TY - CONF
AB - Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach.
AU - Garcia Soto, Miriam
AU - Henzinger, Thomas A
AU - Schilling, Christian
ID - 9200
KW - hybrid automaton
KW - membership
KW - system identification
SN - 9781450383394
T2 - HSCC '21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control
TI - Synthesis of hybrid automata with affine dynamics from time-series data
ER -
TY - GEN
AB - We argue that the time is ripe to investigate differential monitoring, in which the specification of a program's behavior is implicitly given by a second program implementing the same informal specification. Similar ideas have been proposed before, and are currently implemented in restricted form for testing and specialized run-time analyses, aspects of which we combine. We discuss the challenges of implementing differential monitoring as a general-purpose, black-box run-time monitoring framework, and present promising results of a preliminary implementation, showing low monitoring overheads for diverse programs.
AU - Mühlböck, Fabian
AU - Henzinger, Thomas A
ID - 9946
KW - Run-time verification
KW - Software engineering
KW - Implicit specification
SN - 2664-1690
TI - Differential monitoring
ER -
TY - GEN
AB - We comment on two formal proofs of Fermat's sum of two squares theorem, written using the Mathematical Components libraries of the Coq proof assistant. The first one follows Zagier's celebrated one-sentence proof; the second follows David Christopher's recent new proof relying on partition-theoretic arguments. Both formal proofs rely on a general property of involutions of finite sets, of independent interest. The proof technique consists for the most part of automating recurrent tasks (such as case distinctions and computations on natural numbers) via ad hoc tactics.
AU - Dubach, Guillaume
AU - Mühlböck, Fabian
ID - 9281
T2 - arXiv
TI - Formal verification of Zagier's one-sentence proof
ER -
TY - CONF
AB - In runtime verification, a monitor watches a trace of a system and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies a given specification. We generalize the theory of runtime verification to monitors that attempt to estimate numerical values of quantitative trace properties (instead of attempting to conclude boolean values of trace specifications), such as maximal or average response time along a trace. Quantitative monitors are approximate: with every finite prefix, they can improve their estimate of the infinite trace's unknown property value. Consequently, quantitative monitors can be compared with regard to a precision-cost trade-off: better approximations of the property value require more monitor resources, such as states (in the case of finite-state monitors) or registers, and additional resources yield better approximations. We introduce a formal framework for quantitative and approximate monitoring, show how it conservatively generalizes the classical boolean setting for monitoring, and give several precision-cost trade-offs for monitors. For example, we prove that there are quantitative properties for which every additional register improves monitoring precision.
AU - Henzinger, Thomas A
AU - Sarac, Naci E
ID - 10003
KW - Computer science
KW - Runtime
KW - Registers
KW - Time factors
KW - Monitoring
SN - 1043-6871
T2 - Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Quantitative and approximate monitoring
ER -
TY - CONF
AB - Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos.
AU - Kragl, Bernhard
AU - Enea, Constantin
AU - Henzinger, Thomas A
AU - Mutluergil, Suha Orhun
AU - Qadeer, Shaz
ID - 8012
SN - 9781450376136
T2 - Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
TI - Inductive sequentialization of asynchronous programs
ER -