TY - CONF
AB - A Rapidly-exploring Random Tree (RRT) is an algorithm which can search a non-convex region of space by incrementally building a space-filling tree. The tree is constructed from random points drawn from system’s state space and is biased to grow towards large unexplored areas in the system. RRT can provide better coverage of a system’s possible behaviors compared with random simulations, but is more lightweight than full reachability analysis. In this paper, we explore some of the design decisions encountered while implementing a hybrid extension of the RRT algorithm, which have not been elaborated on before. In particular, we focus on handling non-determinism, which arises due to discrete transitions. We introduce the notion of important points to account for this phenomena. We showcase our ideas using heater and navigation benchmarks.
AU - Bak, Stanley
AU - Bogomolov, Sergiy
AU - Henzinger, Thomas A
AU - Kumar, Aviral
ED - Abate, Alessandro
ED - Bodo, Sylvie
ID - 633
SN - 978-331963500-2
TI - Challenges and tool implementation of hybrid rapidly exploring random trees
VL - 10381
ER -
TY - GEN
ED - Bogomolov, Sergiy
ED - Martel, Matthieu
ED - Prabhakar, Pavithra
ID - 638
TI - Numerical Software Verification
VL - 10152
ER -
TY - CONF
AB - Signal regular expressions can specify sequential properties of real-valued signals based on threshold conditions, regular operations, and duration constraints. In this paper we endow them with a quantitative semantics which indicates how robustly a signal matches or does not match a given expression. First, we show that this semantics is a safe approximation of a distance between the signal and the language defined by the expression. Then, we consider the robust matching problem, that is, computing the quantitative semantics of every segment of a given signal relative to an expression. We present an algorithm that solves this problem for piecewise-constant and piecewise-linear signals and show that for such signals the robustness map is a piecewise-linear function. The availability of an indicator describing how robustly a signal segment matches some regular pattern provides a general framework for quantitative monitoring of cyber-physical systems.
AU - Bakhirkin, Alexey
AU - Ferrere, Thomas
AU - Maler, Oded
AU - Ulus, Dogan
ED - Abate, Alessandro
ED - Geeraerts, Gilles
ID - 636
SN - 978-331965764-6
TI - On the quantitative semantics of regular expressions over real-valued signals
VL - 10419
ER -
TY - GEN
AB - Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent asynchronous computation threads. We show that specifications and correctness proofs for asynchronous programs can be structured by introducing the fiction, for proof purposes, that intermediate, non-quiescent states of asynchronous operations can be ignored. Then, the task of specification becomes relatively simple and the task of verification can be naturally decomposed into smaller sub-tasks. The sub-tasks iteratively summarize, guided by the structure of an asynchronous program, the atomic effect of non-atomic operations and the synchronous effect of asynchronous operations. This structuring of specifications and proofs corresponds to the introduction of multiple layers of stepwise refinement for asynchronous programs. We present the first proof rule, called synchronization, to reduce asynchronous invocations on a lower layer to synchronous invocations on a higher layer. We implemented our proof method in CIVL and evaluated it on a collection of benchmark programs.
AU - Henzinger, Thomas A
AU - Kragl, Bernhard
AU - Qadeer, Shaz
ID - 6426
SN - 2664-1690
TI - Synchronizing the asynchronous
ER -
TY - CONF
AB - In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient.
AU - Kong, Hui
AU - Bogomolov, Sergiy
AU - Schilling, Christian
AU - Jiang, Yu
AU - Henzinger, Thomas A
ID - 663
SN - 978-145034590-3
T2 - Proceedings of the 20th International Conference on Hybrid Systems
TI - Safety verification of nonlinear hybrid systems based on invariant clusters
ER -
TY - CONF
AB - Despite researchers’ efforts in the last couple of decades, reachability analysis is still a challenging problem even for linear hybrid systems. Among the existing approaches, the most practical ones are mainly based on bounded-time reachable set over-approximations. For the purpose of unbounded-time analysis, one important strategy is to abstract the original system and find an invariant for the abstraction. In this paper, we propose an approach to constructing a new kind of abstraction called conic abstraction for affine hybrid systems, and to computing reachable sets based on this abstraction. The essential feature of a conic abstraction is that it partitions the state space of a system into a set of convex polyhedral cones which is derived from a uniform conic partition of the derivative space. Such a set of polyhedral cones is able to cut all trajectories of the system into almost straight segments so that every segment of a reach pipe in a polyhedral cone tends to be straight as well, and hence can be over-approximated tightly by polyhedra using similar techniques as HyTech or PHAVer. In particular, for diagonalizable affine systems, our approach can guarantee to find an invariant for unbounded reachable sets, which is beyond the capability of bounded-time reachability analysis tools. We implemented the approach in a tool and experiments on benchmarks show that our approach is more powerful than SpaceEx and PHAVer in dealing with diagonalizable systems.
AU - Bogomolov, Sergiy
AU - Giacobbe, Mirco
AU - Henzinger, Thomas A
AU - Kong, Hui
ID - 647
SN - 978-331965764-6
TI - Conic abstractions for hybrid systems
VL - 10419
ER -
TY - CONF
AB - Template polyhedra generalize intervals and octagons to polyhedra whose facets are orthogonal to a given set of arbitrary directions. They have been employed in the abstract interpretation of programs and, with particular success, in the reachability analysis of hybrid automata. While previously, the choice of directions has been left to the user or a heuristic, we present a method for the automatic discovery of directions that generalize and eliminate spurious counterexamples. We show that for the class of convex hybrid automata, i.e., hybrid automata with (possibly nonlinear) convex constraints on derivatives, such directions always exist and can be found using convex optimization. We embed our method inside a CEGAR loop, thus enabling the time-unbounded reachability analysis of an important and richer class of hybrid automata than was previously possible. We evaluate our method on several benchmarks, demonstrating also its superior efficiency for the special case of linear hybrid automata.
