--- _id: '5428' abstract: - lang: eng text: "Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. Again, while fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable for mean-payoff automata and the decidability is open for discounted-sum automata, whereas the (quantitative) simulation reduce to mean-payoff games and discounted-sum games, which admit pseudo-polynomial time algorithms.\r\n\r\nIn this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games. For example, whereas for mean-payoff and discounted-sum games, the players do not need memory to play optimally; we show in contrast that for simulation games with Büchi acceptance conditions, (i) for mean-payoff objectives, optimal strategies for both players require infinite memory in general, and (ii) for discounted-sum objectives, optimal strategies need not exist for both players. While the simulation games with Büchi acceptance conditions are more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to their counterpart without Büchi acceptance conditions, we still present pseudo-polynomial time algorithms to solve simulation games with Büchi acceptance conditions for both weighted mean-payoff and weighted discounted-sum automata." alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop - first_name: Yaron full_name: Velner, Yaron last_name: Velner citation: ama: Chatterjee K, Henzinger TA, Otop J, Velner Y. Quantitative Fair Simulation Games. IST Austria; 2014. doi:10.15479/AT:IST-2014-315-v1-1 apa: Chatterjee, K., Henzinger, T. A., Otop, J., & Velner, Y. (2014). Quantitative fair simulation games. IST Austria. https://doi.org/10.15479/AT:IST-2014-315-v1-1 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Jan Otop, and Yaron Velner. Quantitative Fair Simulation Games. IST Austria, 2014. https://doi.org/10.15479/AT:IST-2014-315-v1-1. ieee: K. Chatterjee, T. A. Henzinger, J. Otop, and Y. Velner, Quantitative fair simulation games. IST Austria, 2014. ista: Chatterjee K, Henzinger TA, Otop J, Velner Y. 2014. Quantitative fair simulation games, IST Austria, 26p. mla: Chatterjee, Krishnendu, et al. Quantitative Fair Simulation Games. IST Austria, 2014, doi:10.15479/AT:IST-2014-315-v1-1. short: K. Chatterjee, T.A. Henzinger, J. Otop, Y. Velner, Quantitative Fair Simulation Games, IST Austria, 2014. date_created: 2018-12-12T11:39:16Z date_published: 2014-12-05T00:00:00Z date_updated: 2023-09-20T12:07:48Z day: '05' ddc: - '004' department: - _id: ToHe - _id: KrCh doi: 10.15479/AT:IST-2014-315-v1-1 file: - access_level: open_access checksum: b1d573bc04365625ff9974880c0aa807 content_type: application/pdf creator: system date_created: 2018-12-12T11:53:59Z date_updated: 2020-07-14T12:46:52Z file_id: '5521' file_name: IST-2014-315-v1+1_report.pdf file_size: 531046 relation: main_file file_date_updated: 2020-07-14T12:46:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '26' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '315' related_material: record: - id: '1066' relation: later_version status: public status: public title: Quantitative fair simulation games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '10898' abstract: - lang: eng text: A prominent remedy to multicore scalability issues in concurrent data structure implementations is to relax the sequential specification of the data structure. We present distributed queues (DQ), a new family of relaxed concurrent queue implementations. DQs implement relaxed queues with linearizable emptiness check and either configurable or bounded out-of-order behavior or pool behavior. Our experiments show that DQs outperform and outscale in micro- and macrobenchmarks all strict and relaxed queue as well as pool implementations that we considered. article_number: '17' article_processing_charge: No author: - first_name: Andreas full_name: Haas, Andreas last_name: Haas - first_name: Michael full_name: Lippautz, Michael last_name: Lippautz - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Hannes full_name: Payer, Hannes last_name: Payer - first_name: Ana full_name: Sokolova, Ana last_name: Sokolova - first_name: Christoph M. full_name: Kirsch, Christoph M. last_name: Kirsch - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin citation: ama: 'Haas A, Lippautz M, Henzinger TA, et