TY - CONF AB - Fixed-point arithmetic is a popular alternative to floating-point arithmetic on embedded systems. Existing work on the verification of fixed-point programs relies on custom formalizations of fixed-point arithmetic, which makes it hard to compare the described techniques or reuse the implementations. In this paper, we address this issue by proposing and formalizing an SMT theory of fixed-point arithmetic. We present an intuitive yet comprehensive syntax of the fixed-point theory, and provide formal semantics for it based on rational arithmetic. We also describe two decision procedures for this theory: one based on the theory of bit-vectors and the other on the theory of reals. We implement the two decision procedures, and evaluate our implementations using existing mature SMT solvers on a benchmark suite we created. Finally, we perform a case study of using the theory we propose to verify properties of quantized neural networks. AU - Baranowski, Marek AU - He, Shaobo AU - Lechner, Mathias AU - Nguyen, Thanh Son AU - Rakamarić, Zvonimir ID - 8194 SN - 03029743 T2 - Automated Reasoning TI - An SMT theory of fixed-point arithmetic VL - 12166 ER - TY - JOUR AB - A central goal of artificial intelligence in high-stakes decision-making applications is to design a single algorithm that simultaneously expresses generalizability by learning coherent representations of their world and interpretable explanations of its dynamics. Here, we combine brain-inspired neural computation principles and scalable deep learning architectures to design compact neural controllers for task-specific compartments of a full-stack autonomous vehicle control system. We discover that a single algorithm with 19 control neurons, connecting 32 encapsulated input features to outputs by 253 synapses, learns to map high-dimensional inputs into steering commands. This system shows superior generalizability, interpretability and robustness compared with orders-of-magnitude larger black-box learning systems. The obtained neural agents enable high-fidelity autonomy for task-specific parts of a complex autonomous system. AU - Lechner, Mathias AU - Hasani, Ramin AU - Amini, Alexander AU - Henzinger, Thomas A AU - Rus, Daniela AU - Grosu, Radu ID - 8679 JF - Nature Machine Intelligence TI - Neural circuit policies enabling auditable autonomy VL - 2 ER - TY - CONF AB - Traditional robotic control suits require profound task-specific knowledge for designing, building and testing control software. The rise of Deep Learning has enabled end-to-end solutions to be learned entirely from data, requiring minimal knowledge about the application area. We design a learning scheme to train end-to-end linear dynamical systems (LDS)s by gradient descent in imitation learning robotic domains. We introduce a new regularization loss component together with a learning algorithm that improves the stability of the learned autonomous system, by forcing the eigenvalues of the internal state updates of an LDS to be negative reals. We evaluate our approach on a series of real-life and simulated robotic experiments, in comparison to linear and nonlinear Recurrent Neural Network (RNN) architectures. Our results show that our stabilizing method significantly improves test performance of LDS, enabling such linear models to match the performance of contemporary nonlinear RNN architectures. A video of the obstacle avoidance performance of our method on a mobile robot, in unseen environments, compared to other methods can be viewed at https://youtu.be/mhEsCoNao5E. AU - Lechner, Mathias AU - Hasani, Ramin AU - Rus, Daniela AU - Grosu, Radu ID - 8704 SN - 10504729 T2 - Proceedings - IEEE International Conference on Robotics and Automation TI - Gershgorin loss stabilizes the recurrent neural network compartment of an end-to-end robot learning scheme ER - TY - CONF AB - Efficiently handling time-triggered and possibly nondeterministic switches for hybrid systems reachability is a challenging task. In this paper we present an approach based on conservative set-based enclosure of the dynamics that can handle systems with uncertain parameters and inputs, where the uncertainties are bound to given intervals. The method is evaluated on the plant model of an experimental electro-mechanical braking system with periodic controller. In this model, the fast-switching controller dynamics requires simulation time scales of the order of nanoseconds. Accurate set-based computations for relatively large time horizons are known to be expensive. However, by appropriately decoupling the time variable with respect to the spatial variables, and enclosing the uncertain parameters using interval matrix maps acting on zonotopes, we show that the computation time can be lowered to 5000 times faster with respect to previous works. This is a step forward in formal verification of hybrid systems because reduced run-times allow engineers to introduce more expressiveness in their models with a relatively inexpensive computational cost. AU - Forets, Marcelo AU - Freire, Daniel AU - Schilling, Christian ID - 8750 SN - 9781728191485 T2 - 18th ACM-IEEE International Conference on Formal Methods and Models for System Design TI - Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions ER - TY - CONF AB - Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. AU - Bogomolov, Sergiy AU - Forets, Marcelo AU - Frehse, Goran AU - Potomkin, Kostiantyn AU - Schilling, Christian ID - 8287 KW - reachability KW - hybrid systems KW - decomposition T2 - Proceedings of the International Conference on Embedded Software TI - Reachability analysis of linear hybrid systems via block decomposition ER - TY - JOUR AB - Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this article, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. AU - Bogomolov, Sergiy AU - Forets, Marcelo AU - Frehse, Goran AU - Potomkin, Kostiantyn AU - Schilling, Christian ID - 8790 IS - 11 JF - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems SN - 02780070 TI - Reachability analysis of linear hybrid systems via block decomposition VL - 39 ER - TY - JOUR AB - In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve. AU - Avni, Guy AU - Ibsen-Jensen, Rasmus AU - Tkadlec, Josef ID - 9197 IS - 02 JF - Proceedings of the AAAI Conference on Artificial Intelligence SN - 2159-5399 TI - All-pay bidding games on graphs VL - 34 ER - TY - CONF AB - We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers. AU - Henzinger, Thomas A AU - Sarac, Naci E ID - 8623 SN - 0302-9743 T2 - Runtime Verification TI - Monitorability under assumptions VL - 12399 ER - TY - CONF AB - This paper presents