AU - Bogomolov, Sergiy
AU - Frehse, Goran
AU - Giacobbe, Mirco
AU - Henzinger, Thomas A
ID - 631
SN - 978-366254576-8
TI - Counterexample guided refinement of template polyhedra
VL - 10205
ER -
TY - CONF
AB - Nested weighted automata (NWA) present a robust and convenient automata-theoretic formalism for quantitative specifications. Previous works have considered NWA that processed input words only in the forward direction. It is natural to allow the automata to process input words backwards as well, for example, to measure the maximal or average time between a response and the preceding request. We therefore introduce and study bidirectional NWA that can process input words in both directions. First, we show that bidirectional NWA can express interesting quantitative properties that are not expressible by forward-only NWA. Second, for the fundamental decision problems of emptiness and universality, we establish decidability and complexity results for the new framework which match the best-known results for the special case of forward-only NWA. Thus, for NWA, the increased expressiveness of bidirectionality is achieved at no additional computational complexity. This is in stark contrast to the unweighted case, where bidirectional finite automata are no more expressive but exponentially more succinct than their forward-only counterparts.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 711
SN - 18688969
TI - Bidirectional nested weighted automata
VL - 85
ER -
TY - CONF
AB - Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertex. The cost of traversing an edge depends on the number of players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in defining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, the traversal of the network involves an inherent delay, and so sharing and congestion of resources crucially depends on time. We study timed network games , which add a time component to network games. Each vertex v in the network is associated with a cost function, mapping the load on v to the price that a player pays for staying in v for one time unit with this load. In addition, each edge has a guard, describing time intervals in which the edge can be traversed, forcing the players to spend time on vertices. Unlike earlier work that add a time component to network games, the time in our model is continuous and cannot be discretized. In particular, players have uncountably many strategies, and a game may have uncountably many pure Nash equilibria. We study properties of timed network games with cost-sharing or congestion cost functions: their stability, equilibrium inefficiency, and complexity. In particular, we show that the answer to the question whether we can restrict attention to boundary strategies, namely ones in which edges are traversed only at the boundaries of guards, is mixed.
AU - Avni, Guy
AU - Guha, Shibashis
AU - Kupferman, Orna
ID - 963
SN - 18688969
TI - Timed network games with clocks
VL - 83
ER -
TY - CONF
AB - We present a new algorithm for model counting of a class of string constraints. In addition to the classic operation of concatenation, our class includes some recursively defined operations such as Kleene closure, and replacement of substrings. Additionally, our class also includes length constraints on the string expressions, which means, by requiring reasoning about numbers, that we face a multi-sorted logic. In the end, our string constraints are motivated by their use in programming for web applications. Our algorithm comprises two novel features: the ability to use a technique of (1) partial derivatives for constraints that are already in a solved form, i.e. a form where its (string) satisfiability is clearly displayed, and (2) non-progression, where cyclic reasoning in the reduction process may be terminated (thus allowing for the algorithm to look elsewhere). Finally, we experimentally compare our model counter with two recent works on model counting of similar constraints, SMC [18] and ABC [5], to demonstrate its superior performance.
AU - Trinh, Minh
AU - Chu, Duc Hiep
AU - Jaffar, Joxan
ED - Majumdar, Rupak
ED - Kunčak, Viktor
ID - 962
SN - 03029743
TI - Model counting for recursively-defined strings
VL - 10427
ER -
TY - JOUR
AB - This special issue of the Journal on Formal Methods in System Design is dedicated to Prof. Helmut Veith, who unexpectedly passed away in March 2016. Helmut Veith was a brilliant researcher, inspiring collaborator, passionate mentor, generous friend, and valued member of the formal methods community. Helmut was not only known for his numerous and influential contributions in the field of automated verification (most prominently his work on Counterexample-Guided Abstraction Refinement [1,2]), but also for his untiring and passionate efforts for the logic community: he co-organized the Vienna Summer of Logic (an event comprising twelve conferences and numerous workshops which attracted thousands of researchers from all over the world), he initiated the Vienna Center for Logic and Algorithms (which promotes international collaboration on logic and algorithms and organizes outreach events such as the LogicLounge), and he coordinated the Doctoral Program on Logical Methods in Computer Science at TU Wien (currently educating more than 40 doctoral students) and a National Research Network on Rigorous Systems Engineering (uniting fifteen researchers in Austria to address the challenge of building reliable and safe computer
systems). With his enthusiasm and commitment, Helmut completely reshaped the Austrian research landscape in the field of logic and verification in his few years as a full professor at TU Wien.
AU - Gottlob, Georg
AU - Henzinger, Thomas A
AU - Weißenbacher, Georg
ID - 743
IS - 2
JF - Formal Methods in System Design
TI - Preface of the special issue in memoriam Helmut Veith
VL - 51
ER -
TY - CONF
AB - Recently there has been a proliferation of automated program repair (APR) techniques, targeting various programming languages. Such techniques can be generally classified into two families: syntactic- and semantics-based. Semantics-based APR, on which we focus, typically uses symbolic execution to infer semantic constraints and then program synthesis to construct repairs conforming to them. While syntactic-based APR techniques have been shown successful on bugs in real-world programs written in both C and Java, semantics-based APR techniques mostly target C programs. This leaves empirical comparisons of the APR families not fully explored, and developers without a Java-based semantics APR technique. We present JFix, a semantics-based APR framework that targets Java, and an associated Eclipse plugin. JFix is implemented atop Symbolic PathFinder, a well-known symbolic execution engine for Java programs. It extends one particular APR technique (Angelix), and is designed to be sufficiently generic to support a variety of such techniques. We demonstrate that semantics-based APR can indeed efficiently and effectively repair a variety of classes of bugs in large real-world Java programs. This supports our claim that the framework can both support developers seeking semantics-based repair of bugs in Java programs, as well as enable larger scale empirical studies comparing syntactic- and semantics-based APR targeting Java. The demonstration of our tool is available via the project website at: https://xuanbachle.github.io/semanticsrepair/
AU - Le, Xuan
AU - Chu, Duc Hiep
AU - Lo, David
AU - Le Goues, Claire
AU - Visser, Willem
ID - 941
T2 - Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
TI - JFIX: Semantics-based repair of Java programs via symbolic PathFinder
ER -
TY - CONF
AB - A notable class of techniques for automatic program repair is known as semantics-based. Such techniques, e.g., Angelix, infer semantic specifications via symbolic execution, and then use program synthesis to construct new code that satisfies those inferred specifications. However, the obtained specifications are naturally incomplete, leaving the synthesis engine with a difficult task of synthesizing a general solution from a sparse space of many possible solutions that are consistent with the provided specifications but that do not necessarily generalize. We present S3, a new repair synthesis engine that leverages programming-by-examples methodology to synthesize high-quality bug repairs. The novelty in S3 that allows it to tackle the sparse search space to create more general repairs is three-fold: (1) A systematic way to customize and constrain the syntactic search space via a domain-specific language, (2) An efficient enumeration-based search strategy over the constrained search space, and (3) A number of ranking features based on measures of the syntactic and semantic distances between candidate solutions and the original buggy program. We compare S3’s repair effectiveness with state-of-the-art synthesis engines Angelix, Enumerative, and CVC4. S3 can successfully and correctly fix at least three times more bugs than the best baseline on datasets of 52 bugs in small programs, and 100 bugs in real-world large programs.