al. Distributed queues in shared memory: Multicore performance and scalability through quantitative relaxation. In: Proceedings of the ACM International Conference on Computing Frontiers - CF ’13. ACM Press; 2013. doi:10.1145/2482767.2482789' apa: 'Haas, A., Lippautz, M., Henzinger, T. A., Payer, H., Sokolova, A., Kirsch, C. M., & Sezgin, A. (2013). Distributed queues in shared memory: Multicore performance and scalability through quantitative relaxation. In Proceedings of the ACM International Conference on Computing Frontiers - CF ’13. Ischia, Italy: ACM Press. https://doi.org/10.1145/2482767.2482789' chicago: 'Haas, Andreas, Michael Lippautz, Thomas A Henzinger, Hannes Payer, Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. “Distributed Queues in Shared Memory: Multicore Performance and Scalability through Quantitative Relaxation.” In Proceedings of the ACM International Conference on Computing Frontiers - CF ’13. ACM Press, 2013. https://doi.org/10.1145/2482767.2482789.' ieee: 'A. Haas et al., “Distributed queues in shared memory: Multicore performance and scalability through quantitative relaxation,” in Proceedings of the ACM International Conference on Computing Frontiers - CF ’13, Ischia, Italy, 2013, no. 5.' ista: 'Haas A, Lippautz M, Henzinger TA, Payer H, Sokolova A, Kirsch CM, Sezgin A. 2013. Distributed queues in shared memory: Multicore performance and scalability through quantitative relaxation. Proceedings of the ACM International Conference on Computing Frontiers - CF ’13. CF: Conference on Computing Frontiers, 17.' mla: 'Haas, Andreas, et al. “Distributed Queues in Shared Memory: Multicore Performance and Scalability through Quantitative Relaxation.” Proceedings of the ACM International Conference on Computing Frontiers - CF ’13, no. 5, 17, ACM Press, 2013, doi:10.1145/2482767.2482789.' short: A. Haas, M. Lippautz, T.A. Henzinger, H. Payer, A. Sokolova, C.M. Kirsch, A. Sezgin, in:, Proceedings of the ACM International Conference on Computing Frontiers - CF ’13, ACM Press, 2013. conference: end_date: 2013-05-16 location: Ischia, Italy name: 'CF: Conference on Computing Frontiers' start_date: 2013-05-14 date_created: 2022-03-21T07:33:22Z date_published: 2013-05-01T00:00:00Z date_updated: 2022-06-21T08:01:19Z day: '01' department: - _id: ToHe doi: 10.1145/2482767.2482789 issue: '5' language: - iso: eng month: '05' oa_version: None publication: Proceedings of the ACM International Conference on Computing Frontiers - CF '13 publication_identifier: isbn: - 978-145032053-5 publication_status: published publisher: ACM Press quality_controlled: '1' scopus_import: '1' status: public title: 'Distributed queues in shared memory: Multicore performance and scalability through quantitative relaxation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '1385' abstract: - lang: eng text: It is often difficult to correctly implement a Boolean controller for a complex system, especially when concurrency is involved. Yet, it may be easy to formally specify a controller. For instance, for a pipelined processor it suffices to state that the visible behavior of the pipelined system should be identical to a non-pipelined reference system (Burch-Dill paradigm). We present a novel procedure to efficiently synthesize multiple Boolean control signals from a specification given as a quantified first-order formula (with a specific quantifier structure). Our approach uses uninterpreted functions to abstract details of the design. We construct an unsatisfiable SMT formula from the given specification. Then, from just one proof of unsatisfiability, we use a variant of Craig interpolation to compute multiple coordinated interpolants that implement the Boolean control signals. Our method avoids iterative learning and back-substitution of the control functions. We applied our approach to synthesize a controller for a simple two-stage pipelined processor, and present first experimental results. acknowledgement: "This research was supported by the European Commission through project\r\nDIAMOND \ (FP7-2009-IST-4-248613), and QUAINT (I774-N23), " author: - first_name: Georg full_name: Hofferek, Georg last_name: Hofferek - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Bettina full_name: Könighofer, Bettina