a foundation for refining concurrent programs with structured control flow. The verification problem is decomposed into subproblems that aid interactive program development, proof reuse, and automation. The formalization in this paper is the basis of a new design and implementation of the Civl verifier. AU - Kragl, Bernhard AU - Qadeer, Shaz AU - Henzinger, Thomas A ID - 8195 SN - 0302-9743 T2 - Computer Aided Verification TI - Refinement for structured concurrent programs VL - 12224 ER - TY - CONF AB - Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos. AU - Kragl, Bernhard AU - Enea, Constantin AU - Henzinger, Thomas A AU - Mutluergil, Suha Orhun AU - Qadeer, Shaz ID - 8012 SN - 9781450376136 T2 - Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation TI - Inductive sequentialization of asynchronous programs ER - TY - JOUR AB - We introduce in this paper AMT2.0, a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended signal temporal logic, which integrates timed regular expressions within signal temporal logic. The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. We demonstrate the tool functionality on several running examples and case studies, and evaluate its performance. AU - Nickovic, Dejan AU - Lebeltel, Olivier AU - Maler, Oded AU - Ferrere, Thomas AU - Ulus, Dogan ID - 10861 IS - 6 JF - International Journal on Software Tools for Technology Transfer KW - Information Systems KW - Software SN - 1433-2779 TI - AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic VL - 22 ER - TY - THES AB - Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step. AU - Kragl, Bernhard ID - 8332 SN - 2663-337X TI - Verifying concurrent programs: Refinement, synchronization, sequentialization ER - TY - CONF AB - We propose a novel hybridization method for stability analysis that over-approximates nonlinear dynamical systems by switched systems with linear inclusion dynamics. We observe that existing hybridization techniques for safety analysis that over-approximate nonlinear dynamical systems by switched affine inclusion dynamics and provide fixed approximation error, do not suffice for stability analysis. Hence, we propose a hybridization method that provides a state-dependent error which converges to zero as the state tends to the equilibrium point. The crux of our hybridization computation is an elegant recursive algorithm that uses partial derivatives of a given function to obtain upper and lower bound matrices for the over-approximating linear inclusion. We illustrate our method on some examples to demonstrate the application of the theory for stability analysis. In particular, our method is able to establish stability of a nonlinear system which does not admit a polynomial Lyapunov function. AU - Garcia Soto, Miriam AU - Prabhakar, Pavithra ID - 9202 T2 - 2020 IEEE Real-Time Systems Symposium TI - Hybridization for stability verification of nonlinear switched systems ER - TY - JOUR AB - This paper presents a novel abstraction technique for analyzing Lyapunov and asymptotic stability of polyhedral switched systems. A polyhedral switched system is a hybrid system in which the continuous dynamics is specified by polyhedral differential inclusions, the invariants and guards are specified by polyhedral sets and the switching between the modes do not involve reset of variables. A finite state weighted graph abstracting the polyhedral switched system is constructed from a finite partition of the state–space, such that the satisfaction of certain graph conditions, such as the absence of cycles with product of weights on the edges greater than (or equal) to 1, implies the stability of the system. However, the graph is in general conservative and hence, the violation of the graph conditions does not imply instability. If the analysis fails to establish stability due to the conservativeness in the approximation, a counterexample (cycle with product of edge weights greater than or equal to 1) indicating a potential reason for the failure is returned. Further, a more precise approximation of the switched system can be constructed by considering a finer partition of the state–space in the construction of the finite weighted graph. We present experimental results on analyzing stability of switched systems using the above method. AU - Garcia Soto, Miriam AU - Prabhakar, Pavithra ID - 7426 IS - 5 JF - Nonlinear Analysis: Hybrid Systems SN - 1751-570X TI - Abstraction based verification of stability of polyhedral switched systems VL - 36 ER - TY - CONF AB - This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with piecewise constant dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this third edition, six tools have been applied to solve five different benchmark problems in the category for piecewise constant dynamics: BACH, Lyse, Hy- COMP, PHAVer/SX, PHAVerLite, and VeriSiMPL. Compared to last year, a new tool has participated (HyCOMP) and PHAVerLite has replaced PHAVer-lite. The result is a snap- shot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results probably provide the most complete assessment of tools for the safety verification of continuous and hybrid systems with piecewise constant dynamics up to this date. AU - Frehse, Goran AU - Abate, Alessandro AU - Adzkiya, Dieky AU - Becchi, Anna AU - Bu, Lei AU - Cimatti, Alessandro AU - Giacobbe, Mirco AU - Griggio, Alberto AU - Mover, Sergio AU - Mufid, Muhammad Syifa'ul AU - Riouak, Idriss AU - Tonetta, Stefano AU - Zaffanella, Enea ED - Frehse, Goran ED - Althoff, Matthias ID - 10877 SN - 2398-7340 T2 - ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems TI - ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics VL - 61 ER - TY - CONF AB - In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example. AU - Kundu, Atreyee AU - Garcia Soto, Miriam AU - Prabhakar, Pavithra ID - 6565 SN - 978-153866246-5 T2 - 5th Indian Control Conference Proceedings TI - Formal synthesis of stabilizing controllers for periodically controlled linear switched systems ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the qualitative winner or quantitative payoff of the game. In bidding games, in each turn, we hold an auction between the two players to determine which player moves the token. Bidding games have largely been studied with concrete bidding mechanisms that are variants of a first-price auction: in each turn both players simultaneously submit bids, the higher bidder moves the token, and pays his bid to the lower bidder in Richman bidding, to the bank in poorman bidding, and in taxman bidding, the bid is split between the other player and the bank according to a predefined