--- _id: '10667' abstract: - lang: eng text: Bayesian neural networks (BNNs) place distributions over the weights of a neural network to model uncertainty in the data and the network's prediction. We consider the problem of verifying safety when running a Bayesian neural network policy in a feedback loop with infinite time horizon systems. Compared to the existing sampling-based approaches, which are inapplicable to the infinite time horizon setting, we train a separate deterministic neural network that serves as an infinite time horizon safety certificate. In particular, we show that the certificate network guarantees the safety of the system over a subset of the BNN weight posterior's support. Our method first computes a safe weight set and then alters the BNN's weight posterior to reject samples outside this set. Moreover, we show how to extend our approach to a safe-exploration reinforcement learning setting, in order to avoid unsafe trajectories during the training of the policy. We evaluate our approach on a series of reinforcement learning benchmarks, including non-Lyapunovian safety specifications. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), ERC CoG 863818 (FoRM-SMArt), and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - ' Advances in Neural Information Processing Systems' article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ðorđe full_name: Žikelić, Ðorđe last_name: Žikelić - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lechner M, Žikelić Ð, Chatterjee K, Henzinger TA. Infinite time horizon safety of Bayesian neural networks. In: 35th Conference on Neural Information Processing Systems. ; 2021. doi:10.48550/arXiv.2111.03165' apa: Lechner, M., Žikelić, Ð., Chatterjee, K., & Henzinger, T. A. (2021). Infinite time horizon safety of Bayesian neural networks. In 35th Conference on Neural Information Processing Systems. Virtual. https://doi.org/10.48550/arXiv.2111.03165 chicago: Lechner, Mathias, Ðorđe Žikelić, Krishnendu Chatterjee, and Thomas A Henzinger. “Infinite Time Horizon Safety of Bayesian Neural Networks.” In 35th Conference on Neural Information Processing Systems, 2021. https://doi.org/10.48550/arXiv.2111.03165. ieee: M. Lechner, Ð. Žikelić, K. Chatterjee, and T. A. Henzinger, “Infinite time horizon safety of Bayesian neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, 2021. ista: 'Lechner M, Žikelić Ð, Chatterjee K, Henzinger TA. 2021. Infinite time horizon safety of Bayesian neural networks. 35th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, .' mla: Lechner, Mathias, et al. “Infinite Time Horizon Safety of Bayesian Neural Networks.” 35th Conference on Neural Information Processing Systems, 2021, doi:10.48550/arXiv.2111.03165. short: M. Lechner, Ð. Žikelić, K. Chatterjee, T.A. Henzinger, in:, 35th Conference on Neural Information Processing Systems, 2021. conference: end_date: 2021-12-10 location: Virtual name: 'NeurIPS: Neural Information Processing Systems' start_date: 2021-12-06 date_created: 2022-01-25T15:45:58Z date_published: 2021-12-01T00:00:00Z date_updated: 2023-06-23T07:01:11Z day: '01' ddc: - '000' department: - _id: GradSch - _id: ToHe - _id: KrCh doi: 10.48550/arXiv.2111.03165 ec_funded: 1 external_id: arxiv: - '2111.03165' file: - access_level: open_access checksum: 0fc0f852525c10dda9cc9ffea07fb4e4 content_type: application/pdf creator: mlechner date_created: 2022-01-26T07:39:59Z date_updated: 2022-01-26T07:39:59Z file_id: '10682' file_name: infinite_time_horizon_safety_o.pdf file_size: 452492 relation: main_file success: 1 file_date_updated: 2022-01-26T07:39:59Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/3.0/ main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2021/hash/544defa9fddff50c53b71c43e0da72be-Abstract.html month: '12' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 35th Conference on Neural Information Processing Systems publication_status: published quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public status: public title: Infinite time horizon safety of Bayesian neural networks tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '8912' abstract: - lang: eng text: "For automata, synchronization, the problem of bringing an automaton to a particular state regardless of its initial state, is important. It has several applications in practice and is related to a fifty-year-old conjecture on the length of the shortest synchronizing word. Although using shorter words increases the effectiveness in practice, finding a shortest one (which is not necessarily unique) is NP-hard. For this