TY - CONF
AB - Hybridization methods enable the analysis of hybrid automata with complex, nonlinear dynamics through a sound abstraction process. Complex dynamics are converted to simpler ones with added noise, and then analysis is done using a reachability method for the simpler dynamics. Several such recent approaches advocate that only "dynamic" hybridization techniquesi.e., those where the dynamics are abstracted on-The-fly during a reachability computation are effective. In this paper, we demonstrate this is not the case, and create static hybridization methods that are more scalable than earlier approaches. The main insight in our approach is that quick, numeric simulations can be used to guide the process, eliminating the need for an exponential number of hybridization domains. Transitions between domains are generally timetriggered, avoiding accumulated error from geometric intersections. We enhance our static technique by combining time-Triggered transitions with occasional space-Triggered transitions, and demonstrate the benefits of the combined approach in what we call mixed-Triggered hybridization. Finally, error modes are inserted to confirm that the reachable states stay within the hybridized regions. The developed techniques can scale to higher dimensions than previous static approaches, while enabling the parallelization of the main performance bottleneck for many dynamic hybridization approaches: The nonlinear optimization required for sound dynamics abstraction. We implement our method as a model transformation pass in the HYST tool, and perform reachability analysis and evaluation using an unmodified version of SpaceEx on nonlinear models with up to six dimensions.
AU - Bak, Stanley
AU - Bogomolov, Sergiy
AU - Henzinger, Thomas A
AU - Johnson, Taylor
AU - Prakash, Pradyot
ID - 1421
TI - Scalable static hybridization methods for analysis of nonlinear systems
ER -
TY - CONF
AB - Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asynchronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. We introduce PSYNC, a domain specific language based on the Heard-Of model, which views asynchronous faulty systems as synchronous ones with an adversarial environment that simulates asynchrony and faults by dropping messages. We define a runtime system for PSYNC that efficiently executes on asynchronous networks. We formalize the relation between the runtime system and PSYNC in terms of observational refinement. The high-level lockstep abstraction introduced by PSYNC simplifies the design and implementation of fault-tolerant distributed algorithms and enables automated formal verification. We have implemented an embedding of PSYNC in the SCALA programming language with a runtime system for asynchronous networks. We show the applicability of PSYNC by implementing several important fault-tolerant distributed algorithms and we compare the implementation of consensus algorithms in PSYNC against implementations in other languages in terms of code size, runtime efficiency, and verification.
AU - Dragoi, Cezara
AU - Henzinger, Thomas A
AU - Zufferey, Damien
ID - 1439
TI - PSYNC: A partially synchronous language for fault-tolerant distributed algorithms
VL - 20-22
ER -
TY - CONF
AB - When designing genetic circuits, the typical primitives used in major existing modelling formalisms are gene interaction graphs, where edges between genes denote either an activation or inhibition relation. However, when designing experiments, it is important to be precise about the low-level mechanistic details as to how each such relation is implemented. The rule-based modelling language Kappa allows to unambiguously specify mechanistic details such as DNA binding sites, dimerisation of transcription factors, or co-operative interactions. Such a detailed description comes with complexity and computationally costly executions. We propose a general method for automatically transforming a rule-based program, by eliminating intermediate species and adjusting the rate constants accordingly. To the best of our knowledge, we show the first automated reduction of rule-based models based on equilibrium approximations.
Our algorithm is an adaptation of an existing algorithm, which was designed for reducing reaction-based programs; our version of the algorithm scans the rule-based Kappa model in search for those interaction patterns known to be amenable to equilibrium approximations (e.g. Michaelis-Menten scheme). Additional checks are then performed in order to verify if the reduction is meaningful in the context of the full model. The reduced model is efficiently obtained by static inspection over the rule-set. The tool is tested on a detailed rule-based model of a λ-phage switch, which lists 92 rules and 13 agents. The reduced model has 11 rules and 5 agents, and provides a dramatic reduction in simulation time of several orders of magnitude.
AU - Beica, Andreea
AU - Guet, Calin C
AU - Petrov, Tatjana
ID - 1524
TI - Efficient reduction of kappa models by static inspection of the rule-set
VL - 9271
ER -
TY - CONF
AB - We present the first study of robustness of systems that are both timed as well as reactive (I/O). We study the behavior of such timed I/O systems in the presence of uncertain inputs and formalize their robustness using the analytic notion of Lipschitz continuity: a timed I/O system is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions over timed words such as the timed version of the Manhattan distance and the Skorokhod distance. We consider two models of timed I/O systems — timed transducers and asynchronous sequential circuits. We show that K-robustness of timed transducers can be decided in polynomial space under certain conditions. For asynchronous sequential circuits, we reduce K-robustness w.r.t. timed Manhattan distances to K-robustness of discrete letter-to-letter transducers and show PSpace-completeness of the problem.
AU - Henzinger, Thomas A
AU - Otop, Jan
AU - Samanta, Roopsha
ID - 1526
TI - Lipschitz robustness of timed I/O systems
VL - 9583
ER -
TY - CONF
AB - While weighted automata provide a natural framework to express quantitative properties, many basic properties like average response time cannot be expressed with weighted automata. Nested weighted automata extend weighted automata and consist of a master automaton and a set of slave automata that are invoked by the master automaton. Nested weighted automata are strictly more expressive than weighted automata (e.g., average response time can be expressed with nested weighted automata), but the basic decision questions have higher complexity (e.g., for deterministic automata, the emptiness question for nested weighted automata is PSPACE-hard, whereas the corresponding complexity for weighted automata is PTIME). We consider a natural subclass of nested weighted automata where at any point at most a bounded number k of slave automata can be active. We focus on automata whose master value function is the limit average. We show that these nested weighted automata with bounded width are strictly more expressive than weighted automata (e.g., average response time with no overlapping requests can be expressed with bound k=1, but not with non-nested weighted automata). We show that the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass with k constant matches the complexity for weighted automata. Moreover, when k is part of the input given in unary we establish PSPACE-completeness.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Otop, Jan
ID - 1090
TI - Nested weighted limit-average automata of bounded width
VL - 58
ER -