last_name: Könighofer - first_name: Jie full_name: Jiang, Jie last_name: Jiang - first_name: Roderick full_name: Bloem, Roderick last_name: Bloem citation: ama: 'Hofferek G, Gupta A, Könighofer B, Jiang J, Bloem R. Synthesizing multiple boolean functions using interpolation on a single proof. In: 2013 Formal Methods in Computer-Aided Design. IEEE; 2013:77-84. doi:10.1109/FMCAD.2013.6679394' apa: 'Hofferek, G., Gupta, A., Könighofer, B., Jiang, J., & Bloem, R. (2013). Synthesizing multiple boolean functions using interpolation on a single proof. In 2013 Formal Methods in Computer-Aided Design (pp. 77–84). Portland, OR, United States: IEEE. https://doi.org/10.1109/FMCAD.2013.6679394' chicago: Hofferek, Georg, Ashutosh Gupta, Bettina Könighofer, Jie Jiang, and Roderick Bloem. “Synthesizing Multiple Boolean Functions Using Interpolation on a Single Proof.” In 2013 Formal Methods in Computer-Aided Design, 77–84. IEEE, 2013. https://doi.org/10.1109/FMCAD.2013.6679394. ieee: G. Hofferek, A. Gupta, B. Könighofer, J. Jiang, and R. Bloem, “Synthesizing multiple boolean functions using interpolation on a single proof,” in 2013 Formal Methods in Computer-Aided Design, Portland, OR, United States, 2013, pp. 77–84. ista: 'Hofferek G, Gupta A, Könighofer B, Jiang J, Bloem R. 2013. Synthesizing multiple boolean functions using interpolation on a single proof. 2013 Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 77–84.' mla: Hofferek, Georg, et al. “Synthesizing Multiple Boolean Functions Using Interpolation on a Single Proof.” 2013 Formal Methods in Computer-Aided Design, IEEE, 2013, pp. 77–84, doi:10.1109/FMCAD.2013.6679394. short: G. Hofferek, A. Gupta, B. Könighofer, J. Jiang, R. Bloem, in:, 2013 Formal Methods in Computer-Aided Design, IEEE, 2013, pp. 77–84. conference: end_date: 2013-10-23 location: Portland, OR, United States name: 'FMCAD: Formal Methods in Computer-Aided Design' start_date: 2013-10-20 date_created: 2018-12-11T11:51:43Z date_published: 2013-12-11T00:00:00Z date_updated: 2021-01-12T06:50:19Z day: '11' department: - _id: ToHe doi: 10.1109/FMCAD.2013.6679394 ec_funded: 1 external_id: arxiv: - '1308.4767' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1308.4767 month: '12' oa: 1 oa_version: Preprint page: 77 - 84 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication: 2013 Formal Methods in Computer-Aided Design publication_status: published publisher: IEEE publist_id: '5825' quality_controlled: '1' status: public title: Synthesizing multiple boolean functions using interpolation on a single proof type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '1387' abstract: - lang: eng text: Choices made by nondeterministic word automata depend on both the past (the prefix of the word read so far) and the future (the suffix yet to be read). In several applications, most notably synthesis, the future is diverse or unknown, leading to algorithms that are based on deterministic automata. Hoping to retain some of the advantages of nondeterministic automata, researchers have studied restricted classes of nondeterministic automata. Three such classes are nondeterministic automata that are good for trees (GFT; i.e., ones that can be expanded to tree automata accepting the derived tree languages, thus whose choices should satisfy diverse futures), good for games (GFG; i.e., ones whose choices depend only on the past), and determinizable by pruning (DBP; i.e., ones that embody equivalent deterministic automata). The theoretical properties and relative merits of the different classes are still open, having vagueness on whether they really differ from deterministic automata. In particular, while DBP ⊆ GFG ⊆ GFT, it is not known whether every GFT automaton is GFG and whether every GFG automaton is DBP. Also open is the possible succinctness of GFG and GFT automata compared to deterministic automata. We study these problems for ω-regular automata with all common acceptance conditions. We show that GFT=GFG⊃DBP, and describe a determinization construction for GFG automata. acknowledgement: and ERC Grant QUALITY. alternative_title: - LNCS article_processing_charge: No author: - first_name: Udi full_name: Boker, Udi id: 31E297B6-F248-11E8-B48F-1D18A9856A87 last_name: Boker - first_name: Denis full_name: Kuperberg, Denis last_name: Kuperberg - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman - first_name: Michał full_name: Skrzypczak, Michał last_name: Skrzypczak citation: ama: Boker U, Kuperberg D, Kupferman O, Skrzypczak M. Nondeterminism in the presence of a diverse or unknown future. 