TY - CONF
AB - Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.
AU - Almagor, Shaull
AU - Boker, Udi
AU - Kupferman, Orna
ID - 3326
TI - What’s decidable about weighted automata
VL - 6996
ER -
TY - JOUR
AB - Exploring the connection of biology with reactive systems to better understand living systems.
AU - Fisher, Jasmin
AU - Harel, David
AU - Henzinger, Thomas A
ID - 3352
IS - 10
JF - Communications of the ACM
TI - Biology as reactivity
VL - 54
ER -
TY - JOUR
AB - Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.
AU - Tripakis, Stavros
AU - Lickly, Ben
AU - Henzinger, Thomas A
AU - Lee, Edward
ID - 3353
IS - 4
JF - ACM Transactions on Programming Languages and Systems (TOPLAS)
TI - A theory of synchronous relational interfaces
VL - 33
ER -
TY - JOUR
AB - We consider two-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine the successor state. We consider ω-regular winning conditions specified as parity objectives. Both players are allowed to use randomization when choosing their moves. We study the computation of the limit-winning set of states, consisting of the states where the sup-inf value of the game for player 1 is 1: in other words, a state is limit-winning if player 1 can ensure a probability of winning arbitrarily close to 1. We show that the limit-winning set can be computed in O(n2d+2) time, where n is the size of the game structure and 2d is the number of priorities (or colors). The membership problem of whether a state belongs to the limit-winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms are considerably more involved than those for turn-based games. This is because concurrent games do not satisfy two of the most fundamental properties of turn-based parity games. First, in concurrent games limit-winning strategies require randomization; and second, they require infinite memory.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Henzinger, Thomas A
ID - 3354
IS - 4
JF - ACM Transactions on Computational Logic (TOCL)
TI - Qualitative concurrent parity games
VL - 12
ER -
TY - CONF
AB - Byzantine Fault Tolerant (BFT) protocols aim to improve the reliability of distributed systems. They enable systems to tolerate arbitrary failures in a bounded number of nodes. BFT protocols are usually proven correct for certain safety and liveness properties. However, recent studies have shown that the performance of state-of-the-art BFT protocols decreases drastically in the presence of even a single malicious node. This motivates a formal quantitative analysis of BFT protocols to investigate their performance characteristics under different scenarios. We present HyPerf, a new hybrid methodology based on model checking and simulation techniques for evaluating the performance of BFT protocols. We build a transition system corresponding to a BFT protocol and systematically explore the set of behaviors allowed by the protocol. We associate certain timing information with different operations in the protocol, like cryptographic operations and message transmission. After an elaborate state exploration, we use the time information to evaluate the performance characteristics of the protocol using simulation techniques. We integrate our framework in Mace, a tool for building and verifying distributed systems. We evaluate the performance of PBFT using our framework. We describe two different use-cases of our methodology. For the benign operation of the protocol, we use the time information as random variables to compute the probability distribution of the execution times. In the presence of faults, we estimate the worst-case performance of the protocol for various attacks that can be employed by malicious nodes. Our results show the importance of hybrid techniques in systematically analyzing the performance of large-scale systems.
AU - Halalai, Raluca
AU - Henzinger, Thomas A
AU - Singh, Vasu
ID - 3355
TI - Quantitative evaluation of BFT protocols
ER -
TY - CONF
AB - There is recently a significant effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions, aiming for a general and flexible framework for quantitative-oriented specifications. In the heart of quantitative objectives lies the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point of time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire computation. We study the border of decidability for extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities by prefix-accumulation assertions and extending LTL with path-accumulation assertions, result in temporal logics whose model-checking problem is decidable. The extended logics allow to significantly extend the currently known energy and mean-payoff objectives. Moreover, the prefix-accumulation assertions may be refined with "controlled-accumulation", allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that the fragment we point to is, in a sense, the maximal logic whose extension with prefix-accumulation assertions permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, and in particular CTL and LTL, makes the problem undecidable.