constant factor. Bidding games are deterministic games. They have an intriguing connection with a fragment of stochastic games called randomturn games. We study, for the first time, a combination of bidding games with probabilistic behavior; namely, we study bidding games that are played on Markov decision processes, where the players bid for the right to choose the next action, which determines the probability distribution according to which the next vertex is chosen. We study parity and meanpayoff bidding games on MDPs and extend results from the deterministic bidding setting to the probabilistic one. AU - Avni, Guy AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus AU - Novotny, Petr ID - 6822 SN - 0302-9743 T2 - Proceedings of the 13th International Conference of Reachability Problems TI - Bidding games on Markov decision processes VL - 11674 ER - TY - CONF AB - In this paper, we design novel liquid time-constant recurrent neural networks for robotic control, inspired by the brain of the nematode, C. elegans. In the worm's nervous system, neurons communicate through nonlinear time-varying synaptic links established amongst them by their particular wiring structure. This property enables neurons to express liquid time-constants dynamics and therefore allows the network to originate complex behaviors with a small number of neurons. We identify neuron-pair communication motifs as design operators and use them to configure compact neuronal network structures to govern sequential robotic tasks. The networks are systematically designed to map the environmental observations to motor actions, by their hierarchical topology from sensory neurons, through recurrently-wired interneurons, to motor neurons. The networks are then parametrized in a supervised-learning scheme by a search-based algorithm. We demonstrate that obtained networks realize interpretable dynamics. We evaluate their performance in controlling mobile and arm robots, and compare their attributes to other artificial neural network-based control agents. Finally, we experimentally show their superior resilience to environmental noise, compared to the existing machine learning-based methods. AU - Lechner, Mathias AU - Hasani, Ramin AU - Zimmer, Manuel AU - Henzinger, Thomas A AU - Grosu, Radu ID - 6888 SN - 9781538660270 T2 - Proceedings - IEEE International Conference on Robotics and Automation TI - Designing worm-inspired neural networks for interpretable robotic control VL - 2019-May ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. AU - Aghajohari, Milad AU - Avni, Guy AU - Henzinger, Thomas A ID - 6886 TI - Determinacy in discrete-bidding infinite-duration games VL - 140 ER - TY - CONF AB - A vector addition system with states (VASS) consists of a finite set of states and counters. A configuration is a state and a value for each counter; a transition changes the state and each counter is incremented, decremented, or left unchanged. While qualitative properties such as state and configuration reachability have been studied for VASS, we consider the long-run average cost of infinite computations of VASS. The cost of a configuration is for each state, a linear combination of the counter values. In the special case of uniform cost functions, the linear combination is the same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function, and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value of the cost function does not exceed the threshold. For uniform cost functions, we show that the regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and (b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and (d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS with general cost functions, where we establish a connection between the regular long-run emptiness problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness problem is equally hard as the regular problem in all cases except (c), where it remains open. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ID - 6885 TI - Long-run average behavior of vector addition systems with states VL - 140 ER - TY - CONF AB - In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network's output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network's dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets. AU - Hasani, Ramin AU - Amini, Alexander AU - Lechner, Mathias AU - Naser, Felix AU - Grosu, Radu AU - Rus, Daniela ID - 6985 SN - 9781728119854 T2 - Proceedings of the International Joint Conference on Neural Networks TI - Response characterization for auditing cell dynamics in long short-term memory networks ER - TY - CHAP AB - We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. AU - Alur, Rajeev AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Larsen, Kim G. AU - Mikučionis, Marius ED - Steffen, Bernhard ED - Woeginger, Gerhard ID - 7453 SN - 1611-3349 T2 - Computing and Software Science TI - Continuous-time models for system design and analysis VL - 10000 ER - TY - CONF AB - We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. They are applied to solve reachability analysis problems on four benchmark problems, one of them with hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. AU - Immler, Fabian AU - Althoff, Matthias AU - Benet, Luis AU - Chapoutot, Alexandre AU - Chen, Xin AU - Forets, Marcelo AU - Geretti, Luca AU - Kochdumper, Niklas AU - Sanders, David P. AU - Schilling, Christian ID - 7576 T2 - EPiC Series in Computing TI - ARCH-COMP19 Category Report: Continuous and hybrid systems with nonlinear dynamics VL - 61 ER - TY - CONF AB - This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In its third edition, seven tools have been applied to solve six different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, CORA/SX, HyDRA, Hylaa, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date. AU - Althoff, Matthias AU - Bak, Stanley AU - Forets, Marcelo AU - Frehse, Goran AU - Kochdumper, Niklas AU - Ray, Rajarshi AU - Schilling, Christian AU - Schupp, Stefan ID - 8570 T2 - EPiC Series in Computing TI - ARCH-COMP19 Category Report: Continuous and hybrid systems with linear continuous dynamics VL - 61 ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the "bank" rather than the other player. Taxman bidding spans the spectrum between Richman and poorman bidding. They are parameterized by a constant tau in [0,1]: portion tau of the winning bid is paid to the other player, and portion 1-tau to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games. It was previously shown that both Richman and poorman infinite-duration games with qualitative objectives reduce to reachability