reason, there exist various heuristics in the literature. However, high-quality heuristics such as SynchroP producing relatively shorter sequences are very expensive and can take hours when the automaton has tens of thousands of states. The SynchroP heuristic has been frequently used as a benchmark to evaluate the performance of the new heuristics. In this work, we first improve the runtime of SynchroP and its variants by using algorithmic techniques. We then focus on adapting SynchroP for many-core architectures,\r\nand overall, we obtain more than 1000× speedup on GPUs compared to naive sequential implementation that has been frequently used as a benchmark to evaluate new heuristics in the literature. We also propose two SynchroP variants and evaluate their performance." acknowledgement: This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [grant number 114E569]. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). We would like to thank the authors of (Roman & Szykula, 2015) for providing their heuristics implementations, which we used to compare our SynchroP implementation as given in Table 11. article_number: '114203' article_processing_charge: No article_type: original author: - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac - first_name: Ömer Faruk full_name: Altun, Ömer Faruk last_name: Altun - first_name: Kamil Tolga full_name: Atam, Kamil Tolga last_name: Atam - first_name: Sertac full_name: Karahoda, Sertac last_name: Karahoda - first_name: Kamer full_name: Kaya, Kamer last_name: Kaya - first_name: Hüsnü full_name: Yenigün, Hüsnü last_name: Yenigün citation: ama: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 2021;167(4). doi:10.1016/j.eswa.2020.114203 apa: Sarac, N. E., Altun, Ö. F., Atam, K. T., Karahoda, S., Kaya, K., & Yenigün, H. (2021). Boosting expensive synchronizing heuristics. Expert Systems with Applications. Elsevier. https://doi.org/10.1016/j.eswa.2020.114203 chicago: Sarac, Naci E, Ömer Faruk Altun, Kamil Tolga Atam, Sertac Karahoda, Kamer Kaya, and Hüsnü Yenigün. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications. Elsevier, 2021. https://doi.org/10.1016/j.eswa.2020.114203. ieee: N. E. Sarac, Ö. F. Altun, K. T. Atam, S. Karahoda, K. Kaya, and H. Yenigün, “Boosting expensive synchronizing heuristics,” Expert Systems with Applications, vol. 167, no. 4. Elsevier, 2021. ista: Sarac NE, Altun ÖF, Atam KT, Karahoda S, Kaya K, Yenigün H. 2021. Boosting expensive synchronizing heuristics. Expert Systems with Applications. 167(4), 114203. mla: Sarac, Naci E., et al. “Boosting Expensive Synchronizing Heuristics.” Expert Systems with Applications, vol. 167, no. 4, 114203, Elsevier, 2021, doi:10.1016/j.eswa.2020.114203. short: N.E. Sarac, Ö.F. Altun, K.T. Atam, S. Karahoda, K. Kaya, H. Yenigün, Expert Systems with Applications 167 (2021). date_created: 2020-12-02T13:34:25Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-04T11:19:00Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1016/j.eswa.2020.114203 external_id: isi: - '000640531100038' file: - access_level: open_access checksum: 600c2f81bc898a725bcfa7cf26ff4fed content_type: application/pdf creator: esarac date_created: 2020-12-02T13:33:51Z date_updated: 2020-12-02T13:33:51Z file_id: '8913' file_name: synchroPaperRevised.pdf file_size: 634967 relation: main_file file_date_updated: 2020-12-02T13:33:51Z has_accepted_license: '1' intvolume: ' 167' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Expert Systems with Applications publication_identifier: issn: - '09574174' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Boosting expensive synchronizing heuristics type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 167 year: '2021' ... --- _id: '9200' abstract: - lang: eng text: Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000-0003-2936-5719 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Garcia Soto M, Henzinger TA, Schilling C. Synthesis of hybrid automata with affine dynamics from time-series data. In: HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. Association for Computing Machinery; 2021:2102.12734. doi:10.1145/3447928.3456704' apa: 'Garcia Soto, M., Henzinger, T. A., & Schilling, C. (2021). Synthesis of hybrid automata with affine dynamics from time-series data. In HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control (p. 2102.12734). Nashville, TN, United States: Association for Computing Machinery. https://doi.org/10.1145/3447928.3456704' chicago: 'Garcia Soto, Miriam, Thomas A Henzinger, and Christian Schilling. “Synthesis of Hybrid Automata