AU - Boker, Udi
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 3356
TI - Temporal specifications with accumulative values
ER -
TY - CONF
AB - We consider two-player graph games whose objectives are request-response condition, i.e conjunctions of conditions of the form "if a state with property Rq is visited, then later a state with property Rp is visited". The winner of such games can be decided in EXPTIME and the problem is known to be NP-hard. In this paper, we close this gap by showing that this problem is, in fact, EXPTIME-complete. We show that the problem becomes PSPACE-complete if we only consider games played on DAGs, and NP-complete or PTIME-complete if there is only one player (depending on whether he wants to enforce or spoil the request-response condition). We also present near-optimal bounds on the memory needed to design winning strategies for each player, in each case.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Horn, Florian
ED - Dediu, Adrian-Horia
ED - Inenaga, Shunsuke
ED - Martín-Vide, Carlos
ID - 3357
TI - The complexity of request-response games
VL - 6638
ER -
TY - CONF
AB - The static scheduling problem often arises as a fundamental problem in real-time systems and grid computing. We consider the problem of statically scheduling a large job expressed as a task graph on a large number of computing nodes, such as a data center. This paper solves the large-scale static scheduling problem using abstraction refinement, a technique commonly used in formal verification to efficiently solve computationally hard problems. A scheduler based on abstraction refinement first attempts to solve the scheduling problem with abstract representations of the job and the computing resources. As abstract representations are generally small, the scheduling can be done reasonably fast. If the obtained schedule does not meet specified quality conditions (like data center utilization or schedule makespan) then the scheduler refines the job and data center abstractions and, again solves the scheduling problem. We develop different schedulers based on abstraction refinement. We implemented these schedulers and used them to schedule task graphs from various computing domains on simulated data centers with realistic topologies. We compared the speed of scheduling and the quality of the produced schedules with our abstraction refinement schedulers against a baseline scheduler that does not use any abstraction. We conclude that abstraction refinement techniques give a significant speed-up compared to traditional static scheduling heuristics, at a reasonable cost in the quality of the produced schedules. We further used our static schedulers in an actual system that we deployed on Amazon EC2 and compared it against the Hadoop dynamic scheduler for large MapReduce jobs. Our experiments indicate that there is great potential for static scheduling techniques.
AU - Henzinger, Thomas A
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 3358
TI - Scheduling large jobs by abstraction refinement
ER -
TY - CONF
AB - Motivated by improvements in constraint-solving technology and by the increase of routinely available computational power, partial-program synthesis is emerging as an effective approach for increasing programmer productivity. The goal of the approach is to allow the programmer to specify a part of her intent imperatively (that is, give a partial program) and a part of her intent declaratively, by specifying which conditions need to be achieved or maintained. The task of the synthesizer is to construct a program that satisfies the specification. As an example, consider a partial program where threads access shared data without using any synchronization mechanism, and a declarative specification that excludes data races and deadlocks. The task of the synthesizer is then to place locks into the program code in order for the program to meet the specification.
In this paper, we argue that quantitative objectives are needed in partial-program synthesis in order to produce higher-quality programs, while enabling simpler specifications. Returning to the example, the synthesizer could construct a naive solution that uses one global lock for shared data. This can be prevented either by constraining the solution space further (which is error-prone and partly defeats the point of synthesis), or by optimizing a quantitative objective that models performance. Other quantitative notions useful in synthesis include fault tolerance, robustness, resource (memory, power) consumption, and information flow.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
ID - 3359
TI - From boolean to quantitative synthesis
ER -
TY - CONF
AB - A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words.
AU - Boker, Udi
AU - Henzinger, Thomas A
ID - 3360
TI - Determinizing discounted-sum automata
VL - 12
ER -
TY - CONF
AB - In this paper, we investigate the computational complexity of quantitative information flow (QIF) problems. Information-theoretic quantitative relaxations of noninterference (based on Shannon entropy)have been introduced to enable more fine-grained reasoning about programs in situations where limited information flow is acceptable. The QIF bounding problem asks whether the information flow in a given program is bounded by a constant $d$. Our first result is that the QIF bounding problem is PSPACE-complete. The QIF memoryless synthesis problem asks whether it is possible to resolve nondeterministic choices in a given partial program in such a way that in the resulting deterministic program, the quantitative information flow is bounded by a given constant $d$. Our second result is that the QIF memoryless synthesis problem is also EXPTIME-complete. The QIF memoryless synthesis problem generalizes to QIF general synthesis problem which does not impose the memoryless requirement (that is, by allowing the synthesized program to have more variables then the original partial program). Our third result is that the QIF general synthesis problem is EXPTIME-hard.
AU - Cerny, Pavol
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
ID - 3361
TI - The complexity of quantitative information flow problems
ER -
TY - CONF
AB - State-transition systems communicating by shared variables have been the underlying model of choice for applications of model checking. Such formalisms, however, have difficulty with modeling process creation or death and communication reconfigurability. Here, we introduce “dynamic reactive modules” (DRM), a state-transition modeling formalism that supports dynamic reconfiguration and creation/death of processes. The resulting formalism supports two types of variables, data variables and reference variables. Reference variables enable changing the connectivity between processes and referring to instances of processes. We show how this new formalism supports parallel composition and refinement through trace containment. DRM provide a natural language for modeling (and ultimately reasoning about) biological systems and multiple threads communicating through shared variables.
AU - Fisher, Jasmin
AU - Henzinger, Thomas A
AU - Nickovic, Dejan
AU - Piterman, Nir
AU - Singh, Anmol
AU - Vardi, Moshe
ID - 3362
TI - Dynamic reactive modules
VL - 6901
ER -
TY - GEN
AB - We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present a complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Tracol, Mathieu
ID - 3363
TI - The decidability frontier for probabilistic automata on infinite words
ER -
TY - JOUR
AB - Molecular noise, which arises from the randomness of the discrete events in the cell, significantly influences fundamental biological processes. Discrete-state continuous-time stochastic models (CTMC) can be used to describe such effects, but the calculation of the probabilities of certain events is computationally expensive. We present a comparison of two analysis approaches for CTMC. On one hand, we estimate the probabilities of interest using repeated Gillespie simulation and determine the statistical accuracy that we obtain. On the other hand, we apply a numerical reachability analysis that approximates the probability distributions of the system at several time instances. We use examples of cellular processes to demonstrate the superiority of the reachability analysis if accurate results are required.