games, and we show a similar result here. Our most interesting results concern quantitative taxman games, namely mean-payoff games, where poorman and Richman bidding differ significantly. A central quantity in these games is the ratio between the two players' initial budgets. While in poorman mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding, the payoff depends only on the structure of the game. In both games the optimal payoffs can be found using (different) probabilistic connections with random-turn games in which in each turn, instead of bidding, a coin is tossed to determine which player moves. While the value with Richman bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff taxman games that is based on a probabilistic connection: the value of a taxman bidding game with parameter tau and initial ratio r, equals the value of a random-turn game that uses a coin with bias F(tau, r) = (r+tau * (1-r))/(1+tau). Thus, we show that Richman bidding is the exception; namely, for every tau <1, the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the previous proof techniques for both Richman and poorman bidding. AU - Avni, Guy AU - Henzinger, Thomas A AU - Zikelic, Dorde ID - 6884 TI - Bidding mechanisms in graph games VL - 138 ER - TY - CONF AB - Static program analyzers are increasingly effective in checking correctness properties of programs and reporting any errors found, often in the form of error traces. However, developers still spend a significant amount of time on debugging. This involves processing long error traces in an effort to localize a bug to a relatively small part of the program and to identify its cause. In this paper, we present a technique for automated fault localization that, given a program and an error trace, efficiently narrows down the cause of the error to a few statements. These statements are then ranked in terms of their suspiciousness. Our technique relies only on the semantics of the given program and does not require any test cases or user guidance. In experiments on a set of C benchmarks, we show that our technique is effective in quickly isolating the cause of error while out-performing other state-of-the-art fault-localization techniques. AU - Christakis, Maria AU - Heizmann, Matthias AU - Mansur, Muhammad Numair AU - Schilling, Christian AU - Wüstholz, Valentin ID - 6042 T2 - 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems TI - Semantic fault localization and suspiciousness ranking VL - 11427 ER - TY - CONF AB - We present JuliaReach, a toolbox for set-based reachability analysis of dynamical systems. JuliaReach consists of two main packages: Reachability, containing implementations of reachability algorithms for continuous and hybrid systems, and LazySets, a standalone library that implements state-of-the-art algorithms for calculus with convex sets. The library offers both concrete and lazy set representations, where the latter stands for the ability to delay set computations until they are needed. The choice of the programming language Julia and the accompanying documentation of our toolbox allow researchers to easily translate set-based algorithms from mathematics to software in a platform-independent way, while achieving runtime performance that is comparable to statically compiled languages. Combining lazy operations in high dimensions and explicit computations in low dimensions, JuliaReach can be applied to solve complex, large-scale problems. AU - Bogomolov, Sergiy AU - Forets, Marcelo AU - Frehse, Goran AU - Potomkin, Kostiantyn AU - Schilling, Christian ID - 6035 KW - reachability analysis KW - hybrid systems KW - lazy computation SN - 9781450362825 T2 - Proceedings of the 22nd International Conference on Hybrid Systems: Computation and Control TI - JuliaReach: A toolbox for set-based reachability VL - 22 ER - TY - CONF AB - Safety and security are major concerns in the development of Cyber-Physical Systems (CPS). Signal temporal logic (STL) was proposedas a language to specify and monitor the correctness of CPS relativeto formalized requirements. Incorporating STL into a developmentprocess enables designers to automatically monitor and diagnosetraces, compute robustness estimates based on requirements, andperform requirement falsification, leading to productivity gains inverification and validation activities; however, in its current formSTL is agnostic to the input/output classification of signals, andthis negatively impacts the relevance of the analysis results.In this paper we propose to make the interface explicit in theSTL language by introducing input/output signal declarations. Wethen define new measures of input vacuity and output robustnessthat better reflect the nature of the system and the specification in-tent. The resulting framework, which we call interface-aware signaltemporal logic (IA-STL), aids verification and validation activities.We demonstrate the benefits of IA-STL on several CPS analysisactivities: (1) robustness-driven sensitivity analysis, (2) falsificationand (3) fault localization. We describe an implementation of our en-hancement to STL and associated notions of robustness and vacuityin a prototype extension of Breach, a MATLAB®/Simulink®toolboxfor CPS verification and validation. We explore these methodologi-cal improvements and evaluate our results on two examples fromthe automotive domain: a benchmark powertrain control systemand a hydrogen fuel cell system. AU - Ferrere, Thomas AU - Nickovic, Dejan AU - Donzé, Alexandre AU - Ito, Hisahiro AU - Kapinski, James ID - 6428 SN - 9781450362825 T2 - Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control TI - Interface-aware signal temporal logic ER - TY - CONF AB - A controller is a device that interacts with a plant. At each time point,it reads the plant’s state and issues commands with the goal that the plant oper-ates optimally. Constructing optimal controllers is a fundamental and challengingproblem. Machine learning techniques have recently been successfully applied totrain controllers, yet they have limitations. Learned controllers are monolithic andhard to reason about. In particular, it is difficult to add features without retraining,to guarantee any level of performance, and to achieve acceptable performancewhen encountering untrained scenarios. These limitations can be addressed bydeploying quantitative run-timeshieldsthat serve as a proxy for the controller.At each time point, the shield reads the command issued by the controller andmay choose to alter it before passing it on to the plant. We show how optimalshields that interfere as little as possible while guaranteeing a desired