with Affine Dynamics from Time-Series Data.” In HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2102.12734. Association for Computing Machinery, 2021. https://doi.org/10.1145/3447928.3456704.' ieee: 'M. Garcia Soto, T. A. Henzinger, and C. Schilling, “Synthesis of hybrid automata with affine dynamics from time-series data,” in HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Nashville, TN, United States, 2021, p. 2102.12734.' ista: 'Garcia Soto M, Henzinger TA, Schilling C. 2021. Synthesis of hybrid automata with affine dynamics from time-series data. HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. HSCC: International Conference on Hybrid Systems Computation and Control, 2102.12734.' mla: 'Garcia Soto, Miriam, et al. “Synthesis of Hybrid Automata with Affine Dynamics from Time-Series Data.” HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Association for Computing Machinery, 2021, p. 2102.12734, doi:10.1145/3447928.3456704.' short: 'M. Garcia Soto, T.A. Henzinger, C. Schilling, in:, HSCC ’21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, Association for Computing Machinery, 2021, p. 2102.12734.' conference: end_date: 2021-05-21 location: Nashville, TN, United States name: 'HSCC: International Conference on Hybrid Systems Computation and Control' start_date: 2021-05-19 date_created: 2021-02-26T16:30:39Z date_published: 2021-05-01T00:00:00Z date_updated: 2023-08-07T13:49:33Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1145/3447928.3456704 ec_funded: 1 external_id: arxiv: - '2102.12734' isi: - '000932821700028' file: - access_level: open_access checksum: 4c1202c1abf71384c3ee6fea88c2f80e content_type: application/pdf creator: kschuh date_created: 2021-05-25T13:53:22Z date_updated: 2021-05-25T13:53:22Z file_id: '9424' file_name: 2021_HSCC_Soto.pdf file_size: 1474786 relation: main_file success: 1 file_date_updated: 2021-05-25T13:53:22Z has_accepted_license: '1' isi: 1 keyword: - hybrid automaton - membership - system identification language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '2102.12734' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'HSCC ''21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control' publication_identifier: isbn: - '9781450383394' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Synthesis of hybrid automata with affine dynamics from time-series data tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9239' abstract: - lang: eng text: 'A graph game proceeds as follows: two players move a token through a graph to produce a finite or infinite path, which determines the payoff of the game. We study bidding games in which in each turn, an auction determines which player moves the token. Bidding games were largely studied in combination with two variants of first-price auctions called “Richman” and “poorman” bidding. We study taxman bidding, which span the spectrum between the two. The game is parameterized by a constant : portion τ of the winning bid is paid to the other player, and portion to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games: we unify, generalize, and simplify previous equivalences between bidding games and a class of stochastic games called random-turn games.' article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Đorđe full_name: Žikelić, Đorđe last_name: Žikelić citation: ama: Avni G, Henzinger TA, Žikelić Đ. Bidding mechanisms in graph games. Journal of Computer and System Sciences. 2021;119(8):133-144. doi:10.1016/j.jcss.2021.02.008 apa: Avni, G., Henzinger, T. A., & Žikelić, Đ. (2021). Bidding mechanisms in graph games. Journal of Computer and System Sciences. Elsevier. https://doi.org/10.1016/j.jcss.2021.02.008 chicago: Avni, Guy, Thomas A Henzinger, and Đorđe Žikelić. “Bidding Mechanisms in Graph Games.” Journal of Computer and System Sciences. Elsevier, 2021. https://doi.org/10.1016/j.jcss.2021.02.008. ieee: G. Avni, T. A. Henzinger, and Đ. Žikelić, “Bidding mechanisms in graph games,” Journal of Computer and System Sciences, vol. 119, no. 8. Elsevier, pp. 133–144, 2021. ista: Avni G, Henzinger TA, Žikelić Đ. 2021. Bidding mechanisms in graph games. Journal of Computer and System Sciences. 