AU - Le, Xuan
AU - Chu, Duc Hiep
AU - Lo, David
AU - Le Goues, Claire
AU - Visser, Willem
ID - 942
SN - 978-145035105-8
TI - S3: Syntax- and semantic-guided repair synthesis via programming by examples
VL - F130154
ER -
TY - CONF
AB - Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games. There, a central question is the existence and computation of threshold budgets; namely, a value t\in [0,1] such that if\PO's budget exceeds $t$, he can win the game, and if\PT's budget exceeds 1-t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff bidding games.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Chonev, Ventsislav K
ID - 950
SN - 1868-8969
TI - Infinite-duration bidding games
VL - 85
ER -
TY - CONF
AB - While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than weighted automata (e.g., average response time can be expressed with nested weighted automata), but the basic decision questions have higher complexity (e.g., for deterministic automata, the emptiness question for nested weighted automata is PSPACE-hard, whereas the corresponding complexity for weighted automata is PTIME). We consider a natural subclass of nested weighted automata where at any point at most a bounded number k of slave automata can be active. We focus on automata whose master value function is the limit average. We show that these nested weighted automata with bounded width are strictly more expressive than weighted automata (e.g., average response time with no overlapping requests can be expressed with bound k=1, but not with non-nested weighted automata). We show that the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass with k constant matches the complexity for weighted automata. Moreover, when k is part of the input given in unary we establish PSPACE-completeness.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1090
TI - Nested weighted limit-average automata of bounded width
VL - 58
ER -
TY - CONF
AB - The semantics of concurrent data structures is usually given by a sequential specification and a consistency condition. Linearizability is the most popular consistency condition due to its simplicity and general applicability. Nevertheless, for applications that do not require all guarantees offered by linearizability, recent research has focused on improving performance and scalability of concurrent data structures by relaxing their semantics. In this paper, we present local linearizability, a relaxed consistency condition that is applicable to container-type concurrent data structures like pools, queues, and stacks. While linearizability requires that the effect of each operation is observed by all threads at the same time, local linearizability only requires that for each thread T, the effects of its local insertion operations and the effects of those removal operations that remove values inserted by T are observed by all threads at the same time. We investigate theoretical and practical properties of local linearizability and its relationship to many existing consistency conditions. We present a generic implementation method for locally linearizable data structures that uses existing linearizable data structures as building blocks. Our implementations show performance and scalability improvements over the original building blocks and outperform the fastest existing container-type implementations.
AU - Haas, Andreas
AU - Henzinger, Thomas A
AU - Holzer, Andreas
AU - Kirsch, Christoph
AU - Lippautz, Michael
AU - Payer, Hannes
AU - Sezgin, Ali
AU - Sokolova, Ana
AU - Veith, Helmut
ID - 1095
T2 - Leibniz International Proceedings in Informatics
TI - Local linearizability for concurrent container-type data structures
VL - 59
ER -
TY - CONF
AB - We propose two parallel state-space-exploration algorithms for hybrid automaton (HA), with the goal of enhancing performance on multi-core shared-memory systems. The first uses the parallel, breadth-first-search algorithm (PBFS) of the SPIN model checker, when traversing the discrete modes of the HA, and enhances it with a parallel exploration of the continuous states within each mode. We show that this simple-minded extension of PBFS does not provide the desired load balancing in many HA benchmarks. The second algorithm is a task-parallel BFS algorithm (TP-BFS), which uses a cheap precomputation of the cost associated with the post operations (both continuous and discrete) in order to improve load balancing. We illustrate the TP-BFS and the cost precomputation of the post operators on a support-function-based algorithm for state-space exploration. The performance comparison of the two algorithms shows that, in general, TP-BFS provides a better utilization/load-balancing of the CPU. Both algorithms are implemented in the model checker XSpeed. Our experiments show a maximum speed-up of more than 2000 χ on a navigation benchmark, with respect to SpaceEx LGG scenario. In order to make the comparison fair, we employed an equal number of post operations in both tools. To the best of our knowledge, this paper represents the first attempt to provide parallel, reachability-analysis algorithms for HA.
AU - Gurung, Amit
AU - Deka, Arup
AU - Bartocci, Ezio
AU - Bogomolov, Sergiy
AU - Grosu, Radu
AU - Ray, Rajarshi
ID - 1103
TI - Parallel reachability analysis for hybrid systems
ER -
TY - CONF
AB - Hybrid systems have both continuous and discrete dynamics and are useful for modeling a variety of control systems, from air traffic control protocols to robotic maneuvers and beyond. Recently, numerous powerful and scalable tools for analyzing hybrid systems have emerged. Several of these tools implement automated formal methods for mathematically proving a system meets a specification. This tutorial session will present three recent hybrid systems tools: C2E2, HyST, and TuLiP. C2E2 is a simulated-based verification tool for hybrid systems, and uses validated numerical solvers and bloating of simulation traces to verify systems meet specifications. HyST is a hybrid systems model transformation and translation tool, and uses a canonical intermediate representation to support most of the recent verification tools, as well as automated sound abstractions that simplify verification of a given hybrid system. TuLiP is a controller synthesis tool for hybrid systems, where given a temporal logic specification to be satisfied for a system (plant) model, TuLiP will find a controller that meets a given specification. © 2016 IEEE.