level ofcontroller performance, can be generated systematically and automatically usingreactive synthesis. First, we abstract the plant by building a stochastic model.Second, we consider the learned controller to be a black box. Third, we mea-surecontroller performanceandshield interferenceby two quantitative run-timemeasures that are formally defined using weighted automata. Then, the problemof constructing a shield that guarantees maximal performance with minimal inter-ference is the problem of finding an optimal strategy in a stochastic2-player game“controller versus shield” played on the abstract state space of the plant with aquantitative objective obtained from combining the performance and interferencemeasures. We illustrate the effectiveness of our approach by automatically con-structing lightweight shields for learned traffic-light controllers in various roadnetworks. The shields we generate avoid liveness bugs, improve controller per-formance in untrained and changing traffic situations, and add features to learnedcontrollers, such as giving priority to emergency vehicles. AU - Avni, Guy AU - Bloem, Roderick AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Konighofer, Bettina AU - Pranger, Stefan ID - 6462 SN - 0302-9743 T2 - 31st International Conference on Computer-Aided Verification TI - Run-time optimization for learned controllers through quantitative games VL - 11561 ER - TY - CONF AB - We present two algorithmic approaches for synthesizing linear hybrid automata from experimental data. Unlike previous approaches, our algorithms work without a template and generate an automaton with nondeterministic guards and invariants, and with an arbitrary number and topology of modes. They thus construct a succinct model from the data and provide formal guarantees. In particular, (1) the generated automaton can reproduce the data up to a specified tolerance and (2) the automaton is tight, given the first guarantee. Our first approach encodes the synthesis problem as a logical formula in the theory of linear arithmetic, which can then be solved by an SMT solver. This approach minimizes the number of modes in the resulting model but is only feasible for limited data sets. To address scalability, we propose a second approach that does not enforce to find a minimal model. The algorithm constructs an initial automaton and then iteratively extends the automaton based on processing new data. Therefore the algorithm is well-suited for online and synthesis-in-the-loop applications. The core of the algorithm is a membership query that checks whether, within the specified tolerance, a given data set can result from the execution of a given automaton. We solve this membership problem for linear hybrid automata by repeated reachability computations. We demonstrate the effectiveness of the algorithm on synthetic data sets and on cardiac-cell measurements. AU - Garcia Soto, Miriam AU - Henzinger, Thomas A AU - Schilling, Christian AU - Zeleznik, Luka ID - 6493 KW - Synthesis KW - Linear hybrid automaton KW - Membership SN - 0302-9743 T2 - 31st International Conference on Computer-Aided Verification TI - Membership-based synthesis of linear hybrid automata VL - 11561 ER - TY - JOUR AB - Two-player games on graphs are widely studied in formal methods, as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. The following bidding rule was previously defined and called Richman bidding. Both players have separate budgets, which sum up to 1. In each turn, a bidding takes place: Both players submit bids simultaneously, where a bid is legal if it does not exceed the available budget, and the higher bidder pays his bid to the other player and moves the token. The central question studied in bidding games is a necessary and sufficient initial budget for winning the game: a threshold budget in a vertex is a value t ∈ [0, 1] such that if Player 1’s budget exceeds t, he can win the game; and if Player 2’s budget exceeds 1 − t, he can win the game. Threshold budgets were previously shown to exist in every vertex of a reachability game, which have an interesting connection with random-turn games—a sub-class of simple stochastic games in which the player who moves is chosen randomly. We show the existence of threshold budgets for a qualitative class of infinite-duration games, namely parity games, and a quantitative class, namely mean-payoff games. The key component of the proof is a quantitative solution to strongly connected mean-payoff bidding games in which we extend the connection with random-turn games to these games, and construct explicit optimal strategies for both players. AU - Avni, Guy AU - Henzinger, Thomas A AU - Chonev, Ventsislav K ID - 6752 IS - 4 JF - Journal of the ACM SN - 00045411 TI - Infinite-duration bidding games VL - 66 ER - TY - JOUR AB - We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-time systems. A temporal tester is a transducer that inputs a signal holding the Boolean value of atomic propositions and outputs the truth value of a formula along time. Here we consider testers over continuous-time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build testers for these specific modalities and show how to compose testers for simple formulae into complex ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed automata. This construction is much simpler than previously known and remains asymptotically optimal. It supports both past and future operators and can easily be extended. AU - Ferrere, Thomas AU - Maler, Oded AU - Ničković, Dejan AU - Pnueli, Amir ID - 7109 IS - 3 JF - Journal of the ACM SN - 0004-5411 TI - From real-time logic to timed automata VL - 66 ER - TY - CONF AB - The expression of a gene is characterised by its transcription factors and the function processing them. If the transcription factors are not affected by gene products, the regulating function is often represented as a combinational logic circuit, where the outputs (product) are determined by current input values (transcription factors) only, and are hence independent on their relative arrival times. However, the simultaneous arrival of transcription factors (TFs) in genetic circuits is a strong assumption, given that the processes of transcription and translation of a gene into a protein introduce intrinsic time delays and that there is no global synchronisation among the arrival times of different molecular species at molecular targets. In this paper, we construct an experimentally implementable genetic circuit with two inputs and a single output, such that, in presence of small delays in input arrival, the circuit exhibits qualitatively distinct