119(8), 133–144. mla: Avni, Guy, et al. “Bidding Mechanisms in Graph Games.” Journal of Computer and System Sciences, vol. 119, no. 8, Elsevier, 2021, pp. 133–44, doi:10.1016/j.jcss.2021.02.008. short: G. Avni, T.A. Henzinger, Đ. Žikelić, Journal of Computer and System Sciences 119 (2021) 133–144. date_created: 2021-03-14T23:01:32Z date_published: 2021-03-03T00:00:00Z date_updated: 2023-08-07T14:08:34Z day: '03' department: - _id: ToHe doi: 10.1016/j.jcss.2021.02.008 external_id: arxiv: - '1905.03835' isi: - '000634149800009' intvolume: ' 119' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1905.03835 month: '03' oa: 1 oa_version: Preprint page: 133-144 publication: Journal of Computer and System Sciences publication_identifier: eissn: - 1090-2724 issn: - 0022-0000 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '6884' relation: earlier_version status: public scopus_import: '1' status: public title: Bidding mechanisms in graph games type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2021' ... --- _id: '9356' abstract: - lang: eng text: 'In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of attempting to conclude boolean values of trace specifications), such as maximal or average response time along a trace. Quantitative monitors are approximate: with every finite prefix, they can improve their estimate of the infinite trace''s unknown property value. Consequently, quantitative monitors can be compared with regard to a precision-cost trade-off: better approximations of the property value require more monitor resources, such as states (in the case of finite-state monitors) or registers, and additional resources yield better approximations. We introduce a formal framework for quantitative and approximate monitoring, show how it conservatively generalizes the classical boolean setting for monitoring, and give several precision-cost trade-offs for monitors. For example, we prove that there are quantitative properties for which every additional register improves monitoring precision.' acknowledgement: We thank the anonymous reviewers for their helpful comments. This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_number: '9470547' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Sarac NE. Quantitative and approximate monitoring. In: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers; 2021. doi:10.1109/LICS52264.2021.9470547' apa: 'Henzinger, T. A., & Sarac, N. E. (2021). Quantitative and approximate monitoring. In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Online: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LICS52264.2021.9470547' chicago: Henzinger, Thomas A, and Naci E Sarac. “Quantitative and Approximate Monitoring.” In Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/LICS52264.2021.9470547. ieee: T. A. Henzinger and N. E. Sarac, “Quantitative and approximate monitoring,” in Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Online, 2021. ista: 'Henzinger TA, Sarac NE. 2021. Quantitative and approximate monitoring. Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS: Symposium on Logic in Computer Science, 9470547.' mla: Henzinger, Thomas A., and Naci E. Sarac. “Quantitative and Approximate Monitoring.” Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, 9470547, Institute of Electrical and Electronics Engineers, 2021, doi:10.1109/LICS52264.2021.9470547. short: T.A. Henzinger, N.E. Sarac, in:, Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, Institute of Electrical and Electronics Engineers, 2021. conference: end_date: 2021-07-02 location: Online name: 'LICS: Symposium on Logic in Computer Science' start_date: 2021-06-29 date_created: 2021-04-30T17:30:47Z date_published: 2021-06-29T00:00:00Z date_updated: 2023-08-08T13:52:56Z day: '29' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1109/LICS52264.2021.9470547 external_id: arxiv: - '2105.08353' isi: - '000947350400021' file: - access_level: open_access checksum: 6e4cba3f72775f479c5b1b75d1a4a0c4 content_type: application/pdf creator: esarac date_created: 2021-06-16T08:23:54Z date_updated: 2021-06-16T08:23:54Z file_id: '9557' file_name: qam.pdf file_size: 641990 relation: main_file success: 1 file_date_updated: 2021-06-16T08:23:54Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: Quantitative and approximate monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9647' abstract: - lang: eng text: 'Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.' acknowledgement: 'Tatjana Petrov’s research was supported in part by SNSF Advanced Postdoctoral Mobility Fellowship grant number P300P2 161067, the Ministry of Science, Research and the Arts of the state of Baden-Wurttemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984). Claudia Igler is the recipient of a DOC Fellowship of the Austrian Academy of Sciences. Thomas A. Henzinger’s research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).' article_processing_charge: No article_type: original author: - first_name: Tatjana full_name: Petrov, Tatjana last_name: Petrov - first_name: Claudia full_name: Igler, Claudia id: 46613666-F248-11E8-B48F-1D18A9856A87 last_name: Igler - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. Long lived transients in gene regulation. Theoretical Computer Science. 