AU - Duggirala, Parasara
AU - Fan, Chuchu
AU - Potok, Matthew
AU - Qi, Bolun
AU - Mitra, Sayan
AU - Viswanathan, Mahesh
AU - Bak, Stanley
AU - Bogomolov, Sergiy
AU - Johnson, Taylor
AU - Nguyen, Luan
AU - Schilling, Christian
AU - Sogokon, Andrew
AU - Tran, Hoang
AU - Xiang, Weiming
ID - 1134
T2 - 2016 IEEE Conference on Control Applications
TI - Tutorial: Software tools for hybrid systems verification transformation and synthesis C2E2 HyST and TuLiP
ER -
TY - CONF
AB - Time-triggered (TT) switched networks are a deterministic communication infrastructure used by real-time distributed embedded systems. These networks rely on the notion of globally discretized time (i.e. time slots) and a static TT schedule that prescribes which message is sent through which link at every time slot, such that all messages reach their destination before a global timeout. These schedules are generated offline, assuming a static network with fault-free links, and entrusting all error-handling functions to the end user. Assuming the network is static is an over-optimistic view, and indeed links tend to fail in practice. We study synthesis of TT schedules on a network in which links fail over time and we assume the switches run a very simple error-recovery protocol once they detect a crashed link. We address the problem of finding a pk; qresistant schedule; namely, one that, assuming the switches run a fixed error-recovery protocol, guarantees that the number of messages that arrive at their destination by the timeout is at least no matter what sequence of at most k links fail. Thus, we maintain the simplicity of the switches while giving a guarantee on the number of messages that meet the timeout. We show how a pk; q-resistant schedule can be obtained using a CEGAR-like approach: find a schedule, decide whether it is pk; q-resistant, and if it is not, use the witnessing fault sequence to generate a constraint that is added to the program. The newly added constraint disallows the schedule to be regenerated in a future iteration while also eliminating several other schedules that are not pk; q-resistant. We illustrate the applicability of our approach using an SMT-based implementation. © 2016 ACM.
AU - Avni, Guy
AU - Guha, Shibashis
AU - Rodríguez Navas, Guillermo
ID - 1135
T2 - Proceedings of the 13th International Conference on Embedded Software
TI - Synthesizing time triggered schedules for switched networks with faulty links
ER -
TY - CONF
AB - Automata with monitor counters, where the transitions do not depend on counter values, and nested weighted automata are two expressive automata-theoretic frameworks for quantitative properties. For a well-studied and wide class of quantitative functions, we establish that automata with monitor counters and nested weighted automata are equivalent. We study for the first time such quantitative automata under probabilistic semantics. We show that several problems that are undecidable for the classical questions of emptiness and universality become decidable under the probabilistic semantics. We present a complete picture of decidability for such automata, and even an almost-complete picture of computational complexity, for the probabilistic questions we consider. © 2016 ACM.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1138
T2 - Proceedings of the 31st Annual ACM/IEEE Symposium
TI - Quantitative automata under probabilistic semantics
ER -
TY - CONF
AB - We introduce a general class of distances (metrics) between Markov chains, which are based on linear behaviour. This class encompasses distances given topologically (such as the total variation distance or trace distance) as well as by temporal logics or automata. We investigate which of the distances can be approximated by observing the systems, i.e. by black-box testing or simulation, and we provide both negative and positive results.
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Kretinsky, Jan
AU - Petrov, Tatjana
ID - 1093
TI - Linear distances between Markov chains
VL - 59
ER -
TY - CONF
AB - Many biological systems can be modeled as multiaffine hybrid systems. Due to the nonlinearity of multiaffine systems, it is difficult to verify their properties of interest directly. A common strategy to tackle this problem is to construct and analyze a discrete overapproximation of the original system. However, the conservativeness of a discrete abstraction significantly determines the level of confidence we can have in the properties of the original system. In this paper, in order to reduce the conservativeness of a discrete abstraction, we propose a new method based on a sufficient and necessary decision condition for computing discrete transitions between states in the abstract system. We assume the state space partition of a multiaffine system to be based on a set of multivariate polynomials. Hence, a rectangular partition defined in terms of polynomials of the form (xi − c) is just a simple case of multivariate polynomial partition, and the new decision condition applies naturally. We analyze and demonstrate the improvement of our method over the existing methods using some examples.
AU - Kong, Hui
AU - Bartocci, Ezio
AU - Bogomolov, Sergiy
AU - Grosu, Radu
AU - Henzinger, Thomas A
AU - Jiang, Yu
AU - Schilling, Christian
ID - 1227
TI - Discrete abstraction of multiaffine systems
VL - 9957
ER -
TY - CONF
AB - Concolic testing is a promising method for generating test suites for large programs. However, it suffers from the path-explosion problem and often fails to find tests that cover difficult-to-reach parts of programs. In contrast, model checkers based on counterexample-guided abstraction refinement explore programs exhaustively, while failing to scale on large programs with precision. In this paper, we present a novel method that iteratively combines concolic testing and model checking to find a test suite for a given coverage criterion. If concolic testing fails to cover some test goals, then the model checker refines its program abstraction to prove more paths infeasible, which reduces the search space for concolic testing. We have implemented our method on top of the concolictesting tool Crest and the model checker CpaChecker. We evaluated our tool on a collection of programs and a category of SvComp benchmarks. In our experiments, we observed an improvement in branch coverage compared to Crest from 48% to 63% in the best case, and from 66% to 71% on average.
AU - Daca, Przemyslaw
AU - Gupta, Ashutosh
AU - Henzinger, Thomas A
ID - 1230
TI - Abstraction-driven concolic testing
VL - 9583
ER -
TY - CONF
AB - Simulink is widely used for model driven development (MDD) of industrial software systems. Typically, the Simulink based development is initiated from Stateflow modeling, followed by simulation, validation and code generation mapped to physical execution platforms. However, recent industrial trends have raised the demands of rigorous verification on safety-critical applications, which is unfortunately challenging for Simulink. In this paper, we present an approach to bridge the Stateflow based model driven development and a well- defined rigorous verification. First, we develop a self- contained toolkit to translate Stateflow model into timed automata, where major advanced modeling features in Stateflow are supported. Taking advantage of the strong verification capability of Uppaal, we can not only find bugs in Stateflow models which are missed by Simulink Design Verifier, but also check more important temporal properties. Next, we customize a runtime verifier for the generated nonintrusive VHDL and C code of Stateflow model for monitoring. The major strength of the customization is the flexibility to collect and analyze runtime properties with a pure software monitor, which opens more opportunities for engineers to achieve high reliability of the target system compared with the traditional act that only relies on Simulink Polyspace. We incorporate these two parts into original Stateflow based MDD seamlessly. In this way, safety-critical properties are both verified at the model level, and at the consistent system implementation level with physical execution environment in consideration. We apply our approach on a train controller design, and the verified implementation is tested and deployed on a real hardware platform.