observable phenotypes. In particular, these phenotypes are long lived transients: they all converge to a single value, but so slowly, that they seem stable for an extended time period, longer than typical experiment duration. We used rule-based language to prototype our circuit, and we implemented a search for finding the parameter combinations raising the phenotypes of interest. The behaviour of our prototype circuit has wide implications. First, it suggests that GRNs can exploit event timing to create phenotypes. Second, it opens the possibility that GRNs are using event timing to react to stimuli and memorise events, without explicit feedback in regulation. From the modelling perspective, our prototype circuit demonstrates the critical importance of analysing the transient dynamics at the promoter binding sites of the DNA, before applying rapid equilibrium assumptions. AU - Guet, Calin C AU - Henzinger, Thomas A AU - Igler, Claudia AU - Petrov, Tatjana AU - Sezgin, Ali ID - 7147 SN - 0302-9743 T2 - 17th International Conference on Computational Methods in Systems Biology TI - Transient memory in gene regulation VL - 11773 ER - TY - CONF AB - Cyber-physical systems (CPS) and the Internet-of-Things (IoT) result in a tremendous amount of generated, measured and recorded time-series data. Extracting temporal segments that encode patterns with useful information out of these huge amounts of data is an extremely difficult problem. We propose shape expressions as a declarative formalism for specifying, querying and extracting sophisticated temporal patterns from possibly noisy data. Shape expressions are regular expressions with arbitrary (linear, exponential, sinusoidal, etc.) shapes with parameters as atomic predicates and additional constraints on these parameters. We equip shape expressions with a novel noisy semantics that combines regular expression matching semantics with statistical regression. We characterize essential properties of the formalism and propose an efficient approximate shape expression matching procedure. We demonstrate the wide applicability of this technique on two case studies. AU - Ničković, Dejan AU - Qin, Xin AU - Ferrere, Thomas AU - Mateis, Cristinel AU - Deshmukh, Jyotirmoy ID - 7159 SN - 0302-9743 T2 - 19th International Conference on Runtime Verification TI - Shape expressions for specifying and extracting signal features VL - 11757 ER - TY - CONF AB - Piecewise Barrier Tubes (PBT) is a new technique for flowpipe overapproximation for nonlinear systems with polynomial dynamics, which leverages a combination of barrier certificates. PBT has advantages over traditional time-step based methods in dealing with those nonlinear dynamical systems in which there is a large difference in speed between trajectories, producing an overapproximation that is time independent. However, the existing approach for PBT is not efficient due to the application of interval methods for enclosure-box computation, and it can only deal with continuous dynamical systems without uncertainty. In this paper, we extend the approach with the ability to handle both continuous and hybrid dynamical systems with uncertainty that can reside in parameters and/or noise. We also improve the efficiency of the method significantly, by avoiding the use of interval-based methods for the enclosure-box computation without loosing soundness. We have developed a C++ prototype implementing the proposed approach and we evaluate it on several benchmarks. The experiments show that our approach is more efficient and precise than other methods in the literature. AU - Kong, Hui AU - Bartocci, Ezio AU - Jiang, Yu AU - Henzinger, Thomas A ID - 7231 SN - 0302-9743 T2 - 17th International Conference on Formal Modeling and Analysis of Timed Systems TI - Piecewise robust barrier tubes for nonlinear hybrid systems with uncertainty VL - 11750 ER - TY - CONF AB - We present Mixed-time Signal Temporal Logic (STL−MX), a specification formalism which extends STL by capturing the discrete/ continuous time duality found in many cyber-physical systems (CPS), as well as mixed-signal electronic designs. In STL−MX, properties of components with continuous dynamics are expressed in STL, while specifications of components with discrete dynamics are written in LTL. To combine the two layers, we evaluate formulas on two traces, discrete- and continuous-time, and introduce two interface operators that map signals, properties and their satisfaction signals across the two time domains. We show that STL-mx has the expressive power of STL supplemented with an implicit T-periodic clock signal. We develop and implement an algorithm for monitoring STL-mx formulas and illustrate the approach using a mixed-signal example. AU - Ferrere, Thomas AU - Maler, Oded AU - Nickovic, Dejan ID - 7232 SN - 0302-9743 T2 - 17th International Conference on Formal Modeling and Analysis of Timed Systems TI - Mixed-time signal temporal logic VL - 11750 ER - TY - THES AB - Hybrid automata combine finite automata and dynamical systems, and model the interaction of digital with physical systems. Formal analysis that can guarantee the safety of all behaviors or rigorously witness failures, while unsolvable in general, has been tackled algorithmically using, e.g., abstraction, bounded model-checking, assisted theorem proving. Nevertheless, very few methods have addressed the time-unbounded reachability analysis of hybrid automata and, for current sound and automatic tools, scalability remains critical. We develop methods for the polyhedral abstraction of hybrid automata, which construct coarse overapproximations and tightens them incrementally, in a CEGAR fashion. We use template polyhedra, i.e., polyhedra whose facets are normal to a given set of directions. While, previously, directions were given by the user, we introduce (1) the first method for computing template directions from spurious counterexamples, so as to generalize and eliminate them. The method applies naturally to convex hybrid automata, i.e., hybrid automata with (possibly non-linear) convex constraints on derivatives only, while for linear ODE requires further abstraction. Specifically, we introduce (2) the conic abstractions, which, partitioning the state space into appropriate (possibly non-uniform) cones, divide curvy trajectories into relatively straight sections, suitable for polyhedral abstractions. Finally, we introduce (3) space-time interpolation, which, combining interval arithmetic and template refinement, computes appropriate (possibly non-uniform) time partitioning and template directions along spurious trajectories, so as to eliminate