zikelic, “Scalable verification of quantized neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2021, vol. 35, no. 5A, pp. 3787–3795. ista: 'Henzinger TA, Lechner M, Zikelic D. 2021. Scalable verification of quantized neural networks. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI: Association for the Advancement of Artificial Intelligence, Technical Tracks, vol. 35, 3787–3795.' mla: Henzinger, Thomas A., et al. “Scalable Verification of Quantized Neural Networks.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5A, AAAI Press, 2021, pp. 3787–95. short: T.A. Henzinger, M. Lechner, D. Zikelic, in:, Proceedings of the AAAI Conference on Artificial Intelligence, AAAI Press, 2021, pp. 3787–3795. conference: end_date: 2021-02-09 location: Virtual name: 'AAAI: Association for the Advancement of Artificial Intelligence' start_date: 2021-02-02 date_created: 2022-01-25T15:15:02Z date_published: 2021-05-28T00:00:00Z date_updated: 2023-06-23T07:01:11Z day: '28' ddc: - '000' department: - _id: GradSch - _id: ToHe ec_funded: 1 external_id: arxiv: - '2012.08185' file: - access_level: open_access checksum: 2bc8155b2526a70fba5b7301bc89dbd1 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:41:16Z date_updated: 2022-01-26T07:41:16Z file_id: '10684' file_name: 16496-Article Text-19990-1-2-20210518 (1).pdf file_size: 137235 relation: main_file success: 1 file_date_updated: 2022-01-26T07:41:16Z has_accepted_license: '1' intvolume: ' 35' issue: 5A language: - iso: eng main_file_link: - open_access: '1' url: https://ojs.aaai.org/index.php/AAAI/article/view/16496 month: '05' oa: 1 oa_version: Published Version page: 3787-3795 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - 978-1-57735-866-4 issn: - 2159-5399 publication_status: published publisher: AAAI Press quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public scopus_import: '1' status: public title: Scalable verification of quantized neural networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2021' ... --- _id: '10667' abstract: - lang: eng text: Bayesian neural networks (BNNs) place distributions over the weights of a neural network to model uncertainty in the data and the network's prediction. We consider the problem of verifying safety when running a Bayesian neural network policy in a feedback loop with infinite time horizon systems. Compared to the existing sampling-based approaches, which are inapplicable to the infinite time horizon setting, we train a separate deterministic neural network that serves as an infinite time horizon safety certificate. In particular, we show that the certificate network guarantees the safety of the system over a subset of the BNN weight posterior's support. Our method first computes a safe weight set and then alters the BNN's weight posterior to reject samples outside this set. Moreover, we show how to extend our approach to a safe-exploration reinforcement learning setting, in order to avoid unsafe trajectories during the training of the policy. We evaluate our approach on a series of reinforcement learning benchmarks, including non-Lyapunovian safety specifications. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), ERC CoG 863818 (FoRM-SMArt), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - ' Advances in Neural Information Processing Systems' article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ðorđe full_name: Žikelić, Ðorđe last_name: Žikelić - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lechner M, Žikelić Ð, Chatterjee K, Henzinger TA. Infinite time horizon safety of Bayesian neural networks. In: 35th Conference on Neural Information Processing Systems. ; 2021. doi:10.48550/arXiv.2111.03165' apa: Lechner, M., Žikelić, Ð., Chatterjee, K., & Henzinger, T. A. (2021). Infinite time horizon safety of Bayesian neural networks. In 35th Conference on Neural Information Processing Systems. Virtual. https://doi.org/10.48550/arXiv.2111.03165 chicago: Lechner, Mathias, Ðorđe Žikelić, Krishnendu Chatterjee, and Thomas A Henzinger. “Infinite Time Horizon Safety of Bayesian Neural Networks.” In 35th Conference on Neural Information Processing Systems, 2021. https://doi.org/10.48550/arXiv.2111.03165. ieee: M. Lechner, Ð. Žikelić, K. Chatterjee, and T. A. Henzinger, “Infinite time horizon safety of Bayesian neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, 2021. ista: 'Lechner M, Žikelić Ð, Chatterjee K, Henzinger TA. 2021. Infinite time horizon safety of Bayesian neural networks. 35th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, .' mla: Lechner, Mathias, et al. “Infinite Time Horizon Safety of Bayesian Neural Networks.” 35th Conference on Neural Information Processing Systems, 2021, doi:10.48550/arXiv.2111.03165. short: M. Lechner, Ð. Žikelić, K. Chatterjee, T.A. Henzinger, in:, 35th Conference on Neural Information Processing Systems, 2021. conference: end_date: 2021-12-10 location: Virtual name: 'NeurIPS: Neural Information Processing Systems' start_date: 2021-12-06 date_created: 2022-01-25T15:45:58Z date_published: 2021-12-01T00:00:00Z date_updated: 2023-06-23T07:01:11Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe - _id: KrCh doi: 10.48550/arXiv.2111.03165 ec_funded: 1 external_id: arxiv: - '2111.03165' file: - access_level: open_access checksum: 0fc0f852525c10dda9cc9ffea07fb4e4 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:39:59Z date_updated: 2022-01-26T07:39:59Z file_id: '10682' file_name: infinite_time_horizon_safety_o.pdf file_size: 452492 relation: main_file success: 1 file_date_updated: 2022-01-26T07:39:59Z has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2021/hash/544defa9fddff50c53b71c43e0da72be-Abstract.html month: '12' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 35th Conference on Neural Information Processing Systems publication_status: published quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public status: public title: Infinite time horizon safety of Bayesian neural networks tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '8912' abstract: - lang: eng text: "For automata, synchronization, the problem of bringing an automaton to a particular state regardless of its initial state, is important. It has several applications in practice and is related to a fifty-year-old conjecture on the length of the shortest synchronizing word. Although using shorter words increases the effectiveness in practice, finding a shortest one (which is not necessarily unique) is NP-hard. For this reason, there exist various heuristics in the literature. However, high-quality heuristics such as SynchroP producing relatively shorter sequences are very expensive and can take hours when the automaton has tens of thousands of states. The SynchroP heuristic has been frequently used as a benchmark to evaluate the performance of the new heuristics. In this work, we first improve the runtime of SynchroP and its variants by using algorithmic techniques. We then focus on adapting SynchroP for many-core architectures,\r\nand overall, we obtain more than 1000× speedup on GPUs compared to naive sequential implementation that has been frequently used as a benchmark to evaluate new heuristics in the literature. We also propose two SynchroP variants and evaluate their performance." acknowledgement: This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 114E569]. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). We would like to thank the authors of (Roman & Szykula, 2015) for providing their heuristics implementations, which we used to compare our SynchroP implementation as given in Table 11. article_number: '114203' article_processing_charge: No article_type: original author: - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac - first_name: Ömer Faruk full_name: Altun, Ömer Faruk last_name: Altun - first_name: Kamil Tolga full_name: Atam, Kamil Tolga last_name: Atam - first_name: Sertac full_name: Karahoda, Sertac last_name: Karahoda - first_name: Kamer full_name: Kaya, Kamer last_name: Kaya - first_name: Hüsnü full_name: Yenigün, Hüsnü last_name: Yenigün citation: ama: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 2021;167(4). doi:10.1016/j.eswa.2020.114203 apa: Sarac, N. E., Altun, Ö. F., Atam, K. T., Karahoda, S., Kaya, K., & Yenigün, H. (2021). Boosting expensive synchronizing heuristics. Expert Systems with Applications. Elsevier. https://doi.org/10.1016/j.eswa.2020.114203 chicago: Sarac, Naci E, Ömer Faruk Altun, Kamil Tolga Atam, Sertac Karahoda, Kamer Kaya, and Hüsnü Yenigün. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications. Elsevier, 2021. https://doi.org/10.1016/j.eswa.2020.114203. ieee: N. E. Sarac, Ö. F. Altun, K. T. Atam, S. Karahoda, K. Kaya, and H. Yenigün, “Boosting expensive synchronizing heuristics,” Expert Systems with Applications, vol. 167, no. 4. Elsevier, 2021. ista: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. 2021. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 167(4), 114203. mla: Sarac, Naci E., et al. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications, vol. 167, no. 4, 114203, Elsevier, 2021, doi:10.1016/j.eswa.2020.114203. short: N.E. Sarac, Ö.F. Altun, K.T. Atam, S. Karahoda, K. Kaya, H. Yenigün, Expert Systems with Applications 167 (2021). date_created: 2020-12-02T13:34:25Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-04T11:19:00Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1016/j.eswa.2020.114203 external_id: isi: - '000640531100038' file: - access_level: open_access checksum: 600c2f81bc898a725bcfa7cf26ff4fed content_type: application/pdf creator: esarac date_created: 2020-12-02T13:33:51Z date_updated: 2020-12-02T13:33:51Z file_id: '8913' file_name: synchroPaperRevised.pdf file_size: 634967 relation: main_file file_date_updated: 2020-12-02T13:33:51Z has_accepted_license: '1' intvolume: ' 167' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Expert Systems with Applications publication_identifier: issn: - '09574174' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Boosting expensive synchronizing heuristics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 167 year: '2021' ... --- _id: '9200' abstract: - lang: eng text: Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Garcia Soto M, Henzinger TA, Schilling C. Synthesis of hybrid automata with affine dynamics from time-series data. In: HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. Association for Computing Machinery; 2021:2102.12734. doi:10.1145/3447928.3456704' apa: 'Garcia Soto, M., Henzinger, T. A., & Schilling, C. (2021). Synthesis of hybrid automata with affine dynamics from time-series data. In HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control (p. 2102.12734). Nashville, TN, United States: Association for Computing Machinery. https://doi.org/10.1145/3447928.3456704' chicago: 'Garcia Soto, Miriam, Thomas A Henzinger, and Christian Schilling. “Synthesis of Hybrid Automata with Affine Dynamics from Time-Series Data.” In HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2102.12734. Association for Computing Machinery, 2021. https://doi.org/10.1145/3447928.3456704.' ieee: 'M. Garcia Soto, T. A. Henzinger, and C. Schilling, “Synthesis of hybrid automata with affine dynamics from time-series data,” in HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Nashville, TN, United States, 2021, p. 2102.12734.' ista: 'Garcia Soto M, Henzinger TA, Schilling C. 2021. Synthesis of hybrid automata with affine dynamics from time-series data. HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. HSCC: International Conference on Hybrid Systems Computation and Control, 2102.12734.' mla: 'Garcia Soto, Miriam, et al. “Synthesis of Hybrid Automata with Affine Dynamics from Time-Series Data.” HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Association for Computing Machinery, 2021, p. 2102.12734, doi:10.1145/3447928.3456704.' short: 'M. Garcia Soto, T.A. Henzinger, C. Schilling, in:, HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Association for Computing Machinery, 2021, p. 2102.12734.' conference: end_date: 2021-05-21 location: Nashville, TN, United States name: 'HSCC: International Conference on Hybrid Systems Computation and Control' start_date: 2021-05-19 date_created: 2021-02-26T16:30:39Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-08-07T13:49:33Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1145/3447928.3456704 ec_funded: 1 external_id: arxiv: - '2102.12734' isi: - '000932821700028' file: - access_level: open_access checksum: 4c1202c1abf71384c3ee6fea88c2f80e content_type: application/pdf creator: kschuh date_created: 2021-05-25T13:53:22Z date_updated: 2021-05-25T13:53:22Z file_id: '9424' file_name: 2021_HSCC_Soto.pdf file_size: 1474786 relation: main_file success: 1 file_date_updated: 2021-05-25T13:53:22Z has_accepted_license: '1' isi: 1 keyword: - hybrid automaton - membership - system identification language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '2102.12734' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'HSCC ''21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control' publication_identifier: isbn: - '9781450383394' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Synthesis of hybrid automata with affine dynamics from time-series data tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9239' abstract: - lang: eng text: 'A graph game proceeds as follows: two players move a token through a graph to produce a finite or infinite path, which determines the payoff of the game. We study bidding games in which in each turn, an auction determines which player moves the token. Bidding games were largely studied in combination with two variants of first-price auctions called “Richman” and “poorman” bidding. We study taxman bidding, which span the spectrum between the two. The game is parameterized by a constant : portion τ of the winning bid is paid to the other player, and portion to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games: we unify, generalize, and simplify previous equivalences between bidding games and a class of stochastic games called random-turn games.' article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Đorđe full_name: Žikelić, Đorđe last_name: Žikelić citation: ama: Avni G, Henzinger TA, Žikelić Đ. Bidding mechanisms in graph games. Journal of Computer and System Sciences. 2021;119(8):133-144. doi:10.1016/j.jcss.2021.02.008 apa: Avni, G., Henzinger, T. A., & Žikelić, Đ. (2021). Bidding mechanisms in graph games. Journal of Computer and System Sciences. Elsevier. https://doi.org/10.1016/j.jcss.2021.02.008 chicago: Avni, Guy, Thomas A Henzinger, and Đorđe Žikelić. “Bidding Mechanisms in Graph Games.” Journal of Computer and System Sciences. Elsevier, 2021. https://doi.org/10.1016/j.jcss.2021.02.008. ieee: G. Avni, T. A. Henzinger, and Đ. Žikelić, “Bidding mechanisms in graph games,” Journal of Computer and System Sciences, vol. 119, no. 8. Elsevier, pp. 133–144, 2021. ista: Avni G, Henzinger TA, Žikelić Đ. 2021. Bidding mechanisms in graph games. Journal of Computer and System Sciences. 119(8), 133–144. mla: Avni, Guy, et al. “Bidding Mechanisms in Graph Games.” Journal of Computer and System Sciences, vol. 119, no. 8, Elsevier, 2021, pp. 133–44, doi:10.1016/j.jcss.2021.02.008. short: G. Avni, T.A. Henzinger, Đ. Žikelić, Journal of Computer and System Sciences 119 (2021) 133–144. date_created: 2021-03-14T23:01:32Z date_published: 2021-03-03T00:00:00Z date_updated: 2023-08-07T14:08:34Z day: '03' department: - _id: ToHe doi: 10.1016/j.jcss.2021.02.008 external_id: arxiv: - '1905.03835' isi: - '000634149800009' intvolume: ' 119' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1905.03835 month: '03' oa: 1 oa_version: Preprint page: 133-144 publication: Journal of Computer and System Sciences publication_identifier: eissn: - 1090-2724 issn: - 0022-0000 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '6884' relation: earlier_version status: public scopus_import: '1' status: public title: Bidding mechanisms in graph games type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2021' ... --- _id: '9356' abstract: - lang: eng text: 'In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of attempting to conclude boolean values of trace specifications), such as maximal or average response time along a trace. Quantitative monitors are approximate: with every finite prefix, they can improve their estimate of the infinite trace''s unknown property value. Consequently, quantitative monitors can be compared with regard to a precision-cost trade-off: better approximations of the property value require more monitor resources, such as states (in the case of finite-state monitors) or registers, and additional resources yield better approximations. We introduce a formal framework for quantitative and approximate monitoring, show how it conservatively generalizes the classical boolean setting for monitoring, and give several precision-cost trade-offs for monitors. For example, we prove that there are quantitative properties for which every additional register improves monitoring precision.' acknowledgement: We thank the anonymous reviewers for their helpful comments. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_number: '9470547' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Sarac NE. Quantitative and approximate monitoring. In: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers; 2021. doi:10.1109/LICS52264.2021.9470547' apa: 'Henzinger, T. A., & Sarac, N. E. (2021). Quantitative and approximate monitoring. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Online: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LICS52264.2021.9470547' chicago: Henzinger, Thomas A, and Naci E Sarac. “Quantitative and Approximate Monitoring.” In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/LICS52264.2021.9470547. ieee: T. A. Henzinger and N. E. Sarac, “Quantitative and approximate monitoring,” in Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Online, 2021. ista: 'Henzinger TA, Sarac NE. 2021. Quantitative and approximate monitoring. Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS: Symposium on Logic in Computer Science, 9470547.' mla: Henzinger, Thomas A., and Naci E. Sarac. “Quantitative and Approximate Monitoring.” Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, 9470547, Institute of Electrical and Electronics Engineers, 2021, doi:10.1109/LICS52264.2021.9470547. short: T.A. Henzinger, N.E. Sarac, in:, Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Institute of Electrical and Electronics Engineers, 2021. conference: end_date: 2021-07-02 location: Online name: 'LICS: Symposium on Logic in Computer Science' start_date: 2021-06-29 date_created: 2021-04-30T17:30:47Z date_published: 2021-06-29T00:00:00Z date_updated: 2023-08-08T13:52:56Z day: '29' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1109/LICS52264.2021.9470547 external_id: arxiv: - '2105.08353' isi: - '000947350400021' file: - access_level: open_access checksum: 6e4cba3f72775f479c5b1b75d1a4a0c4 content_type: application/pdf creator: esarac date_created: 2021-06-16T08:23:54Z date_updated: 2021-06-16T08:23:54Z file_id: '9557' file_name: qam.pdf file_size: 641990 relation: main_file success: 1 file_date_updated: 2021-06-16T08:23:54Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: Quantitative and approximate monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9647' abstract: - lang: eng text: 'Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.' acknowledgement: 'Tatjana Petrov’s research was supported in part by SNSF Advanced Postdoctoral Mobility Fellowship grant number P300P2 161067, the Ministry of Science, Research and the Arts of the state of Baden-Wurttemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984). Claudia Igler is the recipient of a DOC Fellowship of the Austrian Academy of Sciences. Thomas A. Henzinger’s research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).' article_processing_charge: No article_type: original author: - first_name: Tatjana full_name: Petrov, Tatjana last_name: Petrov - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. Long lived transients in gene regulation. Theoretical Computer Science. 2021;893:1-16. doi:10.1016/j.tcs.2021.05.023 apa: Petrov, T., Igler, C., Sezgin, A., Henzinger, T. A., & Guet, C. C. (2021). Long lived transients in gene regulation. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2021.05.023 chicago: Petrov, Tatjana, Claudia Igler, Ali Sezgin, Thomas A Henzinger, and Calin C Guet. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science. Elsevier, 2021. https://doi.org/10.1016/j.tcs.2021.05.023. ieee: T. Petrov, C. Igler, A. Sezgin, T. A. Henzinger, and C. C. Guet, “Long lived transients in gene regulation,” Theoretical Computer Science, vol. 893. Elsevier, pp. 1–16, 2021. ista: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. 2021. Long lived transients in gene regulation. Theoretical Computer Science. 893, 1–16. mla: Petrov, Tatjana, et al. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science, vol. 893, Elsevier, 2021, pp. 1–16, doi:10.1016/j.tcs.2021.05.023. short: T. Petrov, C. Igler, A. Sezgin, T.A. Henzinger, C.C. Guet, Theoretical Computer Science 893 (2021) 1–16. date_created: 2021-07-11T22:01:18Z date_published: 2021-06-04T00:00:00Z date_updated: 2023-08-10T14:11:19Z day: '04' ddc: - '004' department: - _id: ToHe - _id: CaGu doi: 10.1016/j.tcs.2021.05.023 external_id: isi: - '000710180500002' file: - access_level: open_access checksum: d3aef34cfb13e53bba4cf44d01680793 content_type: application/pdf creator: dernst date_created: 2022-05-12T12:13:27Z date_updated: 2022-05-12T12:13:27Z file_id: '11364' file_name: 2021_TheoreticalComputerScience_Petrov.pdf file_size: 2566504 relation: main_file success: 1 file_date_updated: 2022-05-12T12:13:27Z has_accepted_license: '1' intvolume: ' 893' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '06' oa: 1 oa_version: Published Version page: 1-16 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Long lived transients in gene regulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 893 year: '2021' ... --- _id: '10108' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Mae Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - LNCS article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Mühlböck F, Henzinger TA. Differential monitoring. In: International Conference on Runtime Verification. Vol 12974. Cham: Springer Nature; 2021:231-243. doi:10.1007/978-3-030-88494-9_12' apa: 'Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. In International Conference on Runtime Verification (Vol. 12974, pp. 231–243). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-88494-9_12' chicago: 'Mühlböck, Fabian, and Thomas A Henzinger. “Differential Monitoring.” In International Conference on Runtime Verification, 12974:231–43. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-88494-9_12.' ieee: F. Mühlböck and T. A. Henzinger, “Differential monitoring,” in International Conference on Runtime Verification, Virtual, 2021, vol. 12974, pp. 231–243. ista: 'Mühlböck F, Henzinger TA. 2021. Differential monitoring. International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 12974, 231–243.' mla: Mühlböck, Fabian, and Thomas A. Henzinger. “Differential Monitoring.” International Conference on Runtime Verification, vol. 12974, Springer Nature, 2021, pp. 231–43, doi:10.1007/978-3-030-88494-9_12. short: F. Mühlböck, T.A. Henzinger, in:, International Conference on Runtime Verification, Springer Nature, Cham, 2021, pp. 231–243. conference: end_date: 2021-10-14 location: Virtual name: 'RV: Runtime Verification' start_date: 2021-10-11 date_created: 2021-10-07T23:30:10Z date_published: 2021-10-06T00:00:00Z date_updated: 2023-08-14T07:20:30Z day: '06' ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-030-88494-9_12 external_id: isi: - '000719383800012' file: - access_level: open_access checksum: 554c7fdb259eda703a8b6328a6dad55a content_type: application/pdf creator: fmuehlbo date_created: 2021-10-07T23:32:18Z date_updated: 2021-10-07T23:32:18Z file_id: '10109' file_name: differentialmonitoring-cameraready-openaccess.pdf file_size: 350632 relation: main_file success: 1 file_date_updated: 2021-10-07T23:32:18Z has_accepted_license: '1' intvolume: ' 12974' isi: 1 keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '10' oa: 1 oa_version: Preprint page: 231-243 place: Cham project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-030-88494-9 eissn: - 1611-3349 isbn: - 978-3-030-88493-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '9946' relation: extended_version status: public scopus_import: '1' status: public title: Differential monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12974 year: '2021' ... --- _id: '9946' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Matthew Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Mühlböck F, Henzinger TA. Differential Monitoring. IST Austria; 2021. doi:10.15479/AT:ISTA:9946 apa: Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. IST Austria. https://doi.org/10.15479/AT:ISTA:9946 chicago: Mühlböck, Fabian, and Thomas A Henzinger. Differential Monitoring. IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:9946. ieee: F. Mühlböck and T. A. Henzinger, Differential monitoring. IST Austria, 2021. ista: Mühlböck F, Henzinger TA. 2021. Differential monitoring, IST Austria, 17p. mla: Mühlböck, Fabian, and Thomas A. Henzinger. Differential Monitoring. IST Austria, 2021, doi:10.15479/AT:ISTA:9946. short: F. Mühlböck, T.A. Henzinger, Differential Monitoring, IST Austria, 2021. date_created: 2021-08-20T20:00:37Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-08-14T07:20:29Z day: '01' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:9946 file: - access_level: open_access checksum: 0f9aafd59444cb6bdca6925d163ab946 content_type: application/pdf creator: fmuehlbo date_created: 2021-08-20T19:59:44Z date_updated: 2021-09-03T12:34:28Z file_id: '9948' file_name: differentialmonitoring-techreport.pdf file_size: '320453' relation: main_file file_date_updated: 2021-09-03T12:34:28Z has_accepted_license: '1' keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '17' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria related_material: record: - id: '9281' relation: other status: public - id: '10108' relation: shorter_version status: public status: public title: Differential monitoring type: technical_report user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10404' abstract: - lang: eng text: While convolutional neural networks (CNNs) have found wide adoption as state-of-the-art models for image-related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web-based application that allows users to instantaneously explore how CNN activations and predictions evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate the discovery of potential vulnerabilities. Fine-tuned model versions can be directly compared for qualitative evaluation of their robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could replicate users’ insights with other CNN architectures and input images, yielding new insights about the vulnerability of adversarially trained models. acknowledgement: "We thank Robert Geirhos and Roland Zimmermann for their participation in the case study and valuable feedback, Chris Olah and Nick Cammarata for valuable discussions in the early phase of the project, as well as the Distill Slack workspace as a platform for discussions. M.L. is supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). J.B. is supported by the German Federal Ministry of Education and Research\r\n(BMBF) through the Competence Center for Machine Learning (TUE.AI, FKZ 01IS18039A) and the International Max Planck Research School for Intelligent Systems (IMPRS-IS). R.H. is partially supported by Boeing and Horizon-2020 ECSEL (grant 783163, iDev40).\r\n" article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Sietzen, Stefan last_name: Sietzen - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Judy full_name: Borowski, Judy last_name: Borowski - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Manuela full_name: Waldner, Manuela last_name: Waldner citation: ama: Sietzen S, Lechner M, Borowski J, Hasani R, Waldner M. Interactive analysis of CNN robustness. Computer Graphics Forum. 2021;40(7):253-264. doi:10.1111/cgf.14418 apa: Sietzen, S., Lechner, M., Borowski, J., Hasani, R., & Waldner, M. (2021). Interactive analysis of CNN robustness. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14418 chicago: Sietzen, Stefan, Mathias Lechner, Judy Borowski, Ramin Hasani, and Manuela Waldner. “Interactive Analysis of CNN Robustness.” Computer Graphics Forum. Wiley, 2021. https://doi.org/10.1111/cgf.14418. ieee: S. Sietzen, M. Lechner, J. Borowski, R. Hasani, and M. Waldner, “Interactive analysis of CNN robustness,” Computer Graphics Forum, vol. 40, no. 7. Wiley, pp. 253–264, 2021. ista: Sietzen S, Lechner M, Borowski J, Hasani R, Waldner M. 2021. Interactive analysis of CNN robustness. Computer Graphics Forum. 40(7), 253–264. mla: Sietzen, Stefan, et al. “Interactive Analysis of CNN Robustness.” Computer Graphics Forum, vol. 40, no. 7, Wiley, 2021, pp. 253–64, doi:10.1111/cgf.14418. short: S. Sietzen, M. Lechner, J. Borowski, R. Hasani, M. Waldner, Computer Graphics Forum 40 (2021) 253–264. date_created: 2021-12-05T23:01:40Z date_published: 2021-11-27T00:00:00Z date_updated: 2023-08-14T13:11:42Z day: '27' department: - _id: ToHe doi: 10.1111/cgf.14418 external_id: arxiv: - '2110.07667' isi: - '000722952000024' intvolume: ' 40' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2110.07667 month: '11' oa: 1 oa_version: Preprint page: 253-264 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Interactive analysis of CNN robustness type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '10674' abstract: - lang: eng text: 'In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets.' acknowledgement: "This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship).\r\n" article_processing_charge: No article_type: original author: - first_name: Milad full_name: Aghajohari, Milad last_name: Aghajohari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Aghajohari M, Avni G, Henzinger TA. Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. 2021;17(1):10:1-10:23. doi:10.23638/LMCS-17(1:10)2021 apa: Aghajohari, M., Avni, G., & Henzinger, T. A. (2021). Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. International Federation for Computational Logic. https://doi.org/10.23638/LMCS-17(1:10)2021 chicago: Aghajohari, Milad, Guy Avni, and Thomas A Henzinger. “Determinacy in Discrete-Bidding Infinite-Duration Games.” Logical Methods in Computer Science. International Federation for Computational Logic, 2021. https://doi.org/10.23638/LMCS-17(1:10)2021. ieee: M. Aghajohari, G. Avni, and T. A. Henzinger, “Determinacy in discrete-bidding infinite-duration games,” Logical Methods in Computer Science, vol. 17, no. 1. International Federation for Computational Logic, p. 10:1-10:23, 2021. ista: Aghajohari M, Avni G, Henzinger TA. 2021. Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. 17(1), 10:1-10:23. mla: Aghajohari, Milad, et al. “Determinacy in Discrete-Bidding Infinite-Duration Games.” Logical Methods in Computer Science, vol. 17, no. 1, International Federation for Computational Logic, 2021, p. 10:1-10:23, doi:10.23638/LMCS-17(1:10)2021. short: M. Aghajohari, G. Avni, T.A. Henzinger, Logical Methods in Computer Science 17 (2021) 10:1-10:23. date_created: 2022-01-25T16:32:13Z date_published: 2021-02-03T00:00:00Z date_updated: 2023-08-17T06:56:42Z day: '03' ddc: - '510' department: - _id: ToHe doi: 10.23638/LMCS-17(1:10)2021 external_id: arxiv: - '1905.03588' isi: - '000658724600010' file: - access_level: open_access checksum: b35586a50ed1ca8f44767de116d18d81 content_type: application/pdf creator: alisjak date_created: 2022-01-26T08:04:50Z date_updated: 2022-01-26T08:04:50Z file_id: '10690' file_name: 2021_LMCS_AGHAJOHAR.pdf file_size: 819878 relation: main_file success: 1 file_date_updated: 2022-01-26T08:04:50Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '1' keyword: - computer science - computer science and game theory - logic in computer science language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 10:1-10:23 project: - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Logical Methods in Computer Science publication_identifier: eissn: - 1860-5974 publication_status: published publisher: International Federation for Computational Logic quality_controlled: '1' scopus_import: '1' status: public title: Determinacy in discrete-bidding infinite-duration games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ... --- _id: '10666' abstract: - lang: eng text: Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations, with the cost of nominal performance drop. While adversarial training appears to enhance the robustness and safety of a deep model deployed in open-world decision-critical applications, counterintuitively, it induces undesired behaviors in robot learning settings. In this paper, we show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects, namely transient, systematic, and conditional errors. We first generalize adversarial training to a safety-domain optimization scheme allowing for more generic specifications. We then prove that such a learning process tends to cause certain error profiles. We support our theoretical results by a thorough experimental safety analysis in a robot-learning task. Our results suggest that adversarial training is not yet ready for robot learning. acknowledgement: M.L. and T.A.H. are supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). R.H. and D.R. are supported by Boeing and R.G. by Horizon-2020 ECSEL Project grant no. 783163 (iDev40). article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Radu full_name: Grosu, Radu last_name: Grosu - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lechner M, Hasani R, Grosu R, Rus D, Henzinger TA. Adversarial training is not ready for robot learning. In: 2021 IEEE International Conference on Robotics and Automation. ICRA. ; 2021:4140-4147. doi:10.1109/ICRA48506.2021.9561036' apa: Lechner, M., Hasani, R., Grosu, R., Rus, D., & Henzinger, T. A. (2021). Adversarial training is not ready for robot learning. In 2021 IEEE International Conference on Robotics and Automation (pp. 4140–4147). Xi’an, China. https://doi.org/10.1109/ICRA48506.2021.9561036 chicago: Lechner, Mathias, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Henzinger. “Adversarial Training Is Not Ready for Robot Learning.” In 2021 IEEE International Conference on Robotics and Automation, 4140–47. ICRA, 2021. https://doi.org/10.1109/ICRA48506.2021.9561036. ieee: M. Lechner, R. Hasani, R. Grosu, D. Rus, and T. A. Henzinger, “Adversarial training is not ready for robot learning,” in 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 2021, pp. 4140–4147. ista: 'Lechner M, Hasani R, Grosu R, Rus D, Henzinger TA. 2021. Adversarial training is not ready for robot learning. 2021 IEEE International Conference on Robotics and Automation. ICRA: International Conference on Robotics and AutomationICRA, 4140–4147.' mla: Lechner, Mathias, et al. “Adversarial Training Is Not Ready for Robot Learning.” 