AU - Jiang, Yu
AU - Yang, Yixiao
AU - Liu, Han
AU - Kong, Hui
AU - Gu, Ming
AU - Sun, Jiaguang
AU - Sha, Lui
ID - 1256
TI - From stateflow simulation to verified implementation: A verification approach and a real-time train controller design
ER -
TY - CONF
AB - In this paper we review various automata-theoretic formalisms for expressing quantitative properties. We start with finite-state Boolean automata that express the traditional regular properties. We then consider weighted ω-automata that can measure the average density of events, which finite-state Boolean automata cannot. However, even weighted ω-automata cannot express basic performance properties like average response time. We finally consider two formalisms of weighted ω-automata with monitors, where the monitors are either (a) counters or (b) weighted automata themselves. We present a translation result to establish that these two formalisms are equivalent. Weighted ω-automata with monitors generalize weighted ω-automata, and can express average response time property. They present a natural, robust, and expressive framework for quantitative specifications, with important decidable properties.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1335
TI - Quantitative monitor automata
VL - 9837
ER -
TY - CONF
AB - The goal of automatic program repair is to identify a set of syntactic changes that can turn a program that is incorrect with respect
to a given specification into a correct one. Existing program repair techniques typically aim to find any program that meets the given specification. Such “best-effort” strategies can end up generating a program that is quite different from the original one. Novel techniques have been proposed to compute syntactically minimal program fixes, but the smallest syntactic fix to a program can still significantly alter the original program’s behaviour. We propose a new approach to program repair based on program distances, which can quantify changes not only to the program syntax but also to the program semantics. We call this the quantitative program repair problem where the “optimal” repair is derived using multiple distances. We implement a solution to the quantitative repair
problem in a prototype tool called Qlose
(Quantitatively close), using the program synthesizer Sketch. We evaluate the effectiveness of different distances in obtaining desirable repairs by evaluating
Qlose on programs taken from educational tools such as CodeHunt and edX.
AU - D'Antoni, Loris
AU - Samanta, Roopsha
AU - Singh, Rishabh
ID - 1390
TI - QLOSE: Program repair with quantitative objectives
VL - 9780
ER -
TY - CONF
AB - We present an extension to the quantifier-free theory of integer arrays which allows us to express counting. The properties expressible in Array Folds Logic (AFL) include statements such as "the first array cell contains the array length," and "the array contains equally many minimal and maximal elements." These properties cannot be expressed in quantified fragments of the theory of arrays, nor in the theory of concatenation. Using reduction to counter machines, we show that the satisfiability problem of AFL is PSPACE-complete, and with a natural restriction the complexity decreases to NP. We also show that adding either universal quantifiers or concatenation leads to undecidability.
AFL contains terms that fold a function over an array. We demonstrate that folding, a well-known concept from functional languages, allows us to concisely summarize loops that count over arrays, which occurs frequently in real-life programs. We provide a tool that can discharge proof obligations in AFL, and we demonstrate on practical examples that our decision procedure can solve a broad range of problems in symbolic testing and program verification.
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Kupriyanov, Andrey
ID - 1391
TI - Array folds logic
VL - 9780
ER -
TY - CONF
AB - Hybridization methods enable the analysis of hybrid automata with complex, nonlinear dynamics through a sound abstraction process. Complex dynamics are converted to simpler ones with added noise, and then analysis is done using a reachability method for the simpler dynamics. Several such recent approaches advocate that only "dynamic" hybridization techniquesi.e., those where the dynamics are abstracted on-The-fly during a reachability computation are effective. In this paper, we demonstrate this is not the case, and create static hybridization methods that are more scalable than earlier approaches. The main insight in our approach is that quick, numeric simulations can be used to guide the process, eliminating the need for an exponential number of hybridization domains. Transitions between domains are generally timetriggered, avoiding accumulated error from geometric intersections. We enhance our static technique by combining time-Triggered transitions with occasional space-Triggered transitions, and demonstrate the benefits of the combined approach in what we call mixed-Triggered hybridization. Finally, error modes are inserted to confirm that the reachable states stay within the hybridized regions. The developed techniques can scale to higher dimensions than previous static approaches, while enabling the parallelization of the main performance bottleneck for many dynamic hybridization approaches: The nonlinear optimization required for sound dynamics abstraction. We implement our method as a model transformation pass in the HYST tool, and perform reachability analysis and evaluation using an unmodified version of SpaceEx on nonlinear models with up to six dimensions.
AU - Bak, Stanley
AU - Bogomolov, Sergiy
AU - Henzinger, Thomas A
AU - Johnson, Taylor
AU - Prakash, Pradyot
ID - 1421
TI - Scalable static hybridization methods for analysis of nonlinear systems
ER -
TY - CONF
AB - Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asynchronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. We introduce PSYNC, a domain specific language based on the Heard-Of model, which views asynchronous faulty systems as synchronous ones with an adversarial environment that simulates asynchrony and faults by dropping messages. We define a runtime system for PSYNC that efficiently executes on asynchronous networks. We formalize the relation between the runtime system and PSYNC in terms of observational refinement. The high-level lockstep abstraction introduced by PSYNC simplifies the design and implementation of fault-tolerant distributed algorithms and enables automated formal verification. We have implemented an embedding of PSYNC in the SCALA programming language with a runtime system for asynchronous networks. We show the applicability of PSYNC by implementing several important fault-tolerant distributed algorithms and we compare the implementation of consensus algorithms in PSYNC against implementations in other languages in terms of code size, runtime efficiency, and verification.
AU - Dragoi, Cezara
AU - Henzinger, Thomas A
AU - Zufferey, Damien
ID - 1439
TI - PSYNC: A partially synchronous language for fault-tolerant distributed algorithms
VL - 20-22
ER -
TY - CONF
AB - When designing genetic circuits, the typical primitives used in major existing modelling formalisms are gene interaction graphs, where edges between genes denote either an activation or inhibition relation. However, when designing experiments, it is important to be precise about the low-level mechanistic details as to how each such relation is implemented. The rule-based modelling language Kappa allows to unambiguously specify mechanistic details such as DNA binding sites, dimerisation of transcription factors, or co-operative interactions. Such a detailed description comes with complexity and computationally costly executions. We propose a general method for automatically transforming a rule-based program, by eliminating intermediate species and adjusting the rate constants accordingly. To the best of our knowledge, we show the first automated reduction of rule-based models based on equilibrium approximations.