2021;893:1-16. doi:10.1016/j.tcs.2021.05.023 apa: Petrov, T., Igler, C., Sezgin, A., Henzinger, T. A., & Guet, C. C. (2021). Long lived transients in gene regulation. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2021.05.023 chicago: Petrov, Tatjana, Claudia Igler, Ali Sezgin, Thomas A Henzinger, and Calin C Guet. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science. Elsevier, 2021. https://doi.org/10.1016/j.tcs.2021.05.023. ieee: T. Petrov, C. Igler, A. Sezgin, T. A. Henzinger, and C. C. Guet, “Long lived transients in gene regulation,” Theoretical Computer Science, vol. 893. Elsevier, pp. 1–16, 2021. ista: Petrov T, Igler C, Sezgin A, Henzinger TA, Guet CC. 2021. Long lived transients in gene regulation. Theoretical Computer Science. 893, 1–16. mla: Petrov, Tatjana, et al. “Long Lived Transients in Gene Regulation.” Theoretical Computer Science, vol. 893, Elsevier, 2021, pp. 1–16, doi:10.1016/j.tcs.2021.05.023. short: T. Petrov, C. Igler, A. Sezgin, T.A. Henzinger, C.C. Guet, Theoretical Computer Science 893 (2021) 1–16. date_created: 2021-07-11T22:01:18Z date_published: 2021-06-04T00:00:00Z date_updated: 2023-08-10T14:11:19Z day: '04' ddc: - '004' department: - _id: ToHe - _id: CaGu doi: 10.1016/j.tcs.2021.05.023 external_id: isi: - '000710180500002' file: - access_level: open_access checksum: d3aef34cfb13e53bba4cf44d01680793 content_type: application/pdf creator: dernst date_created: 2022-05-12T12:13:27Z date_updated: 2022-05-12T12:13:27Z file_id: '11364' file_name: 2021_TheoreticalComputerScience_Petrov.pdf file_size: 2566504 relation: main_file success: 1 file_date_updated: 2022-05-12T12:13:27Z has_accepted_license: '1' intvolume: ' 893' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '06' oa: 1 oa_version: Published Version page: 1-16 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Long lived transients in gene regulation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 893 year: '2021' ... --- _id: '10108' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Mae Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - LNCS article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Mühlböck F, Henzinger TA. Differential monitoring. In: International Conference on Runtime Verification. Vol 12974. Cham: Springer Nature; 2021:231-243. doi:10.1007/978-3-030-88494-9_12' apa: 'Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. In International Conference on Runtime Verification (Vol. 12974, pp. 231–243). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-88494-9_12' chicago: 'Mühlböck, Fabian, and Thomas A Henzinger. “Differential Monitoring.” In International Conference on Runtime Verification, 12974:231–43. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-88494-9_12.' ieee: F. Mühlböck and T. A. Henzinger, “Differential monitoring,” in International Conference on Runtime Verification, Virtual, 2021, vol. 12974, pp. 231–243. ista: 'Mühlböck F, Henzinger TA. 2021. Differential monitoring. International Conference on Runtime Verification. RV: Runtime Verification, LNCS, vol. 12974, 231–243.' mla: Mühlböck, Fabian, and Thomas A. Henzinger. “Differential Monitoring.” International Conference on Runtime Verification, vol. 12974, Springer Nature, 2021, pp. 231–43, doi:10.1007/978-3-030-88494-9_12. short: F. Mühlböck, T.A. Henzinger, in:, International Conference on Runtime Verification, Springer Nature, Cham, 2021, pp. 231–243. conference: end_date: 2021-10-14 location: Virtual name: 'RV: Runtime Verification' start_date: 2021-10-11 date_created: 2021-10-07T23:30:10Z date_published: 2021-10-06T00:00:00Z date_updated: 2023-08-14T07:20:30Z day: '06' ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-030-88494-9_12 external_id: isi: - '000719383800012' file: - access_level: open_access checksum: 554c7fdb259eda703a8b6328a6dad55a content_type: application/pdf creator: fmuehlbo date_created: 2021-10-07T23:32:18Z date_updated: 2021-10-07T23:32:18Z file_id: '10109' file_name: differentialmonitoring-cameraready-openaccess.pdf file_size: 350632 relation: main_file success: 1 file_date_updated: 2021-10-07T23:32:18Z has_accepted_license: '1' intvolume: ' 12974' isi: 1 keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '10' oa: 1 oa_version: Preprint page: 231-243 place: Cham