2013;7966(PART 2):89-100. doi:10.1007/978-3-642-39212-2_11 apa: 'Boker, U., Kuperberg, D., Kupferman, O., & Skrzypczak, M. (2013). Nondeterminism in the presence of a diverse or unknown future. Presented at the ICALP: Automata, Languages and Programming, Riga, Latvia: Springer. https://doi.org/10.1007/978-3-642-39212-2_11' chicago: Boker, Udi, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. “Nondeterminism in the Presence of a Diverse or Unknown Future.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39212-2_11. ieee: U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak, “Nondeterminism in the presence of a diverse or unknown future,” vol. 7966, no. PART 2. Springer, pp. 89–100, 2013. ista: Boker U, Kuperberg D, Kupferman O, Skrzypczak M. 2013. Nondeterminism in the presence of a diverse or unknown future. 7966(PART 2), 89–100. mla: Boker, Udi, et al. Nondeterminism in the Presence of a Diverse or Unknown Future. Vol. 7966, no. PART 2, Springer, 2013, pp. 89–100, doi:10.1007/978-3-642-39212-2_11. short: U. Boker, D. Kuperberg, O. Kupferman, M. Skrzypczak, 7966 (2013) 89–100. conference: end_date: 2013-07-12 location: Riga, Latvia name: 'ICALP: Automata, Languages and Programming' start_date: 2013-07-08 date_created: 2018-12-11T11:51:44Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:09Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-642-39212-2_11 ec_funded: 1 file: - access_level: open_access checksum: 98bc02e3793072e279ec8d364b381ff3 content_type: application/pdf creator: dernst date_created: 2020-05-15T11:05:50Z date_updated: 2020-07-14T12:44:48Z file_id: '7857' file_name: 2013_ICALP_Boker.pdf file_size: 276982 relation: main_file file_date_updated: 2020-07-14T12:44:48Z has_accepted_license: '1' intvolume: ' 7966' issue: PART 2 language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 89 - 100 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication_status: published publisher: Springer publist_id: '5823' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Nondeterminism in the presence of a diverse or unknown future type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7966 year: '2013' ... --- _id: '2181' abstract: - lang: eng text: 'There is a trade-off between performance and correctness in implementing concurrent data structures. Better performance may be achieved at the expense of relaxing correctness, by redefining the semantics of data structures. We address such a redefinition of data structure semantics and present a systematic and formal framework for obtaining new data structures by quantitatively relaxing existing ones. We view a data structure as a sequential specification S containing all "legal" sequences over an alphabet of method calls. Relaxing the data structure corresponds to defining a distance from any sequence over the alphabet to the sequential specification: the k-relaxed sequential specification contains all sequences over the alphabet within distance k from the original specification. In contrast to other existing work, our relaxations are semantic (distance in terms of data structure states). As an instantiation of our framework, we present two simple yet generic relaxation schemes, called out-of-order and stuttering relaxation, along with several ways of computing distances. We show that the out-of-order relaxation, when further instantiated to stacks, queues, and priority queues, amounts to tolerating bounded out-of-order behavior, which cannot be captured by a purely syntactic relaxation (distance in terms of sequence manipulation, e.g. edit distance). We give concurrent implementations of relaxed data structures and demonstrate that bounded relaxations provide the means for trading correctness for performance in a controlled way. The relaxations are monotonic which further highlights the trade-off: increasing k increases the number of permitted sequences, which as we demonstrate can lead to better performance. Finally, since a