Our algorithm is an adaptation of an existing algorithm, which was designed for reducing reaction-based programs; our version of the algorithm scans the rule-based Kappa model in search for those interaction patterns known to be amenable to equilibrium approximations (e.g. Michaelis-Menten scheme). Additional checks are then performed in order to verify if the reduction is meaningful in the context of the full model. The reduced model is efficiently obtained by static inspection over the rule-set. The tool is tested on a detailed rule-based model of a λ-phage switch, which lists 92 rules and 13 agents. The reduced model has 11 rules and 5 agents, and provides a dramatic reduction in simulation time of several orders of magnitude.
AU - Beica, Andreea
AU - Guet, Calin C
AU - Petrov, Tatjana
ID - 1524
TI - Efficient reduction of kappa models by static inspection of the rule-set
VL - 9271
ER -
TY - CONF
AB - We present the first study of robustness of systems that are both timed as well as reactive (I/O). We study the behavior of such timed I/O systems in the presence of uncertain inputs and formalize their robustness using the analytic notion of Lipschitz continuity: a timed I/O system is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions over timed words such as the timed version of the Manhattan distance and the Skorokhod distance. We consider two models of timed I/O systems — timed transducers and asynchronous sequential circuits. We show that K-robustness of timed transducers can be decided in polynomial space under certain conditions. For asynchronous sequential circuits, we reduce K-robustness w.r.t. timed Manhattan distances to K-robustness of discrete letter-to-letter transducers and show PSpace-completeness of the problem.
AU - Henzinger, Thomas A
AU - Otop, Jan
AU - Samanta, Roopsha
ID - 1526
TI - Lipschitz robustness of timed I/O systems
VL - 9583
ER -
TY - JOUR
AB - Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space. © 2016 Elsevier Ireland Ltd
AU - Schilling, Christian
AU - Bogomolov, Sergiy
AU - Henzinger, Thomas A
AU - Podelski, Andreas
AU - Ruess, Jakob
ID - 1148
JF - Biosystems
TI - Adaptive moment closure for parameter inference of biochemical reaction networks
VL - 149
ER -
TY - JOUR
AB - Hybrid systems represent an important and powerful formalism for modeling real-world applications such as embedded systems. A verification tool like SpaceEx is based on the exploration of a symbolic search space (the region space). As a verification tool, it is typically optimized towards proving the absence of errors. In some settings, e.g., when the verification tool is employed in a feedback-directed design cycle, one would like to have the option to call a version that is optimized towards finding an error trajectory in the region space. A recent approach in this direction is based on guided search. Guided search relies on a cost function that indicates which states are promising to be explored, and preferably explores more promising states first. In this paper, we propose an abstraction-based cost function based on coarse-grained space abstractions for guiding the reachability analysis. For this purpose, a suitable abstraction technique that exploits the flexible granularity of modern reachability analysis algorithms is introduced. The new cost function is an effective extension of pattern database approaches that have been successfully applied in other areas. The approach has been implemented in the SpaceEx model checker. The evaluation shows its practical potential.
AU - Bogomolov, Sergiy
AU - Donzé, Alexandre
AU - Frehse, Goran
AU - Grosu, Radu
AU - Johnson, Taylor
AU - Ladan, Hamed
AU - Podelski, Andreas
AU - Wehrle, Martin
ID - 1705
IS - 4
JF - International Journal on Software Tools for Technology Transfer
TI - Guided search for hybrid systems based on coarse-grained space abstractions
VL - 18
ER -
TY - THES
AB - In this thesis we present a computer-aided programming approach to concurrency. Our approach
helps the programmer by automatically fixing concurrency-related bugs, i.e. bugs that occur
when the program is executed using an aggressive preemptive scheduler, but not when using a
non-preemptive (cooperative) scheduler. Bugs are program behaviours that are incorrect w.r.t.
a specification. We consider both user-provided explicit specifications in the form of assertion
statements in the code as well as an implicit specification. The implicit specification is inferred
from the non-preemptive behaviour. Let us consider sequences of calls that the program makes
to an external interface. The implicit specification requires that any such sequence produced
under a preemptive scheduler should be included in the set of sequences produced under a
non-preemptive scheduler.
We consider several semantics-preserving fixes that go beyond atomic sections typically
explored in the synchronisation synthesis literature. Our synthesis is able to place locks, barriers
and wait-signal statements and last, but not least reorder independent statements. The latter
may be useful if a thread is released to early, e.g., before some initialisation is completed. We
guarantee that our synthesis does not introduce deadlocks and that the synchronisation inserted
is optimal w.r.t. a given objective function.
We dub our solution trace-based synchronisation synthesis and it is loosely based on
counterexample-guided inductive synthesis (CEGIS). The synthesis works by discovering a
trace that is incorrect w.r.t. the specification and identifying ordering constraints crucial to trigger
the specification violation. Synchronisation may be placed immediately (greedy approach) or
delayed until all incorrect traces are found (non-greedy approach). For the non-greedy approach
we construct a set of global constraints over synchronisation placements. Each model of the
global constraints set corresponds to a correctness-ensuring synchronisation placement. The
placement that is optimal w.r.t. the given objective function is chosen as the synchronisation
solution.
We evaluate our approach on a number of realistic (albeit simplified) Linux device-driver
benchmarks. The benchmarks are versions of the drivers with known concurrency-related bugs.
For the experiments with an explicit specification we added assertions that would detect the bugs
in the experiments. Device drivers lend themselves to implicit specification, where the device and
the operating system are the external interfaces. Our experiments demonstrate that our synthesis
method is precise and efficient. We implemented objective functions for coarse-grained and
fine-grained locking and observed that different synchronisation placements are produced for
our experiments, favouring e.g. a minimal number of synchronisation operations or maximum
concurrency.
AU - Tarrach, Thorsten
ID - 1130
TI - Automatic synthesis of synchronisation primitives for concurrent programs
ER -
TY - CONF
AB - In this paper, we present a formal model-driven engineering approach to establishing a safety-assured implementation of Multifunction vehicle bus controller (MVBC) based on the generic reference models and requirements described in the International Electrotechnical Commission (IEC) standard IEC-61375. First, the generic models described in IEC-61375 are translated into a network of timed automata, and some safety requirements tested in IEC-61375 are formalized as timed computation tree logic (TCTL) formulas. With the help of Uppaal, we check and debug whether the timed automata satisfy the formulas or not. Within this step, several logic inconsistencies in the original standard are detected and corrected. Then, we apply the tool Times to generate C code from the verified model, which was later synthesized into a real MVBC chip. Finally, the runtime verification tool RMOR is applied to verify some safety requirements at the implementation level. We set up a real platform with worldwide mostly used MVBC D113, and verify the correctness and the scalability of the synthesized MVBC chip more comprehensively. The errors in the standard has been confirmed and the resulted MVBC has been deployed in real train communication network.