2021 IEEE International Conference on Robotics and Automation, 2021, pp. 4140–47, doi:10.1109/ICRA48506.2021.9561036. short: M. Lechner, R. Hasani, R. Grosu, D. Rus, T.A. Henzinger, in:, 2021 IEEE International Conference on Robotics and Automation, 2021, pp. 4140–4147. conference: end_date: 2021-06-05 location: Xi'an, China name: 'ICRA: International Conference on Robotics and Automation' start_date: 2021-05-30 date_created: 2022-01-25T15:44:54Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-17T06:58:38Z ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1109/ICRA48506.2021.9561036 external_id: arxiv: - '2103.08187' isi: - '000765738803040' has_accepted_license: '1' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.08187 oa: 1 oa_version: None page: 4140-4147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2021 IEEE International Conference on Robotics and Automation publication_identifier: eisbn: - 978-1-7281-9077-8 eissn: - 2577-087X isbn: - 978-1-7281-9078-5 issn: - 1050-4729 publication_status: published quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public series_title: ICRA status: public title: Adversarial training is not ready for robot learning tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10206' abstract: - lang: eng text: Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify. Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known classes, remains a challenge. The typical approach is to detect inputs from novel classes and retrain the classifier on an augmented dataset. However, not only the classifier but also the detection mechanism needs to adapt in order to distinguish between newly learned and yet unknown input classes. To address this challenge, we introduce an algorithmic framework for active monitoring of a neural network. A monitor wrapped in our framework operates in parallel with the neural network and interacts with a human user via a series of interpretable labeling queries for incremental adaptation. In addition, we propose an adaptive quantitative monitor to improve precision. An experimental evaluation on a diverse set of benchmarks with varying numbers of classes confirms the benefits of our active monitoring framework in dynamic scenarios. acknowledgement: We thank Christoph Lampert and Alex Greengold for fruitful discussions. This research was supported in part by the Simons Institute for the Theory of Computing, the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. alternative_title: - LNCS article_processing_charge: No author: - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lukina A, Schilling C, Henzinger TA. Into the unknown: active monitoring of neural networks. In: 21st International Conference on Runtime Verification. Vol 12974. Cham: Springer Nature; 2021:42-61. doi:10.1007/978-3-030-88494-9_3' apa: 'Lukina, A., Schilling, C., & Henzinger, T. A. (2021). Into the unknown: active monitoring of neural networks. In 21st International Conference on Runtime Verification (Vol. 12974, pp. 42–61). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-88494-9_3' chicago: 'Lukina, Anna, Christian Schilling, and Thomas A Henzinger. “Into the Unknown: Active Monitoring of Neural Networks.” In 21st International Conference on Runtime Verification, 12974:42–61. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-88494-9_3.' ieee: 'A. Lukina, C. Schilling, and T. A. Henzinger, “Into the unknown: active monitoring of neural networks,” in 21st International Conference on Runtime Verification, Virtual, 2021, vol. 12974, pp. 42–61.' ista: 'Lukina A, Schilling C, Henzinger TA. 2021. Into the unknown: active monitoring of neural networks. 21st International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 12974, 42–61.' mla: 'Lukina, Anna, et al. “Into the Unknown: Active Monitoring of Neural Networks.” 21st International Conference on Runtime Verification, vol. 12974, Springer Nature, 2021, pp. 42–61, doi:10.1007/978-3-030-88494-9_3.' short: A. Lukina, C. Schilling, T.A. Henzinger, in:, 21st International Conference on Runtime Verification, Springer Nature, Cham, 2021, pp. 42–61. conference: end_date: 2021-10-14 location: Virtual name: 'RV: Runtime Verification' start_date: 2021-10-11 date_created: 2021-10-31T23:01:31Z date_published: 2021-10-06T00:00:00Z date_updated: 2024-01-30T12:06:56Z day: '06' department: - _id: ToHe doi: 10.1007/978-3-030-88494-9_3 ec_funded: 1 external_id: arxiv: - '2009.06429' isi: - '000719383800003' isi: 1 keyword: - monitoring - neural networks - novelty detection language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2009.06429 month: '10' oa: 1 oa_version: Preprint page: 42-61 place: Cham project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 21st International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-030-88494-9 eissn: - 1611-3349 isbn: - 9-783-0308-8493-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13234' relation: extended_version status: public scopus_import: '1' status: public title: 'Into the unknown: active monitoring of neural networks' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: '12974 ' year: '2021' ... --- _id: '10673' abstract: - lang: eng text: We propose a neural information processing system obtained by re-purposing the function of a biological neural circuit model to govern simulated and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs realize networks with higher maximum flow compared to arbitrary wired networks. We then learn instances of ONCs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases, significantly surpass the performance of contemporary deep learning models. ONC networks are compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are fully interpretable at the cell-level. acknowledgement: "RH and RG are partially supported by Horizon-2020 ECSEL Project grant No. 783163 (iDev40), Productive 4.0, and ATBMBFW CPS-IoT Ecosystem. ML was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23\r\n(Wittgenstein Award). AA is supported by the National Science Foundation (NSF) Graduate Research Fellowship\r\nProgram. RH and DR are partially supported by The Boeing Company and JP Morgan Chase. This research work is\r\npartially drawn from the PhD dissertation of RH.\r\n" alternative_title: - PMLR article_processing_charge: No author: - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. In: Proceedings of the 37th International Conference on Machine Learning. PMLR. ; 2020:4082-4093.' apa: 'Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2020). A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. In Proceedings of the 37th International Conference on Machine Learning (pp. 4082–4093). Virtual.' chicago: 'Hasani, Ramin, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. “A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits.” In Proceedings of the 37th International Conference on Machine Learning, 4082–93. PMLR, 2020.' ieee: 'R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits,” in Proceedings of the 37th International Conference on Machine Learning, Virtual, 2020, pp. 4082–4093.' ista: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. 2020. A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. Proceedings of the 37th International Conference on Machine Learning. ML: Machine LearningPMLR, PMLR, , 4082–4093.' mla: 'Hasani, Ramin, et al. “A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits.” Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 4082–93.' short: R. Hasani, M. Lechner, A. Amini, D. Rus, R. Grosu, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 4082–4093. conference: end_date: 2020-07-18 location: Virtual name: 'ML: Machine Learning' start_date: 2020-07-12 date_created: 2022-01-25T15:50:34Z date_published: 2020-01-01T00:00:00Z date_updated: 2022-01-26T11:14:27Z ddc: - '000' department: - _id: GradSch - _id: ToHe file: - access_level: open_access checksum: c9a4a29161777fc1a89ef451c040e3b1 content_type: application/pdf creator: cchlebak date_created: 2022-01-26T11:08:51Z date_updated: 2022-01-26T11:08:51Z file_id: '10691' file_name: 2020_PMLR_Hasani.pdf file_size: 2329798 relation: main_file success: 1 file_date_updated: 2022-01-26T11:08:51Z has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: http://proceedings.mlr.press/v119/hasani20a.html oa: 1 oa_version: Published Version page: 4082-4093 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 37th International Conference on Machine Learning publication_identifier: issn: - 2640-3498 publication_status: published quality_controlled: '1' scopus_import: '1' series_title: PMLR status: public title: 'A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '7348' abstract: - lang: eng text: 'The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence. ' alternative_title: - LIPIcs article_number: '20' article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Ferrere T, Henzinger TA, Kragl B. Monitoring event frequencies. In: 28th EACSL Annual Conference on Computer Science Logic. Vol 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CSL.2020.20' apa: 'Ferrere, T., Henzinger, T. A., & Kragl, B. (2020). Monitoring event frequencies. In 28th EACSL Annual Conference on Computer Science Logic (Vol. 152). Barcelona, Spain: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2020.20' chicago: Ferrere, Thomas, Thomas A Henzinger, and Bernhard Kragl. “Monitoring Event Frequencies.” In 28th EACSL Annual Conference on Computer Science Logic, Vol. 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CSL.2020.20. ieee: T. Ferrere, T. A. Henzinger, and B. Kragl, “Monitoring event frequencies,” in 28th EACSL Annual Conference on Computer Science Logic, Barcelona, Spain, 2020, vol. 152. ista: 'Ferrere T, Henzinger TA, Kragl B. 2020. Monitoring event frequencies. 28th EACSL Annual Conference on Computer Science Logic. CSL: Computer Science Logic, LIPIcs, vol. 152, 20.' mla: Ferrere, Thomas, et al. “Monitoring Event Frequencies.” 28th EACSL Annual Conference on Computer Science Logic, vol. 152, 20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CSL.2020.20. short: T. Ferrere, T.A. Henzinger, B. Kragl, in:, 28th EACSL Annual Conference on Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-01-16 location: Barcelona, Spain name: 'CSL: Computer Science Logic' start_date: 2020-01-13 date_created: 2020-01-21T11:22:21Z date_published: 2020-01-15T00:00:00Z date_updated: 2021-01-12T08:13:12Z day: '15' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CSL.2020.20 external_id: arxiv: - '1910.06097' file: - access_level: open_access checksum: b9a691d658d075c6369d3304d17fb818 content_type: application/pdf creator: bkragl date_created: 2020-01-21T11:21:04Z date_updated: 2020-07-14T12:47:56Z file_id: '7349' file_name: main.pdf file_size: 617206 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 152' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 28th EACSL Annual Conference on Computer Science Logic publication_identifier: isbn: - '9783959771320' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Monitoring event frequencies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '8572' abstract: - lang: eng text: 'We present the results of the ARCH 2020 friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. In its fourth edition, eight tools have been applied to solve eight different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, C2E2, HyDRA, Hylaa, Hylaa-Continuous, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge financial support by the European Commission project\r\njustITSELF under grant number 817629, by the Austrian Science Fund (FWF) under grant\r\nZ211-N23 (Wittgenstein Award), by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411, and by the\r\nScience and Engineering Research Board (SERB) project with file number IMP/2018/000523.\r\nThis material is based upon work supported by the Air Force Office of Scientific Research under\r\naward number FA9550-19-1-0288. Any opinions, finding, and conclusions or recommendations\r\nexpressed in this material are those of the author(s) and do not necessarily reflect the views of\r\nthe United States Air Force." article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Zongnan full_name: Bao, Zongnan last_name: Bao - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Yangge full_name: Li, Yangge last_name: Li - first_name: Sayan full_name: Mitra, Sayan last_name: Mitra - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp - first_name: Mark full_name: Wetzlinger, Mark last_name: Wetzlinger citation: ama: 'Althoff M, Bak S, Bao Z, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:16-48. doi:10.29007/7dt2' apa: 'Althoff, M., Bak, S., Bao, Z., Forets, M., Frehse, G., Freire, D., … Wetzlinger, M. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In EPiC Series in Computing (Vol. 74, pp. 16–48). EasyChair. https://doi.org/10.29007/7dt2' chicago: 'Althoff, Matthias, Stanley Bak, Zongnan Bao, Marcelo Forets, Goran Frehse, Daniel Freire, Niklas Kochdumper, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” In EPiC Series in Computing, 74:16–48. EasyChair, 2020. https://doi.org/10.29007/7dt2.' ieee: 'M. Althoff et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 16–48.' ista: 'Althoff M, Bak S, Bao Z, Forets M, Frehse G, Freire D, Kochdumper N, Li Y, Mitra S, Ray R, Schilling C, Schupp S, Wetzlinger M. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 16–48.' mla: 'Althoff, Matthias, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 16–48, doi:10.29007/7dt2.' short: M. Althoff, S. Bak, Z. Bao, M. Forets, G. Frehse, D. Freire, N. Kochdumper, Y. Li, S. Mitra, R. Ray, C. Schilling, S. Schupp, M. Wetzlinger, in:, EPiC Series in Computing, EasyChair, 2020, pp. 16–48. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:49:43Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/7dt2 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/DRpS month: '09' oa: 1 oa_version: Published Version page: 16-48 project: - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8571' abstract: - lang: eng text: We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. This year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. These tools are applied to solve reachability analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. acknowledgement: Christian Schilling acknowledges support in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Luca full_name: Geretti, Luca last_name: Geretti - first_name: Julien full_name: Alexandre Dit Sandretto, Julien last_name: Alexandre Dit Sandretto - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Luis full_name: Benet, Luis last_name: Benet - first_name: Alexandre full_name: Chapoutot, Alexandre last_name: Chapoutot - first_name: Xin full_name: Chen, Xin last_name: Chen - first_name: Pieter full_name: Collins, Pieter last_name: Collins - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Fabian full_name: Immler, Fabian last_name: Immler - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: David full_name: Sanders, David last_name: Sanders - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:49-75. doi:10.29007/zkf6' apa: 'Geretti, L., Alexandre Dit Sandretto, J., Althoff, M., Benet, L., Chapoutot, A., Chen, X., … Schilling, C. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In EPiC Series in Computing (Vol. 74, pp. 49–75). EasyChair. https://doi.org/10.29007/zkf6' chicago: 'Geretti, Luca, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis Benet, Alexandre Chapoutot, Xin Chen, Pieter Collins, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” In EPiC Series in Computing, 74:49–75. EasyChair, 2020. https://doi.org/10.29007/zkf6.' ieee: 'L. Geretti et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 49–75.' ista: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, Benet L, Chapoutot A, Chen X, Collins P, Forets M, Freire D, Immler F, Kochdumper N, Sanders D, Schilling C. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 49–75.' mla: 'Geretti, Luca, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 49–75, doi:10.29007/zkf6.' short: L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, X. Chen, P. Collins, M. Forets, D. Freire, F. Immler, N. Kochdumper, D. Sanders, C. Schilling, in:, EPiC Series in Computing, EasyChair, 2020, pp. 49–75. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:41:29Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/zkf6 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/nrdD month: '09' oa: 1 oa_version: Published Version page: 49-75 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8600' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating.' alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Multi-dimensional long-run average problems for vector addition systems with states. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.23' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2020). Multi-dimensional long-run average problems for vector addition systems with states. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Multi-dimensional long-run average problems for vector addition systems with states,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Chatterjee K, Henzinger TA, Otop J. 2020. Multi-dimensional long-run average problems for vector addition systems with states. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 23.' mla: Chatterjee, Krishnendu, et al. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” 31st International Conference on Concurrency Theory, vol. 171, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.23. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:15Z day: '06' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.23 external_id: arxiv: - '2007.08917' file: - access_level: open_access checksum: 5039752f644c4b72b9361d21a5e31baf content_type: application/pdf creator: dernst date_created: 2020-10-05T14:04:25Z date_updated: 2020-10-05T14:04:25Z file_id: '8610' file_name: 2020_LIPIcsCONCUR_Chatterjee.pdf file_size: 601231 relation: main_file success: 1 file_date_updated: 2020-10-05T14:04:25Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Multi-dimensional long-run average problems for vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8599' abstract: - lang: eng text: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and study their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games. acknowledgement: We would like to thank all our collaborators Milad Aghajohari, Ventsislav Chonev, Rasmus Ibsen-Jensen, Ismäel Jecker, Petr Novotný, Josef Tkadlec, and Ðorđe Žikelić; we hope the collaboration was as fun and meaningful for you as it was for us. alternative_title: - LIPIcs article_number: '2' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Avni G, Henzinger TA. A survey of bidding games on graphs. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.2' apa: 'Avni, G., & Henzinger, T. A. (2020). A survey of bidding games on graphs. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2' chicago: Avni, Guy, and Thomas A Henzinger. “A Survey of Bidding Games on Graphs.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2. ieee: G. Avni and T. A. Henzinger, “A survey of bidding games on graphs,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Avni G, Henzinger TA. 2020. A survey of bidding games on graphs. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 2.' mla: Avni, Guy, and Thomas A. Henzinger. “A Survey of Bidding Games on Graphs.” 31st International Conference on Concurrency Theory, vol. 171, 2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.2. short: G. Avni, T.A. Henzinger, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:13Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.2 file: - access_level: open_access checksum: 8f33b098e73724e0ac817f764d8e1a2d content_type: application/pdf creator: dernst date_created: 2020-10-05T14:13:19Z date_updated: 2020-10-05T14:13:19Z file_id: '8611' file_name: 2020_LIPIcsCONCUR_Avni.pdf file_size: 868510 relation: main_file success: 1 file_date_updated: 2020-10-05T14:13:19Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A survey of bidding games on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '9040' abstract: - lang: eng text: Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_processing_charge: No author: - first_name: Par Alizadeh full_name: Alamdari, Par Alizadeh last_name: Alamdari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina citation: ama: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. Formal methods with a touch of magic. In: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. TU Wien Academic Press; 2020:138-147. doi:10.34727/2020/isbn.978-3-85448-042-6_21' apa: 'Alamdari, P. A., Avni, G., Henzinger, T. A., & Lukina, A. (2020). Formal methods with a touch of magic. In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (pp. 138–147). Online Conference: TU Wien Academic Press. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21' chicago: Alamdari, Par Alizadeh, Guy Avni, Thomas A Henzinger, and Anna Lukina. “Formal Methods with a Touch of Magic.” In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, 138–47. TU Wien Academic Press, 2020. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21. ieee: P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina, “Formal methods with a touch of magic,” in Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, Online Conference, 2020, pp. 138–147. ista: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. 2020. Formal methods with a touch of magic. Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 138–147.' mla: Alamdari, Par Alizadeh, et al. “Formal Methods with a Touch of Magic.” Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–47, doi:10.34727/2020/isbn.978-3-85448-042-6_21. short: P.A. Alamdari, G. Avni, T.A. Henzinger, A. Lukina, in:, Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–147. conference: end_date: 2020-09-24 location: Online Conference name: ' FMCAD: Formal Methods in Computer-Aided Design' start_date: 2020-09-21 date_created: 2021-01-24T23:01:10Z date_published: 2020-09-21T00:00:00Z date_updated: 2021-02-09T09:39:59Z day: '21' ddc: - '000' department: - _id: ToHe doi: 10.34727/2020/isbn.978-3-85448-042-6_21 file: - access_level: open_access checksum: d616d549a0ade78606b16f8a9540820f content_type: application/pdf creator: dernst date_created: 2021-02-09T09:39:02Z date_updated: 2021-02-09T09:39:02Z file_id: '9109' file_name: 2020_FMCAD_Alamdari.pdf file_size: 990999 relation: main_file success: 1 file_date_updated: 2021-02-09T09:39:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 138-147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design publication_identifier: eissn: - 2708-7824 isbn: - '9783854480426' publication_status: published publisher: TU Wien Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Formal methods with a touch of magic tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9632' abstract: - lang: eng text: "Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep\r\nneural networks; however, relatively little is known about the quality of existing approximations in this context. Our work examines this question, identifies issues with existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian. Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for oneshot pruning. Further, even when iterative, gradual pruning is allowed, our method results in a gain in test accuracy over the state-of-the-art approaches, for standard image classification datasets such as ImageNet ILSVRC. We examine how our method can be extended to take into account first-order information, as well as\r\nillustrate its ability to automatically set layer-wise pruning thresholds and perform compression in the limited-data regime. The code is available at the following link, https://github.com/IST-DASLab/WoodFisher." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). Also, we would like to thank Alexander Shevchenko, Alexandra Peste, and other members of the group for fruitful discussions. article_processing_charge: No author: - first_name: Sidak Pal full_name: Singh, Sidak Pal id: DD138E24-D89D-11E9-9DC0-DEF6E5697425 last_name: Singh - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Singh SP, Alistarh D-A. WoodFisher: Efficient second-order approximation for neural network compression. In: Advances in Neural Information Processing Systems. Vol 33. Curran Associates; 2020:18098-18109.' apa: 'Singh, S. P., & Alistarh, D.-A. (2020). WoodFisher: Efficient second-order approximation for neural network compression. In Advances in Neural Information Processing Systems (Vol. 33, pp. 18098–18109). Vancouver, Canada: Curran Associates.' chicago: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” In Advances in Neural Information Processing Systems, 33:18098–109. Curran Associates, 2020.' ieee: 'S. P. Singh and D.-A. Alistarh, “WoodFisher: Efficient second-order approximation for neural network compression,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 18098–18109.' ista: 'Singh SP, Alistarh D-A. 2020. WoodFisher: Efficient second-order approximation for neural network compression. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 18098–18109.' mla: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” Advances in Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 18098–109.' short: S.P. Singh, D.-A. Alistarh, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 18098–18109. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:26Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-02-23T14:03:06Z day: '06' department: - _id: DaAl - _id: ToHe ec_funded: 1 external_id: arxiv: - '2004.14340' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 18098-18109 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Advances in Neural Information Processing Systems publication_identifier: isbn: - '9781713829546' issn: - '10495258' publication_status: published publisher: Curran Associates quality_controlled: '1' scopus_import: '1' status: public title: 'WoodFisher: Efficient second-order approximation for neural network compression' type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '9103' abstract: - lang: eng text: 'We introduce LRT-NG, a set of techniques and an associated toolset that computes a reachtube (an over-approximation of the set of reachable states over a given time horizon) of a nonlinear dynamical system. LRT-NG significantly advances the state-of-the-art Langrangian Reachability and its associated tool LRT. From a theoretical perspective, LRT-NG is superior to LRT in three ways. First, it uses for the first time an analytically computed metric for the propagated ball which is proven to minimize the ball’s volume. We emphasize that the metric computation is the centerpiece of all bloating-based techniques. Secondly, it computes the next reachset as the intersection of two balls: one based on the Cartesian metric and the other on the new metric. While the two metrics were previously considered opposing approaches, their joint use considerably tightens the reachtubes. Thirdly, it avoids the "wrapping effect" associated with the validated integration of the center of the reachset, by optimally absorbing the interval approximation in the radius of the next ball. From a tool-development perspective, LRT-NG is superior to LRT in two ways. First, it is a standalone tool that no longer relies on CAPD. This required the implementation of the Lohner method and a Runge-Kutta time-propagation method. Secondly, it has an improved interface, allowing the input model and initial conditions to be provided as external input files. Our experiments on a comprehensive set of benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance compared to LRT, CAPD, and Flow*.' acknowledgement: "The authors would like to thank Ramin Hasani and Guillaume Berger for intellectual discussions about the research which lead to the generation of new ideas. ML was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Smolka’s research was supported by NSF grants CPS-1446832 and CCF-1918225. Gruenbacher is funded by FWF project W1255-N23. JC was partially supported by NAWA Polish Returns grant\r\nPPN/PPO/2018/1/00029.\r\n" article_processing_charge: No author: - first_name: Sophie full_name: Gruenbacher, Sophie last_name: Gruenbacher - first_name: Jacek full_name: Cyranka, Jacek last_name: Cyranka - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Md Ariful full_name: Islam, Md Ariful last_name: Islam - first_name: Scott A. full_name: Smolka, Scott A. last_name: Smolka - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. Lagrangian reachtubes: The next generation. In: Proceedings of the 59th IEEE Conference on Decision and Control. Vol 2020. IEEE; 2020:1556-1563. doi:10.1109/CDC42340.2020.9304042' apa: 'Gruenbacher, S., Cyranka, J., Lechner, M., Islam, M. A., Smolka, S. A., & Grosu, R. (2020). Lagrangian reachtubes: The next generation. In Proceedings of the 59th IEEE Conference on Decision and Control (Vol. 2020, pp. 1556–1563). Jeju Islang, Korea (South): IEEE. https://doi.org/10.1109/CDC42340.2020.9304042' chicago: 'Gruenbacher, Sophie, Jacek Cyranka, Mathias Lechner, Md Ariful Islam, Scott A. Smolka, and Radu Grosu. “Lagrangian Reachtubes: The next Generation.” In Proceedings of the 59th IEEE Conference on Decision and Control, 2020:1556–63. IEEE, 2020. https://doi.org/10.1109/CDC42340.2020.9304042.' ieee: 'S. Gruenbacher, J. Cyranka, M. Lechner, M. A. Islam, S. A. Smolka, and R. Grosu, “Lagrangian reachtubes: The next generation,” in Proceedings of the 59th IEEE Conference on Decision and Control, Jeju Islang, Korea (South), 2020, vol. 2020, pp. 1556–1563.' ista: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. 2020. Lagrangian reachtubes: The next generation. Proceedings of the 59th IEEE Conference on Decision and Control. CDC: Conference on Decision and Control vol. 2020, 1556–1563.' mla: 'Gruenbacher, Sophie, et al. “Lagrangian Reachtubes: The next Generation.” Proceedings of the 59th IEEE Conference on Decision and Control, vol. 2020, IEEE, 2020, pp. 1556–63, doi:10.1109/CDC42340.2020.9304042.' short: S. Gruenbacher, J. Cyranka, M. Lechner, M.A. Islam, S.A. Smolka, R. Grosu, in:, Proceedings of the 59th IEEE Conference on Decision and Control, IEEE, 2020, pp. 1556–1563. conference: end_date: 2020-12-18 location: Jeju Islang, Korea (South) name: 'CDC: Conference on Decision and Control' start_date: 2020-12-14 date_created: 2021-02-07T23:01:14Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-02-09T09:20:58Z day: '14' department: - _id: ToHe doi: 10.1109/CDC42340.2020.9304042 external_id: arxiv: - '2012.07458' intvolume: ' 2020' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.07458 month: '12' oa: 1 oa_version: Preprint page: 1556-1563 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 59th IEEE Conference on Decision and Control publication_identifier: isbn: - '9781728174471' issn: - '07431546' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'Lagrangian reachtubes: The next generation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020 year: '2020' ... --- _id: '10672' abstract: - lang: eng text: The family of feedback alignment (FA) algorithms aims to provide a more biologically motivated alternative to backpropagation (BP), by substituting the computations that are unrealistic to be implemented in physical brains. While FA algorithms have been shown to work well in practice, there is a lack of rigorous theory proofing their learning capabilities. Here we introduce the first feedback alignment algorithm with provable learning guarantees. In contrast to existing work, we do not require any assumption about the size or depth of the network except that it has a single output neuron, i.e., such as for binary classification tasks. We show that our FA algorithm can deliver its theoretical promises in practice, surpassing the learning performance of existing FA methods and matching backpropagation in binary classification tasks. Finally, we demonstrate the limits of our FA variant when the number of output neurons grows beyond a certain quantity. acknowledgement: "This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23\r\n(Wittgenstein Award).\r\n" article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner citation: ama: 'Lechner M. Learning representations for binary-classification without backpropagation. In: 8th International Conference on Learning Representations. ICLR; 2020.' apa: 'Lechner, M. (2020). Learning representations for binary-classification without backpropagation. In 8th International Conference on Learning Representations. Virtual ; Addis Ababa, Ethiopia: ICLR.' chicago: Lechner, Mathias. “Learning Representations for Binary-Classification without Backpropagation.” In 8th International Conference on Learning Representations. ICLR, 2020. ieee: M. Lechner, “Learning representations for binary-classification without backpropagation,” in 8th International Conference on Learning Representations, Virtual ; Addis Ababa, Ethiopia, 2020. ista: 'Lechner M. 2020. Learning representations for binary-classification without backpropagation. 8th International Conference on Learning Representations. ICLR: International Conference on Learning Representations.' mla: Lechner, Mathias. “Learning Representations for Binary-Classification without Backpropagation.” 8th International Conference on Learning Representations, ICLR, 2020. short: M. Lechner, in:, 8th International Conference on Learning Representations, ICLR, 2020. conference: end_date: 2020-05-01 location: Virtual ; Addis Ababa, Ethiopia name: 'ICLR: International Conference on Learning Representations' start_date: 2020-04-26 date_created: 2022-01-25T15:50:00Z date_published: 2020-03-11T00:00:00Z date_updated: 2023-04-03T07:33:40Z day: '11' ddc: - '000' department: - _id: GradSch - _id: ToHe file: - access_level: open_access checksum: ea13d42dd4541ddb239b6a75821fd6c9 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:35:17Z date_updated: 2022-01-26T07:35:17Z file_id: '10677' file_name: iclr_2020.pdf file_size: 249431 relation: main_file success: 1 file_date_updated: 2022-01-26T07:35:17Z has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://openreview.net/forum?id=Bke61krFvS month: '03' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 8th International Conference on Learning Representations publication_status: published publisher: ICLR quality_controlled: '1' scopus_import: '1' status: public title: Learning representations for binary-classification without backpropagation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7808' abstract: - lang: eng text: Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused by adversarial attacks. We investigate how quantization affects a network’s robustness to adversarial attacks, which is a formal verification question. We show that neither robustness nor non-robustness are monotonic with changing the number of bits for the representation and, also, neither are preserved by quantization from a real-numbered network. For this reason, we introduce a verification method for quantized neural networks which, using SMT solving over bit-vectors, accounts for their exact, bit-precise semantics. We built a tool and analyzed the effect of quantization on a classifier for the MNIST dataset. We demonstrate that, compared to our method, existing methods for the analysis of real-numbered networks often derive false conclusions about their quantizations, both when determining robustness and when detecting attacks, and that existing methods for quantized networks often miss attacks. Furthermore, we applied our method beyond robustness, showing how the number of bits in quantization enlarges the gender bias of a predictor for students’ grades. alternative_title: - LNCS article_processing_charge: No author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner citation: ama: 'Giacobbe M, Henzinger TA, Lechner M. How many bits does it take to quantize your neural network? In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Vol 12079. Springer Nature; 2020:79-97. doi:10.1007/978-3-030-45237-7_5' apa: 'Giacobbe, M., Henzinger, T. A., & Lechner, M. (2020). How many bits does it take to quantize your neural network? In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Vol. 12079, pp. 79–97). Dublin, Ireland: Springer Nature. https://doi.org/10.1007/978-3-030-45237-7_5' chicago: Giacobbe, Mirco, Thomas A Henzinger, and Mathias Lechner. “How Many Bits Does It Take to Quantize Your Neural Network?” In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 12079:79–97. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45237-7_5. ieee: M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does it take to quantize your neural network?,” in International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Dublin, Ireland, 2020, vol. 12079, pp. 79–97. ista: 'Giacobbe M, Henzinger TA, Lechner M. 2020. How many bits does it take to quantize your neural network? International Conference on Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 12079, 79–97.' mla: Giacobbe, Mirco, et al. “How Many Bits Does It Take to Quantize Your Neural Network?” International Conference on Tools and Algorithms for the Construction and Analysis of Systems, vol. 12079, Springer Nature, 2020, pp. 79–97, doi:10.1007/978-3-030-45237-7_5. short: M. Giacobbe, T.A. Henzinger, M. Lechner, in:, International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2020, pp. 79–97. conference: end_date: 2020-04-30 location: Dublin, Ireland name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2020-04-25 date_created: 2020-05-10T22:00:49Z date_published: 2020-04-17T00:00:00Z date_updated: 2023-06-23T07:01:11Z day: '17' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-45237-7_5 file: - access_level: open_access checksum: f19905a42891fe5ce93d69143fa3f6fb content_type: application/pdf creator: dernst date_created: 2020-05-26T12:48:15Z date_updated: 2020-07-14T12:48:03Z file_id: '7893' file_name: 2020_TACAS_Giacobbe.pdf file_size: 2744030 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 12079' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 79-97 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: International Conference on Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eissn: - '16113349' isbn: - '9783030452360' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public scopus_import: 1 status: public title: How many bits does it take to quantize your neural network? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12079 year: '2020' ... --- _id: '6761' abstract: - lang: eng text: In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability. article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman citation: ama: Avni G, Henzinger TA, Kupferman O. Dynamic resource allocation games. Theoretical Computer Science. 2020;807:42-55. doi:10.1016/j.tcs.2019.06.031 apa: Avni, G., Henzinger, T. A., & Kupferman, O. (2020). Dynamic resource allocation games. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2019.06.031 chicago: Avni, Guy, Thomas A Henzinger, and Orna Kupferman. “Dynamic Resource Allocation Games.” Theoretical Computer Science. Elsevier, 2020. https://doi.org/10.1016/j.tcs.2019.06.031. ieee: G. Avni, T. A. Henzinger, and O. Kupferman, “Dynamic resource allocation games,” Theoretical Computer Science, vol. 807. Elsevier, pp. 42–55, 2020. ista: Avni G, Henzinger TA, Kupferman O. 2020. Dynamic resource allocation games. Theoretical Computer Science. 807, 42–55. mla: Avni, Guy, et al. “Dynamic Resource Allocation Games.” Theoretical Computer Science, vol. 807, Elsevier, 2020, pp. 42–55, doi:10.1016/j.tcs.2019.06.031. short: G. Avni, T.A. Henzinger, O. Kupferman, Theoretical Computer Science 807 (2020) 42–55. date_created: 2019-08-04T21:59:20Z date_published: 2020-02-06T00:00:00Z date_updated: 2023-08-17T13:52:49Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.1016/j.tcs.2019.06.031 external_id: isi: - '000512219400004' file: - access_level: open_access checksum: e86635417f45eb2cd75778f91382f737 content_type: application/pdf creator: dernst date_created: 2020-10-09T06:31:22Z date_updated: 2020-10-09T06:31:22Z file_id: '8639' file_name: 2020_TheoreticalCS_Avni.pdf file_size: 1413001 relation: main_file success: 1 file_date_updated: 2020-10-09T06:31:22Z has_accepted_license: '1' intvolume: ' 807' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version page: 42-55 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication: Theoretical Computer Science publication_identifier: issn: - '03043975' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '1341' relation: earlier_version status: public scopus_import: '1' status: public title: Dynamic resource allocation games type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 807 year: '2020' ... --- _id: '7505' abstract: - lang: eng text: Neural networks have demonstrated unmatched performance in a range of classification tasks. Despite numerous efforts of the research community, novelty detection remains one of the significant limitations of neural networks. The ability to identify previously unseen inputs as novel is crucial for our understanding of the decisions made by neural networks. At runtime, inputs not falling into any of the categories learned during training cannot be classified correctly by the neural network. Existing approaches treat the neural network as a black box and try to detect novel inputs based on the confidence of the output predictions. However, neural networks are not trained to reduce their confidence for novel inputs, which limits the effectiveness of these approaches. We propose a framework to monitor a neural network by observing the hidden layers. We employ a common abstraction from program analysis - boxes - to identify novel behaviors in the monitored layers, i.e., inputs that cause behaviors outside the box. For each neuron, the boxes range over the values seen in training. The framework is efficient and flexible to achieve a desired trade-off between raising false warnings and detecting novel inputs. We illustrate the performance and the robustness to variability in the unknown classes on popular image-classification benchmarks. acknowledgement: We thank Christoph Lampert and Nikolaus Mayer for fruitful discussions. This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No. 754411. alternative_title: - Frontiers in Artificial Intelligence and Applications article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Henzinger TA, Lukina A, Schilling C. Outside the box: Abstraction-based monitoring of neural networks. In: 24th European Conference on Artificial Intelligence. Vol 325. IOS Press; 2020:2433-2440. doi:10.3233/FAIA200375' apa: 'Henzinger, T. A., Lukina, A., & Schilling, C. (2020). Outside the box: Abstraction-based monitoring of neural networks. In 24th European Conference on Artificial Intelligence (Vol. 325, pp. 2433–2440). Santiago de Compostela, Spain: IOS Press. https://doi.org/10.3233/FAIA200375' chicago: 'Henzinger, Thomas A, Anna Lukina, and Christian Schilling. “Outside the Box: Abstraction-Based Monitoring of Neural Networks.” In 24th European Conference on Artificial Intelligence, 325:2433–40. IOS Press, 2020. https://doi.org/10.3233/FAIA200375.' ieee: 'T. A. Henzinger, A. Lukina, and C. Schilling, “Outside the box: Abstraction-based monitoring of neural networks,” in 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020, vol. 325, pp. 2433–2440.' ista: 'Henzinger TA, Lukina A, Schilling C. 2020. Outside the box: Abstraction-based monitoring of neural networks. 24th European Conference on Artificial Intelligence. ECAI: European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 325, 2433–2440.' mla: 'Henzinger, Thomas A., et al. “Outside the Box: Abstraction-Based Monitoring of Neural Networks.” 24th European Conference on Artificial Intelligence, vol. 325, IOS Press, 2020, pp. 2433–40, doi:10.3233/FAIA200375.' short: T.A. Henzinger, A. Lukina, C. Schilling, in:, 24th European Conference on Artificial Intelligence, IOS Press, 2020, pp. 2433–2440. conference: end_date: 2020-09-08 location: Santiago de Compostela, Spain name: 'ECAI: European Conference on Artificial Intelligence' start_date: 2020-08-29 date_created: 2020-02-21T16:44:03Z date_published: 2020-02-24T00:00:00Z date_updated: 2023-08-18T06:38:16Z day: '24' ddc: - '000' department: - _id: ToHe doi: 10.3233/FAIA200375 ec_funded: 1 external_id: arxiv: - '1911.09032' isi: - '000650971303002' file: - access_level: open_access checksum: 80642fa0b6cd7da95dcd87d63789ad5e content_type: application/pdf creator: dernst date_created: 2020-09-21T07:12:32Z date_updated: 2020-09-21T07:12:32Z file_id: '8540' file_name: 2020_ECAI_Henzinger.pdf file_size: 1692214 relation: main_file success: 1 file_date_updated: 2020-09-21T07:12:32Z has_accepted_license: '1' intvolume: ' 325' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 2433-2440 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 24th European Conference on Artificial Intelligence publication_status: published publisher: IOS Press quality_controlled: '1' status: public title: 'Outside the box: Abstraction-based monitoring of neural networks' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 325 year: '2020' ... --- _id: '8194' abstract: - lang: eng text: 'Fixed-point arithmetic is a popular alternative to floating-point arithmetic on embedded systems. Existing work on the verification of fixed-point programs relies on custom formalizations of fixed-point arithmetic, which makes it hard to compare the described techniques or reuse the implementations. In this paper, we address this issue by proposing and formalizing an SMT theory of fixed-point arithmetic. We present an intuitive yet comprehensive syntax of the fixed-point theory, and provide formal semantics for it based on rational arithmetic. We also describe two decision procedures for this theory: one based on the theory of bit-vectors and the other on the theory of reals. We implement the two decision procedures, and evaluate our implementations using existing mature SMT solvers on a benchmark suite we created. Finally, we perform a case study of using the theory we propose to verify properties of quantized neural networks.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Baranowski, Marek last_name: Baranowski - first_name: Shaobo full_name: He, Shaobo last_name: He - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thanh Son full_name: Nguyen, Thanh Son last_name: Nguyen - first_name: Zvonimir full_name: Rakamarić, Zvonimir last_name: Rakamarić citation: ama: 'Baranowski M, He S, Lechner M, Nguyen TS, Rakamarić Z. An SMT theory of fixed-point arithmetic. In: Automated Reasoning. Vol 12166. Springer Nature; 2020:13-31. doi:10.1007/978-3-030-51074-9_2' apa: 'Baranowski, M., He, S., Lechner, M., Nguyen, T. S., & Rakamarić, Z. (2020). An SMT theory of fixed-point arithmetic. In Automated Reasoning (Vol. 12166, pp. 13–31). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-030-51074-9_2' chicago: Baranowski, Marek, Shaobo He, Mathias Lechner, Thanh Son Nguyen, and Zvonimir Rakamarić. “An SMT Theory of Fixed-Point Arithmetic.” In Automated Reasoning, 12166:13–31. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-51074-9_2. ieee: M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Rakamarić, “An SMT theory of fixed-point arithmetic,” in Automated Reasoning, Paris, France, 2020, vol. 12166, pp. 13–31. ista: 'Baranowski M, He S, Lechner M, Nguyen TS, Rakamarić Z. 2020. An SMT theory of fixed-point arithmetic. Automated Reasoning. IJCAR: International Joint Conference on Automated Reasoning, LNCS, vol. 12166, 13–31.' mla: Baranowski, Marek, et al. “An SMT Theory of Fixed-Point Arithmetic.” Automated Reasoning, vol. 12166, Springer Nature, 2020, pp. 13–31, doi:10.1007/978-3-030-51074-9_2. short: M. Baranowski, S. He, M. Lechner, T.S. Nguyen, Z. Rakamarić, in:, Automated Reasoning, Springer Nature, 2020, pp. 13–31. conference: end_date: 2020-07-04 location: Paris, France name: 'IJCAR: International Joint Conference on Automated Reasoning' start_date: 2020-07-01 date_created: 2020-08-02T22:00:59Z date_published: 2020-06-24T00:00:00Z date_updated: 2023-08-22T08:27:25Z day: '24' department: - _id: ToHe doi: 10.1007/978-3-030-51074-9_2 external_id: isi: - '000884318000002' intvolume: ' 12166' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/978-3-030-51074-9_2 month: '06' oa: 1 oa_version: Published Version page: 13-31 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Automated Reasoning publication_identifier: eissn: - '16113349' isbn: - '9783030510732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: An SMT theory of fixed-point arithmetic type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12166 year: '2020' ... --- _id: '8679' abstract: - lang: eng text: A central goal of artificial intelligence in high-stakes decision-making applications is to design a single algorithm that simultaneously expresses generalizability by learning coherent representations of their world and interpretable explanations of its dynamics. Here, we combine brain-inspired neural computation principles and scalable deep learning architectures to design compact neural controllers for task-specific compartments of a full-stack autonomous vehicle control system. We discover that a single algorithm with 19 control neurons, connecting 32 encapsulated input features to outputs by 253 synapses, learns to map high-dimensional inputs into steering commands. This system shows superior generalizability, interpretability and robustness compared with orders-of-magnitude larger black-box learning systems. The obtained neural agents enable high-fidelity autonomy for task-specific parts of a complex autonomous system. article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: Lechner M, Hasani R, Amini A, Henzinger TA, Rus D, Grosu R. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence. 2020;2:642-652. doi:10.1038/s42256-020-00237-3 apa: Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., & Grosu, R. (2020). Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence. Springer Nature. https://doi.org/10.1038/s42256-020-00237-3 chicago: Lechner, Mathias, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu Grosu. “Neural Circuit Policies Enabling Auditable Autonomy.” Nature Machine Intelligence. Springer Nature, 2020. https://doi.org/10.1038/s42256-020-00237-3. ieee: M. Lechner, R. Hasani, A. Amini, T. A. Henzinger, D. Rus, and R. Grosu, “Neural circuit policies enabling auditable autonomy,” Nature Machine Intelligence, vol. 2. Springer Nature, pp. 642–652, 2020. ista: Lechner M, Hasani R, Amini A, Henzinger TA, Rus D, Grosu R. 2020. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence. 2, 642–652. mla: Lechner, Mathias, et al. “Neural Circuit Policies Enabling Auditable Autonomy.” Nature Machine Intelligence, vol. 2, Springer Nature, 2020, pp. 642–52, doi:10.1038/s42256-020-00237-3. short: M. Lechner, R. Hasani, A. Amini, T.A. Henzinger, D. Rus, R. Grosu, Nature Machine Intelligence 2 (2020) 642–652. date_created: 2020-10-19T13:46:06Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-08-22T10:36:06Z day: '01' department: - _id: ToHe doi: 10.1038/s42256-020-00237-3 external_id: isi: - '000583337200011' intvolume: ' 2' isi: 1 language: - iso: eng month: '10' oa_version: None page: 642-652 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Nature Machine Intelligence publication_identifier: eissn: - 2522-5839 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-deep-learning-models/ scopus_import: '1' status: public title: Neural circuit policies enabling auditable autonomy type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2 year: '2020' ... --- _id: '8704' abstract: - lang: eng text: Traditional robotic control suits require profound task-specific knowledge for designing, building and testing control software. The rise of Deep Learning has enabled end-to-end solutions to be learned entirely from data, requiring minimal knowledge about the application area. We design a learning scheme to train end-to-end linear dynamical systems (LDS)s by gradient descent in imitation learning robotic domains. We introduce a new regularization loss component together with a learning algorithm that improves the stability of the learned autonomous system, by forcing the eigenvalues of the internal state updates of an LDS to be negative reals. We evaluate our approach on a series of real-life and simulated robotic experiments, in comparison to linear and nonlinear Recurrent Neural Network (RNN) architectures. Our results show that our stabilizing method significantly improves test performance of LDS, enabling such linear models to match the performance of contemporary nonlinear RNN architectures. A video of the obstacle avoidance performance of our method on a mobile robot, in unseen environments, compared to other methods can be viewed at https://youtu.be/mhEsCoNao5E. acknowledgement: M.L. is supported in parts by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). R.H., and R.G. are partially supported by the Horizon-2020 ECSELProject grant No. 783163 (iDev40), and the Austrian Research Promotion Agency (FFG), Project No. 860424. R.H. and D.R. is partially supported by the Boeing Company. alternative_title: - ICRA article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Lechner M, Hasani R, Rus D, Grosu R. Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme. In: Proceedings - IEEE International Conference on Robotics and Automation. IEEE; 2020:5446-5452. doi:10.1109/ICRA40945.2020.9196608' apa: 'Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2020). Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 5446–5452). Paris, France: IEEE. https://doi.org/10.1109/ICRA40945.2020.9196608' chicago: Lechner, Mathias, Ramin Hasani, Daniela Rus, and Radu Grosu. “Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-End Robot Learning Scheme.” In Proceedings - IEEE International Conference on Robotics and Automation, 5446–52. IEEE, 2020. https://doi.org/10.1109/ICRA40945.2020.9196608. ieee: M. Lechner, R. Hasani, D. Rus, and R. Grosu, “Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme,” in Proceedings - IEEE International Conference on Robotics and Automation, Paris, France, 2020, pp. 5446–5452. ista: 'Lechner M, Hasani R, Rus D, Grosu R. 2020. Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme. Proceedings - IEEE International Conference on Robotics and Automation. ICRA: International Conference on Robotics and Automation, ICRA, , 5446–5452.' mla: Lechner, Mathias, et al. “Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-End Robot Learning Scheme.” Proceedings - IEEE International Conference on Robotics and Automation, IEEE, 2020, pp. 5446–52, doi:10.1109/ICRA40945.2020.9196608. short: M. Lechner, R. Hasani, D. Rus, R. Grosu, in:, Proceedings - IEEE International Conference on Robotics and Automation, IEEE, 2020, pp. 5446–5452. conference: end_date: 2020-08-31 location: Paris, France name: 'ICRA: International Conference on Robotics and Automation' start_date: 2020-05-31 date_created: 2020-10-25T23:01:19Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-22T10:40:15Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/ICRA40945.2020.9196608 external_id: isi: - '000712319503110' file: - access_level: open_access checksum: fccf7b986ac78046918a298cc6849a50 content_type: application/pdf creator: dernst date_created: 2020-11-06T10:58:49Z date_updated: 2020-11-06T10:58:49Z file_id: '8733' file_name: 2020_ICRA_Lechner.pdf file_size: 1070010 relation: main_file success: 1 file_date_updated: 2020-11-06T10:58:49Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 5446-5452 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings - IEEE International Conference on Robotics and Automation publication_identifier: isbn: - '9781728173955' issn: - '10504729' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8750' abstract: - lang: eng text: "Efficiently handling time-triggered and possibly nondeterministic switches\r\nfor hybrid systems reachability is a challenging task. In this paper we present\r\nan approach based on conservative set-based enclosure of the dynamics that can\r\nhandle systems with uncertain parameters and inputs, where the uncertainties\r\nare bound to given intervals. The method is evaluated on the plant model of an\r\nexperimental electro-mechanical braking system with periodic controller. In\r\nthis model, the fast-switching controller dynamics requires simulation time\r\nscales of the order of nanoseconds. Accurate set-based computations for\r\nrelatively large time horizons are known to be expensive. However, by\r\nappropriately decoupling the time variable with respect to the spatial\r\nvariables, and enclosing the uncertain parameters using interval matrix maps\r\nacting on zonotopes, we show that the computation time can be lowered to 5000\r\ntimes faster with respect to previous works. This is a step forward in formal\r\nverification of hybrid systems because reduced run-times allow engineers to\r\nintroduce more expressiveness in their models with a relatively inexpensive\r\ncomputational cost." article_number: '9314994' article_processing_charge: No author: - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Forets M, Freire D, Schilling C. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In: 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE; 2020. doi:10.1109/MEMOCODE51338.2020.9314994' apa: 'Forets, M., Freire, D., & Schilling, C. (2020). Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. Virtual Conference: IEEE. https://doi.org/10.1109/MEMOCODE51338.2020.9314994' chicago: Forets, Marcelo, Daniel Freire, and Christian Schilling. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” In 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. IEEE, 2020. https://doi.org/10.1109/MEMOCODE51338.2020.9314994. ieee: M. Forets, D. Freire, and C. Schilling, “Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions,” in 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, Virtual Conference, 2020. ista: 'Forets M, Freire D, Schilling C. 2020. Efficient reachability analysis of parametric linear hybrid systems with  time-triggered transitions. 18th ACM-IEEE International Conference on Formal Methods and Models for System Design. MEMOCODE: Conference on Formal Methods and Models for System Design, 9314994.' mla: Forets, Marcelo, et al. “Efficient Reachability Analysis of Parametric Linear Hybrid Systems with  Time-Triggered Transitions.” 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, 9314994, IEEE, 2020, doi:10.1109/MEMOCODE51338.2020.9314994. short: M. Forets, D. Freire, C. Schilling, in:, 18th ACM-IEEE International Conference on Formal Methods and Models for System Design, IEEE, 2020. conference: end_date: 2020-12-04 location: Virtual Conference name: 'MEMOCODE: Conference on Formal Methods and Models for System Design' start_date: 2020-12-02 date_created: 2020-11-10T07:04:57Z date_published: 2020-12-04T00:00:00Z date_updated: 2023-08-22T12:48:18Z day: '04' department: - _id: ToHe doi: 10.1109/MEMOCODE51338.2020.9314994 ec_funded: 1 external_id: arxiv: - '2006.12325' isi: - '000661920400013' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.12325 month: '12' oa: 1 oa_version: Preprint project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 18th ACM-IEEE International Conference on Formal Methods and Models for System Design publication_identifier: isbn: - '9781728191485' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8287' abstract: - lang: eng text: Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. article_processing_charge: No author: - first_name: Sergiy full_name: Bogomolov, Sergiy last_name: Bogomolov - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Kostiantyn full_name: Potomkin, Kostiantyn last_name: Potomkin - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. Reachability analysis of linear hybrid systems via block decomposition. In: Proceedings of the International Conference on Embedded Software. ; 2020.' apa: Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2020). Reachability analysis of linear hybrid systems via block decomposition. In Proceedings of the International Conference on Embedded Software. Virtual . chicago: Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” In Proceedings of the International Conference on Embedded Software, 2020. ieee: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Reachability analysis of linear hybrid systems via block decomposition,” in Proceedings of the International Conference on Embedded Software, Virtual , 2020. ista: 'Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. 2020. Reachability analysis of linear hybrid systems via block decomposition. Proceedings of the International Conference on Embedded Software. EMSOFT: International Conference on Embedded Software.' mla: Bogomolov, Sergiy, et al. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” Proceedings of the International Conference on Embedded Software, 2020. short: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, in:, Proceedings of the International Conference on Embedded Software, 2020. conference: end_date: 2020-09-25 location: 'Virtual ' name: 'EMSOFT: International Conference on Embedded Software' start_date: 2020-09-20 date_created: 2020-08-24T12:56:20Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-22T13:27:32Z ddc: - '000' department: - _id: ToHe ec_funded: 1 external_id: arxiv: - '1905.02458' file: - access_level: open_access checksum: d19e97d0f8a3a441dc078ec812297d75 content_type: application/pdf creator: cschilli date_created: 2020-08-24T12:53:15Z date_updated: 2020-08-24T12:53:15Z file_id: '8288' file_name: 2020EMSOFT.pdf file_size: 696384 relation: main_file success: 1 file_date_updated: 2020-08-24T12:53:15Z has_accepted_license: '1' keyword: - reachability - hybrid systems - decomposition language: - iso: eng oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the International Conference on Embedded Software publication_status: published quality_controlled: '1' related_material: record: - id: '8790' relation: later_version status: public status: public title: Reachability analysis of linear hybrid systems via block decomposition tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '8790' abstract: - lang: eng text: Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this article, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. acknowledgement: 'This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411, and the Air Force Office of Scientific Research under award number FA2386-17-1-4065. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force. ' article_processing_charge: No article_type: original author: - first_name: Sergiy full_name: Bogomolov, Sergiy id: 369D9A44-F248-11E8-B48F-1D18A9856A87 last_name: Bogomolov orcid: 0000-0002-0686-0365 - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Kostiantyn full_name: Potomkin, Kostiantyn last_name: Potomkin - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020;39(11):4018-4029. doi:10.1109/TCAD.2020.3012859 apa: Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., & Schilling, C. (2020). Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE. https://doi.org/10.1109/TCAD.2020.3012859 chicago: Bogomolov, Sergiy, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE, 2020. https://doi.org/10.1109/TCAD.2020.3012859. ieee: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling, “Reachability analysis of linear hybrid systems via block decomposition,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11. IEEE, pp. 4018–4029, 2020. ista: Bogomolov S, Forets M, Frehse G, Potomkin K, Schilling C. 2020. Reachability analysis of linear hybrid systems via block decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39(11), 4018–4029. mla: Bogomolov, Sergiy, et al. “Reachability Analysis of Linear Hybrid Systems via Block Decomposition.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, IEEE, 2020, pp. 4018–29, doi:10.1109/TCAD.2020.3012859. short: S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 (2020) 4018–4029. date_created: 2020-11-22T23:01:25Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-22T13:27:33Z day: '01' department: - _id: ToHe doi: 10.1109/TCAD.2020.3012859 ec_funded: 1 external_id: arxiv: - '1905.02458' isi: - '000587712700072' intvolume: ' 39' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.02458 month: '11' oa: 1 oa_version: Preprint page: 4018-4029 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication_identifier: eissn: - '19374151' issn: - '02780070' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '8287' relation: earlier_version status: public scopus_import: '1' status: public title: Reachability analysis of linear hybrid systems via block decomposition type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '9197' abstract: - lang: eng text: In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve. acknowledgement: This research was supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship). article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: Avni G, Ibsen-Jensen R, Tkadlec J. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(02):1798-1805. doi:10.1609/aaai.v34i02.5546 apa: 'Avni, G., Ibsen-Jensen, R., & Tkadlec, J. (2020). All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. New York, NY, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v34i02.5546' chicago: Avni, Guy, Rasmus Ibsen-Jensen, and Josef Tkadlec. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2020. https://doi.org/10.1609/aaai.v34i02.5546. ieee: G. Avni, R. Ibsen-Jensen, and J. Tkadlec, “All-pay bidding games on graphs,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02. Association for the Advancement of Artificial Intelligence, pp. 1798–1805, 2020. ista: Avni G, Ibsen-Jensen R, Tkadlec J. 2020. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 34(02), 1798–1805. mla: Avni, Guy, et al. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, Association for the Advancement of Artificial Intelligence, 2020, pp. 1798–805, doi:10.1609/aaai.v34i02.5546. short: G. Avni, R. Ibsen-Jensen, J. Tkadlec, Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020) 1798–1805. conference: end_date: 2020-02-12 location: New York, NY, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2020-02-07 date_created: 2021-02-25T09:05:18Z date_published: 2020-04-03T00:00:00Z date_updated: 2023-09-05T12:40:00Z day: '03' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v34i02.5546 external_id: arxiv: - '1911.08360' intvolume: ' 34' issue: '02' language: - iso: eng month: '04' oa_version: Preprint page: 1798-1805 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '9781577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: All-pay bidding games on graphs type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 34 year: '2020' ... --- _id: '8623' abstract: - lang: eng text: We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Sarac NE. Monitorability under assumptions. In: Runtime Verification. Vol 12399. Springer Nature; 2020:3-18. doi:10.1007/978-3-030-60508-7_1' apa: 'Henzinger, T. A., & Sarac, N. E. (2020). Monitorability under assumptions. In Runtime Verification (Vol. 12399, pp. 3–18). Los Angeles, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-60508-7_1' chicago: Henzinger, Thomas A, and Naci E Sarac. “Monitorability under Assumptions.” In Runtime Verification, 12399:3–18. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-60508-7_1. ieee: T. A. Henzinger and N. E. Sarac, “Monitorability under assumptions,” in Runtime Verification, Los Angeles, CA, United States, 2020, vol. 12399, pp. 3–18. ista: 'Henzinger TA, Sarac NE. 2020. Monitorability under assumptions. Runtime Verification. RV: Runtime Verification, LNCS, vol. 12399, 3–18.' mla: Henzinger, Thomas A., and Naci E. Sarac. “Monitorability under Assumptions.” Runtime Verification, vol. 12399, Springer Nature, 2020, pp. 3–18, doi:10.1007/978-3-030-60508-7_1. short: T.A. Henzinger, N.E. Sarac, in:, Runtime Verification, Springer Nature, 2020, pp. 3–18. conference: end_date: 2020-10-09 location: Los Angeles, CA, United States name: 'RV: Runtime Verification' start_date: 2020-10-06 date_created: 2020-10-07T15:05:37Z date_published: 2020-10-02T00:00:00Z date_updated: 2023-09-05T15:08:26Z day: '02' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-60508-7_1 external_id: isi: - '000728160600001' file: - access_level: open_access checksum: 00661f9b7034f52e18bf24fa552b8194 content_type: application/pdf creator: esarac date_created: 2020-10-15T14:28:06Z date_updated: 2020-10-15T14:28:06Z file_id: '8665' file_name: monitorability.pdf file_size: 478148 relation: main_file success: 1 file_date_updated: 2020-10-15T14:28:06Z has_accepted_license: '1' intvolume: ' 12399' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 3-18 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Runtime Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783030605070' - '9783030605087' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Monitorability under assumptions type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12399 year: '2020' ... --- _id: '8195' abstract: - lang: eng text: This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier. acknowledgement: "Bernhard Kragl and Thomas A. Henzinger were supported by\r\nthe Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award)." alternative_title: - LNCS article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 - first_name: Shaz full_name: Qadeer, Shaz last_name: Qadeer - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Kragl B, Qadeer S, Henzinger TA. Refinement for structured concurrent programs. In: Computer Aided Verification. Vol 12224. Springer Nature; 2020:275-298. doi:10.1007/978-3-030-53288-8_14' apa: Kragl, B., Qadeer, S., & Henzinger, T. A. (2020). Refinement for structured concurrent programs. In Computer Aided Verification (Vol. 12224, pp. 275–298). Springer Nature. https://doi.org/10.1007/978-3-030-53288-8_14 chicago: Kragl, Bernhard, Shaz Qadeer, and Thomas A Henzinger. “Refinement for Structured Concurrent Programs.” In Computer Aided Verification, 12224:275–98. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-53288-8_14. ieee: B. Kragl, S. Qadeer, and T. A. Henzinger, “Refinement for structured concurrent programs,” in Computer Aided Verification, 2020, vol. 12224, pp. 275–298. ista: Kragl B, Qadeer S, Henzinger TA. 2020. Refinement for structured concurrent programs. Computer Aided Verification. , LNCS, vol. 12224, 275–298. mla: Kragl, Bernhard, et al. “Refinement for Structured Concurrent Programs.” Computer Aided Verification, vol. 12224, Springer Nature, 2020, pp. 275–98, doi:10.1007/978-3-030-53288-8_14. short: B. Kragl, S. Qadeer, T.A. Henzinger, in:, Computer Aided Verification, Springer Nature, 2020, pp. 275–298. date_created: 2020-08-03T11:45:35Z date_published: 2020-07-14T00:00:00Z date_updated: 2023-09-07T13:18:00Z day: '14' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-53288-8_14 external_id: isi: - '000695276000014' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-08-06T08:14:54Z date_updated: 2020-08-06T08:14:54Z file_id: '8201' file_name: 2020_LNCS_Kragl.pdf file_size: 804237 relation: main_file success: 1 file_date_updated: 2020-08-06T08:14:54Z has_accepted_license: '1' intvolume: ' 12224' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 275-298 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Computer Aided Verification publication_identifier: eisbn: - '9783030532888' eissn: - 1611-3349 isbn: - '9783030532871' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '8332' relation: dissertation_contains status: public scopus_import: '1' status: public title: Refinement for structured concurrent programs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12224 year: '2020' ... --- _id: '8012' abstract: - lang: eng text: Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos. article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 - first_name: Constantin full_name: Enea, Constantin last_name: Enea - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Suha Orhun full_name: Mutluergil, Suha Orhun last_name: Mutluergil - first_name: Shaz full_name: Qadeer, Shaz last_name: Qadeer citation: ama: 'Kragl B, Enea C, Henzinger TA, Mutluergil SO, Qadeer S. Inductive sequentialization of asynchronous programs. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery; 2020:227-242. doi:10.1145/3385412.3385980' apa: 'Kragl, B., Enea, C., Henzinger, T. A., Mutluergil, S. O., & Qadeer, S. (2020). Inductive sequentialization of asynchronous programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (pp. 227–242). London, United Kingdom: Association for Computing Machinery. https://doi.org/10.1145/3385412.3385980' chicago: Kragl, Bernhard, Constantin Enea, Thomas A Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. “Inductive Sequentialization of Asynchronous Programs.” In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 227–42. Association for Computing Machinery, 2020. https://doi.org/10.1145/3385412.3385980. ieee: B. Kragl, C. Enea, T. A. Henzinger, S. O. Mutluergil, and S. Qadeer, “Inductive sequentialization of asynchronous programs,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, London, United Kingdom, 2020, pp. 227–242. ista: 'Kragl B, Enea C, Henzinger TA, Mutluergil SO, Qadeer S. 2020. Inductive sequentialization of asynchronous programs. Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI: Programming Language Design and Implementation, 227–242.' mla: Kragl, Bernhard, et al. “Inductive Sequentialization of Asynchronous Programs.” Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2020, pp. 227–42, doi:10.1145/3385412.3385980. short: B. Kragl, C. Enea, T.A. Henzinger, S.O. Mutluergil, S. Qadeer, in:, Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2020, pp. 227–242. conference: end_date: 2020-06-20 location: London, United Kingdom name: 'PLDI: Programming Language Design and Implementation' start_date: 2020-06-15 date_created: 2020-06-25T11:40:16Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-09-07T13:18:00Z day: '01' department: - _id: ToHe doi: 10.1145/3385412.3385980 external_id: isi: - '000614622300016' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3385412.3385980 month: '06' oa: 1 oa_version: Published Version page: 227-242 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation publication_identifier: isbn: - '9781450376136' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '8332' relation: dissertation_contains status: public scopus_import: '1' status: public title: Inductive sequentialization of asynchronous programs type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '10861' abstract: - lang: eng text: We introduce in this paper AMT2.0, a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended signal temporal logic, which integrates timed regular expressions within signal temporal logic. The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. We demonstrate the tool functionality on several running examples and case studies, and evaluate its performance. article_processing_charge: No article_type: original author: - first_name: Dejan full_name: Nickovic, Dejan id: 41BCEE5C-F248-11E8-B48F-1D18A9856A87 last_name: Nickovic - first_name: Olivier full_name: Lebeltel, Olivier last_name: Lebeltel - first_name: Oded full_name: Maler, Oded last_name: Maler - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Dogan full_name: Ulus, Dogan last_name: Ulus citation: ama: 'Nickovic D, Lebeltel O, Maler O, Ferrere T, Ulus D. AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic. International Journal on Software Tools for Technology Transfer. 2020;22(6):741-758. doi:10.1007/s10009-020-00582-z' apa: 'Nickovic, D., Lebeltel, O., Maler, O., Ferrere, T., & Ulus, D. (2020). AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic. International Journal on Software Tools for Technology Transfer. Springer Nature. https://doi.org/10.1007/s10009-020-00582-z' chicago: 'Nickovic, Dejan, Olivier Lebeltel, Oded Maler, Thomas Ferrere, and Dogan Ulus. “AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic.” International Journal on Software Tools for Technology Transfer. Springer Nature, 2020. https://doi.org/10.1007/s10009-020-00582-z.' ieee: 'D. Nickovic, O. Lebeltel, O. Maler, T. Ferrere, and D. Ulus, “AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic,” International Journal on Software Tools for Technology Transfer, vol. 22, no. 6. Springer Nature, pp. 741–758, 2020.' ista: 'Nickovic D, Lebeltel O, Maler O, Ferrere T, Ulus D. 2020. AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic. International Journal on Software Tools for Technology Transfer. 22(6), 741–758.' mla: 'Nickovic, Dejan, et al. “AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal Temporal Logic.” International Journal on Software Tools for Technology Transfer, vol. 22, no. 6, Springer Nature, 2020, pp. 741–58, doi:10.1007/s10009-020-00582-z.' short: D. Nickovic, O. Lebeltel, O. Maler, T. Ferrere, D. Ulus, International Journal on Software Tools for Technology Transfer 22 (2020) 741–758. date_created: 2022-03-18T10:10:53Z date_published: 2020-08-03T00:00:00Z date_updated: 2023-09-08T11:52:02Z day: '03' department: - _id: ToHe doi: 10.1007/s10009-020-00582-z external_id: isi: - '000555398600001' intvolume: ' 22' isi: 1 issue: '6' keyword: - Information Systems - Software language: - iso: eng month: '08' oa_version: None page: 741-758 publication: International Journal on Software Tools for Technology Transfer publication_identifier: eissn: - 1433-2787 issn: - 1433-2779 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '299' relation: earlier_version status: public scopus_import: '1' status: public title: 'AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 22 year: '2020' ... --- _id: '8332' abstract: - lang: eng text: "Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks.\r\n\r\nIn a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning.\r\n\r\nIn a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed.\r\n\r\nOur approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Kragl B. Verifying concurrent programs: Refinement, synchronization, sequentialization. 2020. doi:10.15479/AT:ISTA:8332' apa: 'Kragl, B. (2020). Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8332' chicago: 'Kragl, Bernhard. “Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8332.' ieee: 'B. Kragl, “Verifying concurrent programs: Refinement, synchronization, sequentialization,” Institute of Science and Technology Austria, 2020.' ista: 'Kragl B. 2020. Verifying concurrent programs: Refinement, synchronization, sequentialization. Institute of Science and Technology Austria.' mla: 'Kragl, Bernhard. Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8332.' short: 'B. Kragl, Verifying Concurrent Programs: Refinement, Synchronization, Sequentialization, Institute of Science and Technology Austria, 2020.' date_created: 2020-09-04T12:24:12Z date_published: 2020-09-03T00:00:00Z date_updated: 2023-09-13T08:45:08Z day: '03' ddc: - '000' degree_awarded: PhD department: - _id: ToHe doi: 10.15479/AT:ISTA:8332 file: - access_level: open_access checksum: 26fe261550f691280bda4c454bf015c7 content_type: application/pdf creator: bkragl date_created: 2020-09-04T12:17:47Z date_updated: 2020-09-04T12:17:47Z file_id: '8333' file_name: kragl-thesis.pdf file_size: 1348815 relation: main_file - access_level: closed checksum: b9694ce092b7c55557122adba8337ebc content_type: application/zip creator: bkragl date_created: 2020-09-04T13:00:17Z date_updated: 2020-09-04T13:00:17Z file_id: '8335' file_name: kragl-thesis.zip file_size: 372312 relation: source_file file_date_updated: 2020-09-04T13:00:17Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '120' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '133' relation: part_of_dissertation status: public - id: '8012' relation: part_of_dissertation status: public - id: '8195' relation: part_of_dissertation status: public - id: '160' relation: part_of_dissertation status: public status: public supervisor: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 title: 'Verifying concurrent programs: Refinement, synchronization, sequentialization' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '9202' abstract: - lang: eng text: We propose a novel hybridization method for stability analysis that over-approximates nonlinear dynamical systems by switched systems with linear inclusion dynamics. We observe that existing hybridization techniques for safety analysis that over-approximate nonlinear dynamical systems by switched affine inclusion dynamics and provide fixed approximation error, do not suffice for stability analysis. Hence, we propose a hybridization method that provides a state-dependent error which converges to zero as the state tends to the equilibrium point. The crux of our hybridization computation is an elegant recursive algorithm that uses partial derivatives of a given function to obtain upper and lower bound matrices for the over-approximating linear inclusion. We illustrate our method on some examples to demonstrate the application of the theory for stability analysis. In particular, our method is able to establish stability of a nonlinear system which does not admit a polynomial Lyapunov function. acknowledgement: Miriam Garc´ıa Soto was partially supported by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Pavithra Prabhakar was partially supported by NSF CAREER Award No. 1552668, NSF Award No. 2008957 and ONR YIP Award No. N000141712577. article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Garcia Soto M, Prabhakar P. Hybridization for stability verification of nonlinear switched systems. In: 2020 IEEE Real-Time Systems Symposium. IEEE; 2020:244-256. doi:10.1109/RTSS49844.2020.00031' apa: 'Garcia Soto, M., & Prabhakar, P. (2020). Hybridization for stability verification of nonlinear switched systems. In 2020 IEEE Real-Time Systems Symposium (pp. 244–256). Houston, TX, USA : IEEE. https://doi.org/10.1109/RTSS49844.2020.00031' chicago: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” In 2020 IEEE Real-Time Systems Symposium, 244–56. IEEE, 2020. https://doi.org/10.1109/RTSS49844.2020.00031. ieee: M. Garcia Soto and P. Prabhakar, “Hybridization for stability verification of nonlinear switched systems,” in 2020 IEEE Real-Time Systems Symposium, Houston, TX, USA , 2020, pp. 244–256. ista: 'Garcia Soto M, Prabhakar P. 2020. Hybridization for stability verification of nonlinear switched systems. 2020 IEEE Real-Time Systems Symposium. RTTS: Real-Time Systems Symposium, 244–256.' mla: Garcia Soto, Miriam, and Pavithra Prabhakar. “Hybridization for Stability Verification of Nonlinear Switched Systems.” 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–56, doi:10.1109/RTSS49844.2020.00031. short: M. Garcia Soto, P. Prabhakar, in:, 2020 IEEE Real-Time Systems Symposium, IEEE, 2020, pp. 244–256. conference: end_date: 2020-12-04 location: 'Houston, TX, USA ' name: 'RTTS: Real-Time Systems Symposium' start_date: 2020-12-01 date_created: 2021-02-26T16:38:24Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-22T13:25:19Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/RTSS49844.2020.00031 external_id: isi: - '000680435100021' file: - access_level: open_access checksum: 8f97f229316c3b3a6f0cf99297aa0941 content_type: application/pdf creator: mgarcias date_created: 2021-02-26T16:38:14Z date_updated: 2021-02-26T16:38:14Z file_id: '9203' file_name: main.pdf file_size: 1125794 relation: main_file file_date_updated: 2021-02-26T16:38:14Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version page: 244-256 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2020 IEEE Real-Time Systems Symposium publication_identifier: eisbn: - '9781728183244' eissn: - 2576-3172 publication_status: published publisher: IEEE quality_controlled: '1' status: public title: Hybridization for stability verification of nonlinear switched systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7426' abstract: - lang: eng text: This paper presents a novel abstraction technique for analyzing Lyapunov and asymptotic stability of polyhedral switched systems. A polyhedral switched system is a hybrid system in which the continuous dynamics is specified by polyhedral differential inclusions, the invariants and guards are specified by polyhedral sets and the switching between the modes do not involve reset of variables. A finite state weighted graph abstracting the polyhedral switched system is constructed from a finite partition of the state–space, such that the satisfaction of certain graph conditions, such as the absence of cycles with product of weights on the edges greater than (or equal) to 1, implies the stability of the system. However, the graph is in general conservative and hence, the violation of the graph conditions does not imply instability. If the analysis fails to establish stability due to the conservativeness in the approximation, a counterexample (cycle with product of edge weights greater than or equal to 1) indicating a potential reason for the failure is returned. Further, a more precise approximation of the switched system can be constructed by considering a finer partition of the state–space in the construction of the finite weighted graph. We present experimental results on analyzing stability of switched systems using the above method. article_number: '100856' article_processing_charge: No article_type: original author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000−0003−2936−5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Garcia Soto M, Prabhakar P. Abstraction based verification of stability of polyhedral switched systems. Nonlinear Analysis: Hybrid Systems. 2020;36(5). doi:10.1016/j.nahs.2020.100856' apa: 'Garcia Soto, M., & Prabhakar, P. (2020). Abstraction based verification of stability of polyhedral switched systems. Nonlinear Analysis: Hybrid Systems. Elsevier. https://doi.org/10.1016/j.nahs.2020.100856' chicago: 'Garcia Soto, Miriam, and Pavithra Prabhakar. “Abstraction Based Verification of Stability of Polyhedral Switched Systems.” Nonlinear Analysis: Hybrid Systems. Elsevier, 2020. https://doi.org/10.1016/j.nahs.2020.100856.' ieee: 'M. Garcia Soto and P. Prabhakar, “Abstraction based verification of stability of polyhedral switched systems,” Nonlinear Analysis: Hybrid Systems, vol. 36, no. 5. Elsevier, 2020.' ista: 'Garcia Soto M, Prabhakar P. 2020. Abstraction based verification of stability of polyhedral switched systems. Nonlinear Analysis: Hybrid Systems. 36(5), 100856.' mla: 'Garcia Soto, Miriam, and Pavithra Prabhakar. “Abstraction Based Verification of Stability of Polyhedral Switched Systems.” Nonlinear Analysis: Hybrid Systems, vol. 36, no. 5, 100856, Elsevier, 2020, doi:10.1016/j.nahs.2020.100856.' short: 'M. Garcia Soto, P. Prabhakar, Nonlinear Analysis: Hybrid Systems 36 (2020).' date_created: 2020-02-02T23:00:59Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-17T14:32:54Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1016/j.nahs.2020.100856 external_id: isi: - '000528828600003' file: - access_level: open_access checksum: 560abfddb53f9fe921b6744f59f2cfaa content_type: application/pdf creator: dernst date_created: 2020-10-21T13:16:45Z date_updated: 2022-05-16T22:30:04Z embargo: 2022-05-15 file_id: '8688' file_name: 2020_NAHS_GarciaSoto.pdf file_size: 818774 relation: main_file file_date_updated: 2022-05-16T22:30:04Z has_accepted_license: '1' intvolume: ' 36' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 'Nonlinear Analysis: Hybrid Systems' publication_identifier: issn: - 1751-570X publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Abstraction based verification of stability of polyhedral switched systems tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 36 year: '2020' ... --- _id: '10877' abstract: - lang: eng text: 'This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with piecewise constant dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this third edition, six tools have been applied to solve five different benchmark problems in the category for piecewise constant dynamics: BACH, Lyse, Hy- COMP, PHAVer/SX, PHAVerLite, and VeriSiMPL. Compared to last year, a new tool has participated (HyCOMP) and PHAVerLite has replaced PHAVer-lite. The result is a snap- shot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results probably provide the most complete assessment of tools for the safety verification of continuous and hybrid systems with piecewise constant dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge \fnancial support by the European Commission project\r\nUnCoVerCPS under grant number 643921. Lei Bu is supported by the National Natural Science\r\nFoundation of China (No.61572249)." alternative_title: - EPiC Series in Computing article_processing_charge: No author: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Alessandro full_name: Abate, Alessandro last_name: Abate - first_name: Dieky full_name: Adzkiya, Dieky last_name: Adzkiya - first_name: Anna full_name: Becchi, Anna last_name: Becchi - first_name: Lei full_name: Bu, Lei last_name: Bu - first_name: Alessandro full_name: Cimatti, Alessandro last_name: Cimatti - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Alberto full_name: Griggio, Alberto last_name: Griggio - first_name: Sergio full_name: Mover, Sergio last_name: Mover - first_name: Muhammad Syifa'ul full_name: Mufid, Muhammad Syifa'ul last_name: Mufid - first_name: Idriss full_name: Riouak, Idriss last_name: Riouak - first_name: Stefano full_name: Tonetta, Stefano last_name: Tonetta - first_name: Enea full_name: Zaffanella, Enea last_name: Zaffanella citation: ama: 'Frehse G, Abate A, Adzkiya D, et al. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In: Frehse G, Althoff M, eds. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. Vol 61. EasyChair; 2019:1-13. doi:10.29007/rjwn' apa: 'Frehse, G., Abate, A., Adzkiya, D., Becchi, A., Bu, L., Cimatti, A., … Zaffanella, E. (2019). ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In G. Frehse & M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems (Vol. 61, pp. 1–13). Montreal, Canada: EasyChair. https://doi.org/10.29007/rjwn' chicago: 'Frehse, Goran, Alessandro Abate, Dieky Adzkiya, Anna Becchi, Lei Bu, Alessandro Cimatti, Mirco Giacobbe, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” In ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, 61:1–13. EasyChair, 2019. https://doi.org/10.29007/rjwn.' ieee: 'G. Frehse et al., “ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics,” in ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, Montreal, Canada, 2019, vol. 61, pp. 1–13.' ista: 'Frehse G, Abate A, Adzkiya D, Becchi A, Bu L, Cimatti A, Giacobbe M, Griggio A, Mover S, Mufid MS, Riouak I, Tonetta S, Zaffanella E. 2019. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems, EPiC Series in Computing, vol. 61, 1–13.' mla: 'Frehse, Goran, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, vol. 61, EasyChair, 2019, pp. 1–13, doi:10.29007/rjwn.' short: G. Frehse, A. Abate, D. Adzkiya, A. Becchi, L. Bu, A. Cimatti, M. Giacobbe, A. Griggio, S. Mover, M.S. Mufid, I. Riouak, S. Tonetta, E. Zaffanella, in:, G. Frehse, M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, EasyChair, 2019, pp. 1–13. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2022-03-18T12:29:23Z date_published: 2019-05-25T00:00:00Z date_updated: 2022-05-17T07:09:47Z day: '25' ddc: - '000' department: - _id: ToHe doi: 10.29007/rjwn editor: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff file: - access_level: open_access checksum: 4b92e333db7b4e2349501a804dfede69 content_type: application/pdf creator: dernst date_created: 2022-05-17T06:55:49Z date_updated: 2022-05-17T06:55:49Z file_id: '11391' file_name: 2019_EPiCs_Frehse.pdf file_size: 346415 relation: main_file success: 1 file_date_updated: 2022-05-17T06:55:49Z has_accepted_license: '1' intvolume: ' 61' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1-13 publication: ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems publication_identifier: issn: - 2398-7340 publication_status: published publisher: EasyChair quality_controlled: '1' scopus_import: '1' status: public title: 'ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '6565' abstract: - lang: eng text: In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example. article_number: '8715598' article_processing_charge: No author: - first_name: Atreyee full_name: Kundu, Atreyee last_name: Kundu - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000−0003−2936−5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Kundu A, Garcia Soto M, Prabhakar P. Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. In: 5th Indian Control Conference Proceedings. IEEE; 2019. doi:10.1109/INDIANCC.2019.8715598' apa: 'Kundu, A., Garcia Soto, M., & Prabhakar, P. (2019). Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. In 5th Indian Control Conference Proceedings. Delhi, India: IEEE. https://doi.org/10.1109/INDIANCC.2019.8715598' chicago: Kundu, Atreyee, Miriam Garcia Soto, and Pavithra Prabhakar. “Formal Synthesis of Stabilizing Controllers for Periodically Controlled Linear Switched Systems.” In 5th Indian Control Conference Proceedings. IEEE, 2019. https://doi.org/10.1109/INDIANCC.2019.8715598. ieee: A. Kundu, M. Garcia Soto, and P. Prabhakar, “Formal synthesis of stabilizing controllers for periodically controlled linear switched systems,” in 5th Indian Control Conference Proceedings, Delhi, India, 2019. ista: Kundu A, Garcia Soto M, Prabhakar P. 2019. Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. 5th Indian Control Conference Proceedings. ICC 2019 - Indian Control Conference, 8715598. mla: Kundu, Atreyee, et al. “Formal Synthesis of Stabilizing Controllers for Periodically Controlled Linear Switched Systems.” 5th Indian Control Conference Proceedings, 8715598, IEEE, 2019, doi:10.1109/INDIANCC.2019.8715598. short: A. Kundu, M. Garcia Soto, P. Prabhakar, in:, 5th Indian Control Conference Proceedings, IEEE, 2019. conference: end_date: 2019-01-11 location: Delhi, India name: ICC 2019 - Indian Control Conference start_date: 2019-01-09 date_created: 2019-06-17T06:57:33Z date_published: 2019-05-16T00:00:00Z date_updated: 2021-01-12T08:08:01Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1109/INDIANCC.2019.8715598 file: - access_level: open_access checksum: d622a91af1e427f6b1e0ba8e18a2b767 content_type: application/pdf creator: dernst date_created: 2020-10-21T13:13:49Z date_updated: 2020-10-21T13:13:49Z file_id: '8687' file_name: 2019_ICC_Kundu.pdf file_size: 396031 relation: main_file success: 1 file_date_updated: 2020-10-21T13:13:49Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 5th Indian Control Conference Proceedings publication_identifier: isbn: - 978-153866246-5 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Formal synthesis of stabilizing controllers for periodically controlled linear switched systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6822' abstract: - lang: eng text: "In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete bidding mechanisms that are variants of a first-price auction: in each turn both players simultaneously submit bids, the higher\r\nbidder moves the token, and pays his bid to the lower bidder in Richman bidding, to the bank in poorman bidding, and in taxman bidding, the bid is split between the other player and the bank according to a predefined constant factor. Bidding games are deterministic games. They have an intriguing connection with a fragment of stochastic games called \r\n randomturn games. We study, for the first time, a combination of bidding games with probabilistic behavior; namely, we study bidding games that are played on Markov decision processes, where the players bid for the right to choose the next action, which determines the probability distribution according to which the next vertex is chosen. We study parity and meanpayoff bidding games on MDPs and extend results from the deterministic bidding setting to the probabilistic one." alternative_title: - LNCS author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Petr full_name: Novotny, Petr last_name: Novotny citation: ama: 'Avni G, Henzinger TA, Ibsen-Jensen R, Novotny P. Bidding games on Markov decision processes. In: Proceedings of the 13th International Conference of Reachability Problems. Vol 11674. Springer; 2019:1-12. doi:10.1007/978-3-030-30806-3_1' apa: 'Avni, G., Henzinger, T. A., Ibsen-Jensen, R., & Novotny, P. (2019). Bidding games on Markov decision processes. In Proceedings of the 13th International Conference of Reachability Problems (Vol. 11674, pp. 1–12). Brussels, Belgium: Springer. https://doi.org/10.1007/978-3-030-30806-3_1' chicago: Avni, Guy, Thomas A Henzinger, Rasmus Ibsen-Jensen, and Petr Novotny. “Bidding Games on Markov Decision Processes.” In Proceedings of the 13th International Conference of Reachability Problems, 11674:1–12. Springer, 2019. https://doi.org/10.1007/978-3-030-30806-3_1. ieee: G. Avni, T. A. Henzinger, R. Ibsen-Jensen, and P. Novotny, “Bidding games on Markov decision processes,” in Proceedings of the 13th International Conference of Reachability Problems, Brussels, Belgium, 2019, vol. 11674, pp. 1–12. ista: 'Avni G, Henzinger TA, Ibsen-Jensen R, Novotny P. 2019. Bidding games on Markov decision processes. Proceedings of the 13th International Conference of Reachability Problems. RP: Reachability Problems, LNCS, vol. 11674, 1–12.' mla: Avni, Guy, et al. “Bidding Games on Markov Decision Processes.” Proceedings of the 13th International Conference of Reachability Problems, vol. 11674, Springer, 2019, pp. 1–12, doi:10.1007/978-3-030-30806-3_1. short: G. Avni, T.A. Henzinger, R. Ibsen-Jensen, P. Novotny, in:, Proceedings of the 13th International Conference of Reachability Problems, Springer, 2019, pp. 1–12. conference: end_date: 2019-09-13 location: Brussels, Belgium name: 'RP: Reachability Problems' start_date: 2019-09-11 date_created: 2019-08-19T07:58:10Z date_published: 2019-09-06T00:00:00Z date_updated: 2021-01-12T08:09:12Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-030-30806-3_1 file: - access_level: open_access checksum: 45ebbc709af2b247d28c7c293c01504b content_type: application/pdf creator: gavni date_created: 2019-08-19T07:56:40Z date_updated: 2020-07-14T12:47:41Z file_id: '6823' file_name: prob.pdf file_size: 436635 relation: main_file file_date_updated: 2020-07-14T12:47:41Z has_accepted_license: '1' intvolume: ' 11674' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 1-12 project: - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: ' Proceedings of the 13th International Conference of Reachability Problems' publication_identifier: isbn: - 978-303030805-6 issn: - 0302-9743 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: 1 status: public title: Bidding games on Markov decision processes type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11674 year: '2019' ... --- _id: '6888' abstract: - lang: eng text: In this paper, we design novel liquid time-constant recurrent neural networks for robotic control, inspired by the brain of the nematode, C. elegans. In the worm's nervous system, neurons communicate through nonlinear time-varying synaptic links established amongst them by their particular wiring structure. This property enables neurons to express liquid time-constants dynamics and therefore allows the network to originate complex behaviors with a small number of neurons. We identify neuron-pair communication motifs as design operators and use them to configure compact neuronal network structures to govern sequential robotic tasks. The networks are systematically designed to map the environmental observations to motor actions, by their hierarchical topology from sensory neurons, through recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks realize interpretable dynamics. We evaluate their performance in controlling mobile and arm robots, and compare their attributes to other artificial neural network-based control agents. Finally, we experimentally show their superior resilience to environmental noise, compared to the existing machine learning-based methods. alternative_title: - ICRA article_number: '8793840' article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Manuel full_name: Zimmer, Manuel last_name: Zimmer - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Lechner M, Hasani R, Zimmer M, Henzinger TA, Grosu R. Designing worm-inspired neural networks for interpretable robotic control. In: Proceedings - IEEE International Conference on Robotics and Automation. Vol 2019-May. IEEE; 2019. doi:10.1109/icra.2019.8793840' apa: 'Lechner, M., Hasani, R., Zimmer, M., Henzinger, T. A., & Grosu, R. (2019). Designing worm-inspired neural networks for interpretable robotic control. In Proceedings - IEEE International Conference on Robotics and Automation (Vol. 2019–May). Montreal, QC, Canada: IEEE. https://doi.org/10.1109/icra.2019.8793840' chicago: Lechner, Mathias, Ramin Hasani, Manuel Zimmer, Thomas A Henzinger, and Radu Grosu. “Designing Worm-Inspired Neural Networks for Interpretable Robotic Control.” In Proceedings - IEEE International Conference on Robotics and Automation, Vol. 2019–May. IEEE, 2019. https://doi.org/10.1109/icra.2019.8793840. ieee: M. Lechner, R. Hasani, M. Zimmer, T. A. Henzinger, and R. Grosu, “Designing worm-inspired neural networks for interpretable robotic control,” in Proceedings - IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 2019, vol. 2019–May. ista: 'Lechner M, Hasani R, Zimmer M, Henzinger TA, Grosu R. 2019. Designing worm-inspired neural networks for interpretable robotic control. Proceedings - IEEE International Conference on Robotics and Automation. ICRA: International Conference on Robotics and Automation, ICRA, vol. 2019–May, 8793840.' mla: Lechner, Mathias, et al. “Designing Worm-Inspired Neural Networks for Interpretable Robotic Control.” Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019–May, 8793840, IEEE, 2019, doi:10.1109/icra.2019.8793840. short: M. Lechner, R. Hasani, M. Zimmer, T.A. Henzinger, R. Grosu, in:, Proceedings - IEEE International Conference on Robotics and Automation, IEEE, 2019. conference: end_date: 2019-05-24 location: Montreal, QC, Canada name: 'ICRA: International Conference on Robotics and Automation' start_date: 2019-05-20 date_created: 2019-09-18T08:09:51Z date_published: 2019-05-01T00:00:00Z date_updated: 2021-01-12T08:09:28Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/icra.2019.8793840 file: - access_level: open_access checksum: f5545a6b60c3ffd01feb3613f81d03b6 content_type: application/pdf creator: dernst date_created: 2020-10-08T17:30:38Z date_updated: 2020-10-08T17:30:38Z file_id: '8636' file_name: 2019_ICRA_Lechner.pdf file_size: 3265107 relation: main_file success: 1 file_date_updated: 2020-10-08T17:30:38Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings - IEEE International Conference on Robotics and Automation publication_identifier: isbn: - '9781538660270' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Designing worm-inspired neural networks for interpretable robotic control type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 2019-May year: '2019' ... --- _id: '6886' abstract: - lang: eng text: 'In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. ' alternative_title: - LIPIcs article_number: '20' article_processing_charge: No author: - first_name: Milad full_name: Aghajohari, Milad last_name: Aghajohari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Aghajohari M, Avni G, Henzinger TA. Determinacy in discrete-bidding infinite-duration games. In: Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.20' apa: 'Aghajohari, M., Avni, G., & Henzinger, T. A. (2019). Determinacy in discrete-bidding infinite-duration games (Vol. 140). Presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.20' chicago: Aghajohari, Milad, Guy Avni, and Thomas A Henzinger. “Determinacy in Discrete-Bidding Infinite-Duration Games,” Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.20. ieee: 'M. Aghajohari, G. Avni, and T. A. Henzinger, “Determinacy in discrete-bidding infinite-duration games,” presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands, 2019, vol. 140.' ista: 'Aghajohari M, Avni G, Henzinger TA. 2019. Determinacy in discrete-bidding infinite-duration games. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 20.' mla: Aghajohari, Milad, et al. Determinacy in Discrete-Bidding Infinite-Duration Games. Vol. 140, 20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.20. short: M. Aghajohari, G. Avni, T.A. Henzinger, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Amsterdam, Netherlands name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2019-08-27 date_created: 2019-09-18T08:06:58Z date_published: 2019-08-01T00:00:00Z date_updated: 2022-01-26T08:27:10Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPICS.CONCUR.2019.20 external_id: arxiv: - '1905.03588' file: - access_level: open_access checksum: 4df6d3575c506edb17215adada03cc8e content_type: application/pdf creator: kschuh date_created: 2019-09-27T12:21:38Z date_updated: 2020-07-14T12:47:43Z file_id: '6915' file_name: 2019_LIPIcs_Aghajohari.pdf file_size: 741425 relation: main_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' intvolume: ' 140' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Determinacy in discrete-bidding infinite-duration games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 140 year: '2019' ... --- _id: '6885' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. ' alternative_title: - LIPIcs article_number: '27' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Long-run average behavior of vector addition systems with states. In: Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.27' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2019). Long-run average behavior of vector addition systems with states (Vol. 140). Presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.27' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Long-Run Average Behavior of Vector Addition Systems with States,” Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.27. ieee: 'K. Chatterjee, T. A. Henzinger, and J. Otop, “Long-run average behavior of vector addition systems with states,” presented at the CONCUR: International Conference on Concurrency Theory, Amsterdam, Netherlands, 2019, vol. 140.' ista: 'Chatterjee K, Henzinger TA, Otop J. 2019. Long-run average behavior of vector addition systems with states. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 27.' mla: Chatterjee, Krishnendu, et al. Long-Run Average Behavior of Vector Addition Systems with States. Vol. 140, 27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.27. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-08-30 location: Amsterdam, Netherlands name: 'CONCUR: International Conference on Concurrency Theory' start_date: 2019-08-27 date_created: 2019-09-18T08:06:14Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:09:27Z day: '01' ddc: - '000' department: - _id: ToHe - _id: KrCh doi: 10.4230/LIPICS.CONCUR.2019.27 file: - access_level: open_access checksum: 4985e26e1572d1575d64d38acabd71d6 content_type: application/pdf creator: kschuh date_created: 2019-09-27T12:09:35Z date_updated: 2020-07-14T12:47:43Z file_id: '6914' file_name: 2019_LIPIcs_Chatterjee.pdf file_size: 538120 relation: main_file file_date_updated: 2020-07-14T12:47:43Z has_accepted_license: '1' intvolume: ' 140' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Long-run average behavior of vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 140 year: '2019' ...