relaxed stack or queue also implements a pool, we actually have new concurrent pool implementations that outperform the state-of-the-art ones.' acknowledgement: ' and an Elise Richter Fellowship (Austrian Science Fund V00125). ' author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Christoph full_name: Kirsch, Christoph last_name: Kirsch - first_name: Hannes full_name: Payer, Hannes last_name: Payer - first_name: Ali full_name: Sezgin, Ali id: 4C7638DA-F248-11E8-B48F-1D18A9856A87 last_name: Sezgin - first_name: Ana full_name: Sokolova, Ana last_name: Sokolova citation: ama: 'Henzinger TA, Kirsch C, Payer H, Sezgin A, Sokolova A. Quantitative relaxation of concurrent data structures. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language. ACM; 2013:317-328. doi:10.1145/2429069.2429109' apa: 'Henzinger, T. A., Kirsch, C., Payer, H., Sezgin, A., & Sokolova, A. (2013). Quantitative relaxation of concurrent data structures. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language (pp. 317–328). Rome, Italy: ACM. https://doi.org/10.1145/2429069.2429109' chicago: Henzinger, Thomas A, Christoph Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova. “Quantitative Relaxation of Concurrent Data Structures.” In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, 317–28. ACM, 2013. https://doi.org/10.1145/2429069.2429109. ieee: T. A. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova, “Quantitative relaxation of concurrent data structures,” in Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language, Rome, Italy, 2013, pp. 317–328. ista: 'Henzinger TA, Kirsch C, Payer H, Sezgin A, Sokolova A. 2013. Quantitative relaxation of concurrent data structures. Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language. POPL: Principles of Programming Languages, 317–328.' mla: Henzinger, Thomas A., et al. “Quantitative Relaxation of Concurrent Data Structures.” Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, ACM, 2013, pp. 317–28, doi:10.1145/2429069.2429109. short: T.A. Henzinger, C. Kirsch, H. Payer, A. Sezgin, A. Sokolova, in:, Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, ACM, 2013, pp. 317–328. conference: end_date: 2013-01-25 location: Rome, Italy name: 'POPL: Principles of Programming Languages' start_date: 2013-01-23 date_created: 2018-12-11T11:56:11Z date_published: 2013-01-01T00:00:00Z date_updated: 2023-02-21T16:06:49Z day: '01' ddc: - '000' - '004' department: - _id: ToHe doi: 10.1145/2429069.2429109 ec_funded: 1 file: - access_level: open_access checksum: adf465e70948f4e80e48057524516456 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:33Z date_updated: 2020-07-14T12:45:31Z file_id: '5086' file_name: IST-2014-198-v1+1_popl128-henzinger-clean.pdf file_size: 294689 relation: main_file file_date_updated: 2020-07-14T12:45:31Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 317 - 328 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication: Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language publication_identifier: isbn: - 978-1-4503-1832-7 publication_status: published publisher: ACM publist_id: '4801' pubrep_id: '198' quality_controlled: '1' related_material: record: - id: '10901' relation: later_version status: deleted scopus_import: 1 status: public title: Quantitative relaxation of concurrent data structures type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2182' abstract: - lang: eng text: We propose a general framework for abstraction with respect to quantitative properties, such as worst-case execution time, or power consumption. Our framework provides a systematic way for counter-example guided abstraction refinement for quantitative properties. The salient aspect of the framework is that it allows anytime verification, that is, verification algorithms that can be stopped at any time (for example, due to exhaustion of memory), and report approximations that improve monotonically when the algorithms are given more time. We instantiate the framework with a number of quantitative abstractions and refinement schemes, which differ in terms of how much quantitative information they keep from the original system. We introduce both state-based and trace-based quantitative abstractions, and we describe conditions that define classes of