AU - Jiang, Yu
AU - Liu, Han
AU - Song, Houbing
AU - Kong, Hui
AU - Gu, Ming
AU - Sun, Jiaguang
AU - Sha, Lui
ID - 1205
TI - Safety assured formal model driven design of the multifunction vehicle bus controller
VL - 9995
ER -
TY - CONF
AB - Clinical guidelines and decision support systems (DSS) play an important role in daily practices of medicine. Many text-based guidelines have been encoded for work-flow simulation of DSS to automate health care. During the collaboration with Carle hospital to develop a DSS, we identify that, for some complex and life-critical diseases, it is highly desirable to automatically rigorously verify some complex temporal properties in guidelines, which brings new challenges to current simulation based DSS with limited support of automatical formal verification and real-time data analysis. In this paper, we conduct the first study on applying runtime verification to cooperate with current DSS based on real-time data. Within the proposed technique, a user-friendly domain specific language, named DRTV, is designed to specify vital real-time data sampled by medical devices and temporal properties originated from clinical guidelines. Some interfaces are developed for data acquisition and communication. Then, for medical practice scenarios described in DRTV model, we will automatically generate event sequences and runtime property verifier automata. If a temporal property violates, real-time warnings will be produced by the formal verifier and passed to medical DSS. We have used DRTV to specify different kinds of medical care scenarios, and applied the proposed technique to assist existing DSS. As presented in experiment results, in terms of warning detection, it outperforms the only use of DSS or human inspection, and improves the quality of clinical health care of hospital
AU - Jiang, Yu
AU - Liu, Han
AU - Kong, Hui
AU - Wang, Rui
AU - Hosseini, Mohamad
AU - Sun, Jiaguang
AU - Sha, Lui
ID - 479
T2 - Proceedings of the 38th International Conference on Software Engineering Companion
TI - Use runtime verification to improve the quality of medical care practice
ER -
TY - CONF
AB - We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the simulation run can be terminated early. As a result, our simulation runs are often much shorter than required by termination bounds that are computed a priori for a desired level of confidence on a large state space. In comparison to previous algorithms for statistical model checking our method is not only faster in many cases but also requires less information about the system, namely, only the minimum transition probability that occurs in the Markov chain. In addition, our method can be generalised to unbounded quantitative properties such as mean-payoff bounds.
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Kretinsky, Jan
AU - Petrov, Tatjana
ID - 1234
TI - Faster statistical model checking for unbounded temporal properties
VL - 9636
ER -
TY - CONF
AB - POMDPs are standard models for probabilistic planning problems, where an agent interacts with an uncertain environment. We study the problem of almost-sure reachability, where given a set of target states, the question is to decide whether there is a policy to ensure that the target set is reached with probability 1 (almost-surely). While in general the problem is EXPTIMEcomplete, in many practical cases policies with a small amount of memory suffice. Moreover, the existing solution to the problem is explicit, which first requires to construct explicitly an exponential reduction to a belief-support MDP. In this work, we first study the existence of observation-stationary strategies, which is NP-complete, and then small-memory strategies. We present a symbolic algorithm by an efficient encoding to SAT and using a SAT solver for the problem. We report experimental results demonstrating the scalability of our symbolic (SAT-based) approach. © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Davies, Jessica
ID - 1166
T2 - Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
TI - A symbolic SAT based algorithm for almost sure reachability with small strategies in pomdps
VL - 2016
ER -
TY - CONF
AB - In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 1341
TI - Dynamic resource allocation games
VL - 9928
ER -
TY - CONF
AB - Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asynchronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. Nonetheless there is surprisingly little language and verification support to build distributed systems based on fault-tolerant algorithms. In this paper, we present some of the challenges that a designer has to overcome to implement a fault-tolerant distributed system. Then we review different models that have been proposed to reason about distributed algorithms and sketch how such a model can form the basis for a domain-specific programming language. Adopting a high-level programming model can simplify the programmer's life and make the code amenable to automated verification, while still compiling to efficiently executable code. We conclude by summarizing the current status of an ongoing language design and implementation project that is based on this idea.
AU - Dragoi, Cezara
AU - Henzinger, Thomas A
AU - Zufferey, Damien
ID - 1498
SN - 978-3-939897-80-4
TI - The need for language support for fault-tolerant distributed systems
VL - 32
ER -
TY - CONF
AB - We consider weighted automata with both positive and negative integer weights on edges and
study the problem of synchronization using adaptive strategies that may only observe whether
the current weight-level is negative or nonnegative. We show that the synchronization problem is decidable in polynomial time for deterministic weighted automata.
AU - Kretinsky, Jan
AU - Larsen, Kim
AU - Laursen, Simon
AU - Srba, Jiří
ID - 1499
TI - Polynomial time decidability of weighted synchronization under partial observability
VL - 42
ER -
TY - CONF
AB - We present XSpeed a parallel state-space exploration algorithm for continuous systems with linear dynamics and nondeterministic inputs. The motivation of having parallel algorithms is to exploit the computational power of multi-core processors to speed-up performance. The parallelization is achieved on two fronts. First, we propose a parallel implementation of the support function algorithm by sampling functions in parallel. Second, we propose a parallel state-space exploration by slicing the time horizon and computing the reachable states in the time slices in parallel. The second method can be however applied only to a class of linear systems with invertible dynamics and fixed input. A GP-GPU implementation is also presented following a lazy evaluation strategy on support functions. The parallel algorithms are implemented in the tool XSpeed. We evaluated the performance on two benchmarks including an 28 dimension Helicopter model. Comparison with the sequential counterpart shows a maximum speed-up of almost 7× on a 6 core, 12 thread Intel Xeon CPU E5-2420 processor. Our GP-GPU implementation shows a maximum speed-up of 12× over the sequential implementation and 53× over SpaceEx (LGG scenario), the state of the art tool for reachability analysis of linear hybrid systems. Experiments illustrate that our parallel algorithm with time slicing not only speeds-up performance but also improves precision.