project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: International Conference on Runtime Verification publication_identifier: eisbn: - 978-3-030-88494-9 eissn: - 1611-3349 isbn: - 978-3-030-88493-2 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '9946' relation: extended_version status: public scopus_import: '1' status: public title: Differential monitoring type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12974 year: '2021' ... --- _id: '9946' abstract: - lang: eng text: We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs. acknowledgement: The authors would like to thank Borzoo Bonakdarpour, Derek Dreyer, Adrian Francalanza, Owolabi Legunsen, Matthew Milano, Manuel Rigger, Cesar Sanchez, and the members of the IST Verification Seminar for their helpful comments and insights on various stages of this work, as well as the reviewers of RV’21 for their helpful suggestions on the actual paper. alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Mühlböck F, Henzinger TA. Differential Monitoring. IST Austria; 2021. doi:10.15479/AT:ISTA:9946 apa: Mühlböck, F., & Henzinger, T. A. (2021). Differential monitoring. IST Austria. https://doi.org/10.15479/AT:ISTA:9946 chicago: Mühlböck, Fabian, and Thomas A Henzinger. Differential Monitoring. IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:9946. ieee: F. Mühlböck and T. A. Henzinger, Differential monitoring. IST Austria, 2021. ista: Mühlböck F, Henzinger TA. 2021. Differential monitoring, IST Austria, 17p. mla: Mühlböck, Fabian, and Thomas A. Henzinger. Differential Monitoring. IST Austria, 2021, doi:10.15479/AT:ISTA:9946. short: F. Mühlböck, T.A. Henzinger, Differential Monitoring, IST Austria, 2021. date_created: 2021-08-20T20:00:37Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-08-14T07:20:29Z day: '01' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:9946 file: - access_level: open_access checksum: 0f9aafd59444cb6bdca6925d163ab946 content_type: application/pdf creator: fmuehlbo date_created: 2021-08-20T19:59:44Z date_updated: 2021-09-03T12:34:28Z file_id: '9948' file_name: differentialmonitoring-techreport.pdf file_size: '320453' relation: main_file file_date_updated: 2021-09-03T12:34:28Z has_accepted_license: '1' keyword: - run-time verification - software engineering - implicit specification language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '17' project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria related_material: record: - id: '9281' relation: other status: public - id: '10108' relation: shorter_version status: public status: public title: Differential monitoring type: technical_report user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10404' abstract: - lang: eng text: While convolutional neural networks (CNNs) have found wide adoption as state-of-the-art models for image-related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web-based application that allows users to instantaneously explore how CNN activations and predictions evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate the discovery of potential vulnerabilities. Fine-tuned model versions can be directly compared for qualitative evaluation of their robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could replicate users’ insights with other CNN architectures and input images, yielding new insights about the vulnerability of adversarially trained models. acknowledgement: "We thank Robert Geirhos and Roland Zimmermann for their participation in the case study and valuable feedback, Chris Olah and Nick Cammarata for valuable discussions in the early phase of the project, as well as the Distill Slack workspace as a platform for discussions. M.L. is supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). J.B. is supported by the German Federal Ministry of Education and Research\r\n(BMBF) through the Competence Center for Machine Learning (TUE.AI, FKZ 01IS18039A) and the International Max Planck Research School for Intelligent Systems (IMPRS-IS). R.H. is partially supported by Boeing and Horizon-2020 ECSEL (grant 783163, iDev40).\r\n" article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Sietzen, Stefan last_name: Sietzen - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Judy full_name: Borowski, Judy last_name: Borowski - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Manuela full_name: Waldner, Manuela last_name: Waldner citation: ama: Sietzen S, Lechner M, Borowski J, Hasani R, Waldner M. Interactive analysis of CNN robustness. Computer Graphics Forum. 