TY - CONF
AB - The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence.
AU - Ferrere, Thomas
AU - Henzinger, Thomas A
AU - Kragl, Bernhard
ID - 7348
SN - 1868-8969
T2 - 28th EACSL Annual Conference on Computer Science Logic
TI - Monitoring event frequencies
VL - 152
ER -
TY - JOUR
AB - This paper presents a novel abstraction technique for analyzing Lyapunov and asymptotic stability of polyhedral switched systems. A polyhedral switched system is a hybrid system in which the continuous dynamics is specified by polyhedral differential inclusions, the invariants and guards are specified by polyhedral sets and the switching between the modes do not involve reset of variables. A finite state weighted graph abstracting the polyhedral switched system is constructed from a finite partition of the state–space, such that the satisfaction of certain graph conditions, such as the absence of cycles with product of weights on the edges greater than (or equal) to 1, implies the stability of the system. However, the graph is in general conservative and hence, the violation of the graph conditions does not imply instability. If the analysis fails to establish stability due to the conservativeness in the approximation, a counterexample (cycle with product of edge weights greater than or equal to 1) indicating a potential reason for the failure is returned. Further, a more precise approximation of the switched system can be constructed by considering a finer partition of the state–space in the construction of the finite weighted graph. We present experimental results on analyzing stability of switched systems using the above method.
AU - Garcia Soto, Miriam
AU - Prabhakar, Pavithra
ID - 7426
IS - 5
JF - Nonlinear Analysis: Hybrid Systems
SN - 1751570X
TI - Abstraction based verification of stability of polyhedral switched systems
VL - 36
ER -
TY - CONF
AB - Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused by adversarial attacks. We investigate how quantization affects a network’s robustness to adversarial attacks, which is a formal verification question. We show that neither robustness nor non-robustness are monotonic with changing the number of bits for the representation and, also, neither are preserved by quantization from a real-numbered network. For this reason, we introduce a verification method for quantized neural networks which, using SMT solving over bit-vectors, accounts for their exact, bit-precise semantics. We built a tool and analyzed the effect of quantization on a classifier for the MNIST dataset. We demonstrate that, compared to our method, existing methods for the analysis of real-numbered networks often derive false conclusions about their quantizations, both when determining robustness and when detecting attacks, and that existing methods for quantized networks often miss attacks. Furthermore, we applied our method beyond robustness, showing how the number of bits in quantization enlarges the gender bias of a predictor for students’ grades.
AU - Giacobbe, Mirco
AU - Henzinger, Thomas A
AU - Lechner, Mathias
ID - 7808
SN - 03029743
T2 - International Conference on Tools and Algorithms for the Construction and Analysis of Systems
TI - How many bits does it take to quantize your neural network?
VL - 12079
ER -
TY - JOUR
AB - In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 6761
JF - Theoretical Computer Science
SN - 03043975
TI - Dynamic resource allocation games
VL - 807
ER -
TY - CONF
AB - Asynchronous programs are notoriously difficult to reason about because they spawn computation tasks which take effect asynchronously in a nondeterministic way. Devising inductive invariants for such programs requires understanding and stating complex relationships between an unbounded number of computation tasks in arbitrarily long executions. In this paper, we introduce inductive sequentialization, a new proof rule that sidesteps this complexity via a sequential reduction, a sequential program that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. We have implemented and integrated our proof rule in the CIVL verifier, allowing us to provably derive fine-grained implementations of asynchronous programs. We have successfully applied our proof rule to a diverse set of message-passing protocols, including leader election protocols, two-phase commit, and Paxos.
AU - Kragl, Bernhard
AU - Enea, Constantin
AU - Henzinger, Thomas A
AU - Mutluergil, Suha Orhun
AU - Qadeer, Shaz
ID - 8012
SN - 9781450376136
T2 - Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
TI - Inductive sequentialization of asynchronous programs
ER -