quantitative properties for which the abstractions provide over-approximations. We give algorithms for evaluating the quantitative properties on the abstract systems. We present algorithms for counter-example based refinements for quantitative properties for both state-based and segment-based abstractions. We perform a case study on worst-case execution time of executables to evaluate the anytime verification aspect and the quantitative abstractions we proposed. author: - first_name: Pavol full_name: Cerny, Pavol id: 4DCBEFFE-F248-11E8-B48F-1D18A9856A87 last_name: Cerny - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Arjun full_name: Radhakrishna, Arjun id: 3B51CAC4-F248-11E8-B48F-1D18A9856A87 last_name: Radhakrishna citation: ama: 'Cerny P, Henzinger TA, Radhakrishna A. Quantitative abstraction refinement. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language. ACM; 2013:115-128. doi:10.1145/2429069.2429085' apa: 'Cerny, P., Henzinger, T. A., & Radhakrishna, A. (2013). Quantitative abstraction refinement. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language (pp. 115–128). Rome, Italy: ACM. https://doi.org/10.1145/2429069.2429085' chicago: Cerny, Pavol, Thomas A Henzinger, and Arjun Radhakrishna. “Quantitative Abstraction Refinement.” In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, 115–28. ACM, 2013. https://doi.org/10.1145/2429069.2429085. ieee: P. Cerny, T. A. Henzinger, and A. Radhakrishna, “Quantitative abstraction refinement,” in Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language, Rome, Italy, 2013, pp. 115–128. ista: 'Cerny P, Henzinger TA, Radhakrishna A. 2013. Quantitative abstraction refinement. Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language. POPL: Principles of Programming Languages, 115–128.' mla: Cerny, Pavol, et al. “Quantitative Abstraction Refinement.” Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, ACM, 2013, pp. 115–28, doi:10.1145/2429069.2429085. short: P. Cerny, T.A. Henzinger, A. Radhakrishna, in:, Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, ACM, 2013, pp. 115–128. conference: end_date: 2013-01-25 location: Rome, Italy name: 'POPL: Principles of Programming Languages' start_date: 2013-07-23 date_created: 2018-12-11T11:56:11Z date_published: 2013-01-01T00:00:00Z date_updated: 2021-01-12T06:55:50Z day: '01' department: - _id: ToHe doi: 10.1145/2429069.2429085 ec_funded: 1 language: - iso: eng month: '01' oa_version: None page: 115 - 128 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication: Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming language publication_status: published publisher: ACM publist_id: '4800' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative abstraction refinement type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2237' abstract: - lang: eng text: We describe new extensions of the Vampire theorem prover for computing tree interpolants. These extensions generalize Craig interpolation in Vampire, and can also be used to derive sequence interpolants. We evaluated our implementation on a large number of examples over the theory of linear integer arithmetic and integer-indexed arrays, with and without quantifiers. When compared to other methods, our experiments show that some examples could only be solved by our implementation. alternative_title: - LNCS article_processing_charge: No author: - first_name: Régis full_name: Blanc, Régis last_name: Blanc - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Laura full_name: Kovács, Laura last_name: Kovács - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: Blanc R, Gupta A, Kovács L, Kragl B. Tree interpolation in Vampire. 2013;8312:173-181. doi:10.1007/978-3-642-45221-5_13 apa: 'Blanc, R., Gupta, A., Kovács, L., & Kragl, B. (2013). Tree interpolation in Vampire. Presented at the LPAR: Logic for Programming, Artificial Intelligence, and Reasoning, Stellenbosch, South Africa: Springer. https://doi.org/10.1007/978-3-642-45221-5_13' chicago: Blanc, Régis, Ashutosh Gupta, Laura Kovács, and Bernhard Kragl. “Tree Interpolation in Vampire.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-45221-5_13. ieee: R. Blanc, A. Gupta, L. Kovács, and B. Kragl, “Tree interpolation in Vampire,” vol. 8312. Springer, pp. 173–181, 2013. ista: Blanc R, Gupta A, Kovács L, Kragl B. 2013. Tree interpolation in Vampire. 