them. We obtain sound and automatic methods for the reachability analysis over dense and unbounded time of convex hybrid automata and hybrid automata with linear ODE. We build prototype tools and compare—favorably—our methods against the respective state-of-the-art tools, on several benchmarks. AU - Giacobbe, Mirco ID - 6894 TI - Automatic time-unbounded reachability analysis of hybrid systems ER - TY - BOOK AB - This book first explores the origins of this idea, grounded in theoretical work on temporal logic and automata. The editors and authors are among the world's leading researchers in this domain, and they contributed 32 chapters representing a thorough view of the development and application of the technique. Topics covered include binary decision diagrams, symbolic model checking, satisfiability modulo theories, partial-order reduction, abstraction, interpolation, concurrency, security protocols, games, probabilistic model checking, and process algebra, and chapters on the transfer of theory to industrial practice, property specification languages for hardware, and verification of real-time systems and hybrid systems. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools. AU - Clarke, Edmund M. AU - Henzinger, Thomas A AU - Veith, Helmut AU - Bloem, Roderick ID - 3300 SN - 978-3-319-10574-1 TI - Handbook of Model Checking ER - TY - CHAP AB - Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. This chapter is an introduction and short survey of model checking. The chapter aims to motivate and link the individual chapters of the handbook, and to provide context for readers who are not familiar with model checking. AU - Clarke, Edmund AU - Henzinger, Thomas A AU - Veith, Helmut ED - Henzinger, Thomas A ID - 60 T2 - Handbook of Model Checking TI - Introduction to model checking ER - TY - CHAP AB - Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition graphs, on Markov chains, and on game graphs. In all three cases, we give polynomial-time algorithms. AU - Chatterjee, Krishnendu AU - Henzinger, Thomas A AU - Otop, Jan ED - Lohstroh, Marten ED - Derler, Patricia ED - Sirjani, Marjan ID - 86 T2 - Principles of Modeling TI - Computing average response time VL - 10760 ER - TY - CONF AB - Network games are widely used as a model for selfish resource-allocation problems. In the classicalmodel, each player selects a path connecting her source and target vertices. The cost of traversingan edge depends on theload; namely, number of players that traverse it. Thus, it abstracts the factthat different users may use a resource at different times and for different durations, which playsan important role in determining the costs of the users in reality. For example, when transmittingpackets in a communication network, routing traffic in a road network, or processing a task in aproduction system, actual sharing and congestion of resources crucially depends on time.In [13], we introducedtimed network games, which add a time component to network games.Each vertexvin the network is associated with a cost function, mapping the load onvto theprice that a player pays for staying invfor one time unit with this load. Each edge in thenetwork is guarded by the time intervals in which it can be traversed, which forces the players tospend time in the vertices. In this work we significantly extend the way time can be referred toin timed network games. In the model we study, the network is equipped withclocks, and, as intimed automata, edges are guarded by constraints on the values of the clocks, and their traversalmay involve a reset of some clocks. We argue that the stronger model captures many realisticnetworks. The addition of clocks breaks the techniques we developed in [13] and we developnew techniques in order to show that positive results on classic network games carry over to thestronger timed setting. AU - Avni, Guy AU - Guha, Shibashis AU - Kupferman, Orna ID - 6005 SN - 1868-8969 TI - Timed network games with clocks VL - 117 ER - TY - CONF AB - Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs. AU - Kragl, Bernhard AU - Qadeer, Shaz AU - Henzinger, Thomas A ID - 133 SN - 18688969 TI - Synchronizing the asynchronous VL - 118 ER - TY - CONF AB - We introduce in this paper AMT 2.0 , a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended Signal Temporal Logic (xSTL), which integrates Timed Regular Expressions (TRE) within Signal Temporal Logic (STL). The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal. AU - Nickovic, Dejan AU - Lebeltel, Olivier AU - Maler, Oded AU - Ferrere, Thomas AU - Ulus, Dogan ED - Beyer, Dirk ED - Huisman, Marieke ID - 299 TI - AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic VL - 10806 ER - TY - CONF AB - The task of a monitor is to watch, at run-time, the execution of a reactive system, and signal the occurrence of a safety violation in the observed sequence of events. While finite-state monitors have been studied extensively, in practice, monitoring software also makes use of unbounded memory. We define a model of automata equipped with integer-valued registers which can execute only a bounded number of instructions between consecutive events, and thus can form the theoretical basis for the study of infinite-state monitors. We classify these register monitors according to the number k of available registers, and the type of register instructions. In stark contrast to the theory of computability for register machines, we prove that for every k 1, monitors with k + 1 counters (with instruction set 〈+1, =〉) are strictly more expressive than monitors with k counters. We also show that adder monitors (with instruction set 〈1, +, =〉) are strictly more expressive than counter monitors, but are complete for monitoring all computable safety -languages for k = 6. Real-time monitors are further required to signal the occurrence of a safety violation as soon as it occurs. The expressiveness hierarchy for counter monitors carries over to real-time monitors. We then show that 2 adders cannot simulate 3 counters in real-time. Finally, we show that real-time adder monitors with inequalities are as expressive as real-time Turing machines. AU - Ferrere, Thomas AU - Henzinger, Thomas A AU - Saraç, Ege ID - 144 TI - A theory of register monitors VL - Part F138033 ER - TY - CONF AB - We describe a new algorithm for the parametric identification problem for signal temporal logic (STL), stated as follows. Given a densetime real-valued signal w and a parameterized temporal logic formula φ, compute the subset of the parameter space that renders the formula satisfied by the signal. Unlike previous solutions, which were based on search in the parameter space or quantifier elimination, our procedure works recursively on φ and computes the evolution over time of the set of valid parameter assignments. This procedure is similar to that of monitoring or computing the robustness of φ relative to w. Our implementation and experiments demonstrate that this approach can work well in practice. AU - Bakhirkin, Alexey AU - Ferrere, Thomas AU - Maler, Oded ID - 182 SN - 978-1-4503-5642-8 T2 - Proceedings of the 21st International Conference on Hybrid Systems TI - Efficient parametric identification for STL ER - TY - CONF AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. Such games are central in formal verification since they model the interaction between a non-terminating system and its environment. We study bidding games in which the players bid for the right to move the token. Two bidding rules have been defined. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the “bank” rather than the other player. While poorman reachability games have been studied before, we present, for the first time, results on infinite-duration poorman games. A central quantity in these games is the ratio between the two players’ initial budgets. The questions we study concern a necessary and sufficient ratio with which a player can achieve a goal. For reachability objectives, such threshold ratios are known to exist for both bidding rules. We show that the properties of poorman reachability games extend to complex qualitative objectives such as parity, similarly to the Richman case. Our most interesting results concern quantitative poorman games, namely poorman mean-payoff games, where we construct optimal strategies depending on the initial ratio, by showing a connection with random-turn based games. The connection in itself is interesting, because it does not hold for reachability poorman games. We also solve the complexity problems that arise in poorman bidding games. AU - Avni, Guy AU - Henzinger, Thomas A AU - Ibsen-Jensen, Rasmus ID - 5788 SN - 03029743 TI - Infinite-duration poorman-bidding games VL - 11316 ER - TY - CONF AB - We present layered concurrent programs, a compact and expressive notation for specifying refinement proofs of concurrent programs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. These programs are expressed in the ordinary syntax of imperative concurrent programs using gated atomic actions, sequencing, choice, and (recursive) procedure calls. Each concurrent program is automatically extracted from the layered program. We reduce refinement to the safety of a sequence of concurrent checker programs, one each to justify the connection between every two consecutive concurrent programs. These checker programs are also automatically extracted from the layered program. Layered concurrent programs have been implemented in the CIVL verifier which has been successfully used for the verification of several complex concurrent programs. AU - Kragl, Bernhard AU - Qadeer, Shaz ID - 160 TI - Layered Concurrent Programs VL - 10981 ER - TY - CONF AB - Fault-localization is considered to be a very tedious and time-consuming activity in the design of complex Cyber-Physical Systems (CPS). This laborious task essentially requires expert knowledge of the system in order to discover the cause of the fault. In this context, we propose a new procedure that AIDS designers in debugging Simulink/Stateflow hybrid system models, guided by Signal Temporal Logic (STL) specifications. The proposed method relies on three main ingredients: (1) a monitoring and a trace diagnostics procedure that checks whether a tested behavior satisfies or violates an STL specification, localizes time segments and interfaces variables contributing to the property violations; (2) a slicing procedure that maps these observable behavior segments to the internal states and transitions of the Simulink model; and (3) a spectrum-based fault-localization method that combines the previous analysis from multiple tests to identify the internal states and/or transitions that are the most likely to explain the fault. We demonstrate the applicability of our approach on two Simulink models from the automotive and the avionics domain. AU - Bartocci, Ezio AU - Ferrere, Thomas AU - Manjunath, Niveditha AU - Nickovic, Dejan ID - 183 TI - Localizing faults in simulink/stateflow models with STL ER - TY - CONF AB - We solve the offline monitoring problem for timed propositional temporal logic (TPTL), interpreted over dense-time Boolean signals. The variant of TPTL we consider extends linear temporal logic (LTL) with clock variables and reset quantifiers, providing a mechanism to specify real-time constraints. We first describe a general monitoring algorithm based on an exhaustive computation of the set of satisfying clock assignments as a finite union of zones. We then propose a specialized monitoring algorithm for the one-variable case using a partition of the time domain based on the notion of region equivalence, whose complexity is linear in the length of the signal, thereby generalizing a known result regarding the monitoring of metric temporal logic (MTL). The region and zone representations of time constraints are known from timed automata verification and can also be used in the discrete-time case. Our prototype implementation appears to outperform previous discrete-time implementations of TPTL monitoring, AU - Elgyütt, Adrian AU - Ferrere, Thomas AU - Henzinger, Thomas A ID - 81 TI - Monitoring temporal logic with clock variables VL - 11022 ER - TY - CONF AB - We provide a procedure for detecting the sub-segments of an incrementally observed Boolean signal ω that match a given temporal pattern ϕ. As a pattern specification language, we use timed regular expressions, a formalism well-suited for expressing properties of concurrent asynchronous behaviors embedded in metric time. We construct a timed automaton accepting the timed language denoted by ϕ and modify it slightly for the purpose of matching. We then apply zone-based reachability computation to this automaton while it reads ω, and retrieve all the matching segments from the results. Since the procedure is automaton based, it can be applied to patterns specified by other formalisms such as timed temporal logics reducible to timed automata or directly encoded as timed automata. The procedure has been implemented and its performance on synthetic examples is demonstrated. AU - Bakhirkin, Alexey AU - Ferrere, Thomas AU - Nickovic, Dejan AU - Maler, Oded AU - Asarin, Eugene ID - 78 SN - 978-3-030-00150-6 TI - Online timed pattern matching using automata VL - 11022 ER -