2021;40(7):253-264. doi:10.1111/cgf.14418 apa: Sietzen, S., Lechner, M., Borowski, J., Hasani, R., & Waldner, M. (2021). Interactive analysis of CNN robustness. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.14418 chicago: Sietzen, Stefan, Mathias Lechner, Judy Borowski, Ramin Hasani, and Manuela Waldner. “Interactive Analysis of CNN Robustness.” Computer Graphics Forum. Wiley, 2021. https://doi.org/10.1111/cgf.14418. ieee: S. Sietzen, M. Lechner, J. Borowski, R. Hasani, and M. Waldner, “Interactive analysis of CNN robustness,” Computer Graphics Forum, vol. 40, no. 7. Wiley, pp. 253–264, 2021. ista: Sietzen S, Lechner M, Borowski J, Hasani R, Waldner M. 2021. Interactive analysis of CNN robustness. Computer Graphics Forum. 40(7), 253–264. mla: Sietzen, Stefan, et al. “Interactive Analysis of CNN Robustness.” Computer Graphics Forum, vol. 40, no. 7, Wiley, 2021, pp. 253–64, doi:10.1111/cgf.14418. short: S. Sietzen, M. Lechner, J. Borowski, R. Hasani, M. Waldner, Computer Graphics Forum 40 (2021) 253–264. date_created: 2021-12-05T23:01:40Z date_published: 2021-11-27T00:00:00Z date_updated: 2023-08-14T13:11:42Z day: '27' department: - _id: ToHe doi: 10.1111/cgf.14418 external_id: arxiv: - '2110.07667' isi: - '000722952000024' intvolume: ' 40' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2110.07667 month: '11' oa: 1 oa_version: Preprint page: 253-264 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Computer Graphics Forum publication_identifier: eissn: - 1467-8659 issn: - 0167-7055 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Interactive analysis of CNN robustness type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '10674' abstract: - lang: eng text: 'In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets.' acknowledgement: "This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship).\r\n" article_processing_charge: No article_type: original author: - first_name: Milad full_name: Aghajohari, Milad last_name: Aghajohari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Aghajohari M, Avni G, Henzinger TA. Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. 2021;17(1):10:1-10:23. doi:10.23638/LMCS-17(1:10)2021 apa: Aghajohari, M., Avni, G., & Henzinger, T. A. (2021). Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. International Federation for Computational Logic. https://doi.org/10.23638/LMCS-17(1:10)2021 chicago: Aghajohari, Milad, Guy Avni, and Thomas A Henzinger. “Determinacy in Discrete-Bidding Infinite-Duration Games.” Logical Methods in Computer Science. International Federation for Computational Logic, 2021. https://doi.org/10.23638/LMCS-17(1:10)2021. ieee: M. Aghajohari, G. Avni, and T. A. Henzinger, “Determinacy in discrete-bidding infinite-duration games,” Logical Methods in Computer Science, vol. 17, no. 1. International Federation for Computational Logic, p. 10:1-10:23, 2021. ista: Aghajohari M, Avni G, Henzinger TA. 2021. Determinacy in discrete-bidding infinite-duration games. Logical Methods in Computer Science. 17(1), 10:1-10:23. mla: Aghajohari, Milad, et al. “Determinacy in Discrete-Bidding Infinite-Duration Games.” Logical Methods in Computer Science, vol. 17, no. 1, International Federation for Computational Logic, 2021, p. 10:1-10:23, doi:10.23638/LMCS-17(1:10)2021. short: M. Aghajohari, G. Avni, T.A. Henzinger, Logical Methods in Computer Science 17 (2021) 10:1-10:23. date_created: 2022-01-25T16:32:13Z date_published: 2021-02-03T00:00:00Z date_updated: 2023-08-17T06:56:42Z day: '03' ddc: - '510' department: - _id: ToHe doi: 10.23638/LMCS-17(1:10)2021 external_id: arxiv: - '1905.03588' isi: - '000658724600010' file: - access_level: open_access checksum: b35586a50ed1ca8f44767de116d18d81 content_type: application/pdf creator: alisjak date_created: 2022-01-26T08:04:50Z date_updated: 2022-01-26T08:04:50Z file_id: '10690' file_name: 2021_LMCS_AGHAJOHAR.pdf file_size: 819878 relation: main_file success: 1 file_date_updated: 2022-01-26T08:04:50Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '1' keyword: - computer science - computer science and game theory - logic in computer science language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 10:1-10:23 project: - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Logical Methods in Computer Science publication_identifier: eissn: - 1860-5974 publication_status: published publisher: International Federation for Computational Logic quality_controlled: '1' scopus_import: '1' status: public title: Determinacy in discrete-bidding infinite-duration games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2021' ...