8312, 173–181. mla: Blanc, Régis, et al. Tree Interpolation in Vampire. Vol. 8312, Springer, 2013, pp. 173–81, doi:10.1007/978-3-642-45221-5_13. short: R. Blanc, A. Gupta, L. Kovács, B. Kragl, 8312 (2013) 173–181. conference: end_date: 2013-12-19 location: Stellenbosch, South Africa name: 'LPAR: Logic for Programming, Artificial Intelligence, and Reasoning' start_date: 2013-12-14 date_created: 2018-12-11T11:56:29Z date_published: 2013-01-14T00:00:00Z date_updated: 2020-08-11T10:09:42Z day: '14' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-642-45221-5_13 file: - access_level: open_access checksum: 9cebaafca032e6769d273f393305c705 content_type: application/pdf creator: dernst date_created: 2020-05-15T11:10:40Z date_updated: 2020-07-14T12:45:34Z file_id: '7858' file_name: 2013_LPAR_Blanc.pdf file_size: 279206 relation: main_file file_date_updated: 2020-07-14T12:45:34Z has_accepted_license: '1' intvolume: ' 8312' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 173 - 181 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '4724' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Tree interpolation in Vampire type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8312 year: '2013' ... --- _id: '2243' abstract: - lang: eng text: We show that modal logic over universally first-order definable classes of transitive frames is decidable. More precisely, let K be an arbitrary class of transitive Kripke frames definable by a universal first-order sentence. We show that the global and finite global satisfiability problems of modal logic over K are decidable in NP, regardless of choice of K. We also show that the local satisfiability and the finite local satisfiability problems of modal logic over K are decidable in NEXPTIME. alternative_title: - LIPIcs author: - first_name: Jakub full_name: Michaliszyn, Jakub last_name: Michaliszyn - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: Michaliszyn J, Otop J. Elementary modal logics over transitive structures. 2013;23:563-577. doi:10.4230/LIPIcs.CSL.2013.563 apa: 'Michaliszyn, J., & Otop, J. (2013). Elementary modal logics over transitive structures. Presented at the CSL: Computer Science Logic, Torino, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2013.563' chicago: Michaliszyn, Jakub, and Jan Otop. “Elementary Modal Logics over Transitive Structures.” Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. https://doi.org/10.4230/LIPIcs.CSL.2013.563. ieee: J. Michaliszyn and J. Otop, “Elementary modal logics over transitive structures,” vol. 23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 563–577, 2013. ista: Michaliszyn J, Otop J. 2013. Elementary modal logics over transitive structures. 23, 563–577. mla: Michaliszyn, Jakub, and Jan Otop. Elementary Modal Logics over Transitive Structures. Vol. 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 563–77, doi:10.4230/LIPIcs.CSL.2013.563. short: J. Michaliszyn, J. Otop, 23 (2013) 563–577. conference: end_date: 2013-09-05 location: Torino, Italy name: 'CSL: Computer Science Logic' start_date: 2013-09-02 date_created: 2018-12-11T11:56:32Z date_published: 2013-09-01T00:00:00Z date_updated: 2020-08-11T10:09:42Z day: '01' ddc: - '000' - '004' department: - _id: ToHe doi: 10.4230/LIPIcs.CSL.2013.563 ec_funded: 1 file: - access_level: open_access checksum: e0732e73a8b1e39483df7717d53e3e35 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:11Z date_updated: 2020-07-14T12:45:34Z file_id: '4929' file_name: IST-2016-136-v1+2_39.pdf file_size: 454915 relation: main_file file_date_updated: 2020-07-14T12:45:34Z has_accepted_license: '1' intvolume: ' 23' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 563 - 577 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '4708' pubrep_id: '136' quality_controlled: '1' scopus_import: 1 series_title: Leibniz International Proceedings in Informatics status: public title: Elementary modal logics over transitive structures tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2289' abstract: - lang: eng text: Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness, which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments. author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: Henzinger TA. Quantitative reactive modeling and verification. Computer Science Research and Development. 