AU - Ray, Rajarshi
AU - Gurung, Amit
AU - Das, Binayak
AU - Bartocci, Ezio
AU - Bogomolov, Sergiy
AU - Grosu, Radu
ID - 1541
TI - XSpeed: Accelerating reachability analysis on multi-core processors
VL - 9434
ER -
TY - CONF
AB - We extend the theory of input-output conformance with operators for merge and quotient. The former is useful when testing against multiple requirements or views. The latter can be used to generate tests for patches of an already tested system. Both operators can combine systems with different action alphabets, which is usually the case when constructing complex systems and specifications from parts, for instance different views as well as newly defined functionality of a~previous version of the system.
AU - Beneš, Nikola
AU - Daca, Przemyslaw
AU - Henzinger, Thomas A
AU - Kretinsky, Jan
AU - Nickovic, Dejan
ID - 1502
SN - 978-1-4503-3471-6
TI - Complete composition operators for IOCO-testing theory
ER -
TY - JOUR
AB - We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph algorithms with quadratic complexity to compute the simulation relation. We present an automated technique for assume-guarantee style reasoning for compositional analysis of two-player games by giving a counterexample guided abstraction-refinement approach to compute our new simulation relation. We show a tight link between two-player games and MDPs, and as a consequence the results for games are lifted to MDPs with qualitative properties. We have implemented our algorithms and show that the compositional analysis leads to significant improvements.
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Daca, Przemyslaw
ID - 1501
IS - 2
JF - Formal Methods in System Design
TI - CEGAR for compositional analysis of qualitative properties in Markov decision processes
VL - 47
ER -
TY - JOUR
AB - Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.
AU - Ruess, Jakob
AU - Parise, Francesca
AU - Milias Argeitis, Andreas
AU - Khammash, Mustafa
AU - Lygeros, John
ID - 1538
IS - 26
JF - PNAS
TI - Iterative experiment design guides the characterization of a light-inducible gene expression circuit
VL - 112
ER -
TY - JOUR
AB - Many stochastic models of biochemical reaction networks contain some chemical species for which the number of molecules that are present in the system can only be finite (for instance due to conservation laws), but also other species that can be present in arbitrarily large amounts. The prime example of such networks are models of gene expression, which typically contain a small and finite number of possible states for the promoter but an infinite number of possible states for the amount of mRNA and protein. One of the main approaches to analyze such models is through the use of equations for the time evolution of moments of the chemical species. Recently, a new approach based on conditional moments of the species with infinite state space given all the different possible states of the finite species has been proposed. It was argued that this approach allows one to capture more details about the full underlying probability distribution with a smaller number of equations. Here, I show that the result that less moments provide more information can only stem from an unnecessarily complicated description of the system in the classical formulation. The foundation of this argument will be the derivation of moment equations that describe the complete probability distribution over the finite state space but only low-order moments over the infinite state space. I will show that the number of equations that is needed is always less than what was previously claimed and always less than the number of conditional moment equations up to the same order. To support these arguments, a symbolic algorithm is provided that can be used to derive minimal systems of unconditional moment equations for models with partially finite state space.
AU - Ruess, Jakob
ID - 1539
IS - 24
JF - Journal of Chemical Physics
TI - Minimal moment equations for stochastic models of biochemical reaction networks with partially finite state space
VL - 143
ER -
TY - CONF
AB - Quantitative extensions of temporal logics have recently attracted significant attention. In this work, we study frequency LTL (fLTL), an extension of LTL which allows to speak about frequencies of events along an execution. Such an extension is particularly useful for probabilistic systems that often cannot fulfil strict qualitative guarantees on the behaviour. It has been recently shown that controller synthesis for Markov decision processes and fLTL is decidable when all the bounds on frequencies are 1. As a step towards a complete quantitative solution, we show that the problem is decidable for the fragment fLTL\GU, where U does not occur in the scope of G (but still F can). Our solution is based on a novel translation of such quantitative formulae into equivalent deterministic automata.
AU - Forejt, Vojtěch
AU - Krčál, Jan
AU - Kretinsky, Jan
ID - 1594
TI - Controller synthesis for MDPs and frequency LTL\GU
VL - 9450
ER -
TY - CONF
AB - We propose a flexible exchange format for ω-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Büchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata.
AU - Babiak, Tomáš
AU - Blahoudek, František
AU - Duret Lutz, Alexandre
AU - Klein, Joachim
AU - Kretinsky, Jan
AU - Mueller, Daniel
AU - Parker, David
AU - Strejček, Jan
ID - 1601
TI - The Hanoi omega-automata format
VL - 9206
ER -
TY - CONF
AB - Multiaffine hybrid automata (MHA) represent a powerful formalism to model complex dynamical systems. This formalism is particularly suited for the representation of biological systems which often exhibit highly non-linear behavior. In this paper, we consider the problem of parameter identification for MHA. We present an abstraction of MHA based on linear hybrid automata, which can be analyzed by the SpaceEx model checker. This abstraction enables a precise handling of time-dependent properties. We demonstrate the potential of our approach on a model of a genetic regulatory network and a myocyte model.
AU - Bogomolov, Sergiy
AU - Schilling, Christian
AU - Bartocci, Ezio
AU - Batt, Grégory
AU - Kong, Hui
AU - Grosu, Radu
ID - 1605
TI - Abstraction-based parameter synthesis for multiaffine systems
VL - 9434
ER -
TY - CONF
AB - In this paper, we present the first steps toward a runtime verification framework for monitoring hybrid and cyber-physical systems (CPS) development tools based on randomized differential testing. The development tools include hybrid systems reachability analysis tools, model-based development environments like Simulink/Stateflow (SLSF), etc. First, hybrid automaton models are randomly generated. Next, these hybrid automaton models are translated to a number of different tools (currently, SpaceEx, dReach, Flow*, HyCreate, and the MathWorks’ Simulink/Stateflow) using the HyST source transformation and translation tool. Then, the hybrid automaton models are executed in the different tools and their outputs are parsed. The final step is the differential comparison: the outputs of the different tools are compared. If the results do not agree (in the sense that an analysis or verification result from one tool does not match that of another tool, ignoring timeouts, etc.), a candidate bug is flagged and the model is saved for future analysis by the user. The process then repeats and the monitoring continues until the user terminates the process. We present preliminary results that have been useful in identifying a few bugs in the analysis methods of different development tools, and in an earlier version of HyST.
AU - Nguyen, Luan
AU - Schilling, Christian
AU - Bogomolov, Sergiy
AU - Johnson, Taylor
ID - 1606
TI - Runtime verification for hybrid analysis tools
VL - 9333
ER -