2013;28(4):331-344. doi:10.1007/s00450-013-0251-7 apa: Henzinger, T. A. (2013). Quantitative reactive modeling and verification. Computer Science Research and Development. Springer. https://doi.org/10.1007/s00450-013-0251-7 chicago: Henzinger, Thomas A. “Quantitative Reactive Modeling and Verification.” Computer Science Research and Development. Springer, 2013. https://doi.org/10.1007/s00450-013-0251-7. ieee: T. A. Henzinger, “Quantitative reactive modeling and verification,” Computer Science Research and Development, vol. 28, no. 4. Springer, pp. 331–344, 2013. ista: Henzinger TA. 2013. Quantitative reactive modeling and verification. Computer Science Research and Development. 28(4), 331–344. mla: Henzinger, Thomas A. “Quantitative Reactive Modeling and Verification.” Computer Science Research and Development, vol. 28, no. 4, Springer, 2013, pp. 331–44, doi:10.1007/s00450-013-0251-7. short: T.A. Henzinger, Computer Science Research and Development 28 (2013) 331–344. date_created: 2018-12-11T11:56:47Z date_published: 2013-10-05T00:00:00Z date_updated: 2021-01-12T06:56:33Z day: '05' ddc: - '000' department: - _id: ToHe doi: 10.1007/s00450-013-0251-7 ec_funded: 1 file: - access_level: open_access checksum: f117a00f9f046165bfa95595681e08a0 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:51Z date_updated: 2020-07-14T12:45:37Z file_id: '5308' file_name: IST-2016-626-v1+1_s00450-013-0251-7.pdf file_size: 570361 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 28' issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 331 - 344 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication: Computer Science Research and Development publication_status: published publisher: Springer publist_id: '4642' pubrep_id: '626' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative reactive modeling and verification tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2013' ... --- _id: '2288' abstract: - lang: eng text: This book constitutes the proceedings of the 11th International Conference on Computational Methods in Systems Biology, CMSB 2013, held in Klosterneuburg, Austria, in September 2013. The 15 regular papers included in this volume were carefully reviewed and selected from 27 submissions. They deal with computational models for all levels, from molecular and cellular, to organs and entire organisms. alternative_title: - LNCS citation: ama: Gupta A, Henzinger TA, eds. Computational Methods in Systems Biology. Vol 8130. Springer; 2013. doi:10.1007/978-3-642-40708-6 apa: 'Gupta, A., & Henzinger, T. A. (Eds.). (2013). Computational Methods in Systems Biology (Vol. 8130). Presented at the CMSB: Computational Methods in Systems Biology, Klosterneuburg, Austria: Springer. https://doi.org/10.1007/978-3-642-40708-6' chicago: Gupta, Ashutosh, and Thomas A Henzinger, eds. Computational Methods in Systems Biology. Vol. 8130. Springer, 2013. https://doi.org/10.1007/978-3-642-40708-6. ieee: A. Gupta and T. A. Henzinger, Eds., Computational Methods in Systems Biology, vol. 8130. Springer, 2013. ista: Gupta A, Henzinger TA eds. 2013. Computational Methods in Systems Biology, Springer,p. mla: Gupta, Ashutosh, and Thomas A. Henzinger, editors. Computational Methods in Systems Biology. Vol. 8130, Springer, 2013, doi:10.1007/978-3-642-40708-6. short: A. Gupta, T.A. Henzinger, eds., Computational Methods in Systems Biology, Springer, 2013. conference: end_date: 2013-09-24 location: Klosterneuburg, Austria name: 'CMSB: Computational Methods in Systems Biology' start_date: 2013-09-22 date_created: 2018-12-11T11:56:47Z date_published: 2013-07-01T00:00:00Z date_updated: 2019-08-02T12:37:44Z day: '01' department: - _id: ToHe doi: 10.1007/978-3-642-40708-6 editor: - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 intvolume: ' 8130' language: - iso: eng month: '07' oa_version: None publication_identifier: isbn: - 978-3-642-40707-9 publication_status: published publisher: Springer publist_id: '4643' quality_controlled: '1' status: public title: Computational Methods in Systems Biology type: conference_editor user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8130 year: '2013' ...