AU - Didier, Frédéric
AU - Henzinger, Thomas A
AU - Mateescu, Maria
AU - Wolf, Verena
ID - 3364
IS - 21
JF - Theoretical Computer Science
TI - Approximation of event probabilities in noisy cellular processes
VL - 412
ER -
TY - CONF
AB - We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Singh, Rohit
ID - 3365
TI - QUASY: quantitative synthesis tool
VL - 6605
ER -
TY - CONF
AB - We present an algorithmic method for the quantitative, performance-aware synthesis of concurrent programs. The input consists of a nondeterministic partial program and of a parametric performance model. The nondeterminism allows the programmer to omit which (if any) synchronization construct is used at a particular program location. The performance model, specified as a weighted automaton, can capture system architectures by assigning different costs to actions such as locking, context switching, and memory and cache accesses. The quantitative synthesis problem is to automatically resolve the nondeterminism of the partial program so that both correctness is guaranteed and performance is optimal. As is standard for shared memory concurrency, correctness is formalized "specification free", in particular as race freedom or deadlock freedom. For worst-case (average-case) performance, we show that the problem can be reduced to 2-player graph games (with probabilistic transitions) with quantitative objectives. While we show, using game-theoretic methods, that the synthesis problem is Nexp-complete, we present an algorithmic method and an implementation that works efficiently for concurrent programs and performance models of practical interest. We have implemented a prototype tool and used it to synthesize finite-state concurrent programs that exhibit different programming patterns, for several performance models representing different architectures.
AU - Cerny, Pavol
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
AU - Singh, Rohit
ED - Gopalakrishnan, Ganesh
ED - Qadeer, Shaz
ID - 3366
TI - Quantitative synthesis for concurrent programs
VL - 6806
ER -
TY - JOUR
AB - In this survey, we compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. All these languages — matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models — describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, and ease of use. Moreover, they provide different support for checking the well-formedness of a model and for analyzing a model.
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Wolf, Verena
ID - 3381
IS - 4
JF - IJFCS: International Journal of Foundations of Computer Science
TI - Formalisms for specifying Markovian population models
VL - 22
ER -
TY - JOUR
AB - Software transactional memories (STM) are described in the literature with assumptions of sequentially consistent program execution and atomicity of high level operations like read, write, and abort. However, in a realistic setting, processors use relaxed memory models to optimize hardware performance. Moreover, the atomicity of operations depends on the underlying hardware. This paper presents the first approach to verify STMs under relaxed memory models with atomicity of 32 bit loads and stores, and read-modify-write operations. We describe RML, a simple language for expressing concurrent programs. We develop a semantics of RML parametrized by a relaxed memory model. We then present our tool, FOIL, which takes as input the RML description of an STM algorithm restricted to two threads and two variables, and the description of a memory model, and automatically determines the locations of fences, which if inserted, ensure the correctness of the restricted STM algorithm under the given memory model. We use FOIL to verify DSTM, TL2, and McRT STM under the memory models of sequential consistency, total store order, partial store order, and relaxed memory order for two threads and two variables. Finally, we extend the verification results for DSTM and TL2 to an arbitrary number of threads and variables by manually proving that the structural properties of STMs are satisfied at the hardware level of atomicity under the considered relaxed memory models.
AU - Guerraoui, Rachid
AU - Henzinger, Thomas A
AU - Singh, Vasu
ID - 531
IS - 3
JF - Formal Methods in System Design
TI - Verification of STM on relaxed memory models
VL - 39
ER -
TY - GEN
AB - We present a new decidable logic called TREX for expressing constraints about imperative tree data structures. In particular, TREX supports a transitive closure operator that can express reachability constraints, which often appear in data structure invariants. We show that our logic is closed under weakest precondition computation, which enables its use for automated software verification. We further show that satisfiability of formulas in TREX is decidable in NP. The low complexity makes it an attractive alternative to more expensive logics such as monadic second-order logic (MSOL) over trees, which have been traditionally used for reasoning about tree data structures.
AU - Wies, Thomas
AU - Muñiz, Marco
AU - Kuncak, Viktor
ID - 5383
SN - 2664-1690
TI - On an efficient decision procedure for imperative tree data structures
ER -
TY - GEN
AB - There is recently a significant effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions, aiming for a general and flexible framework for quantitative-oriented specifications. In the heart of quantitative objectives lies the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point of time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire computation. We study the border of decidability for extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities by prefix-accumulation assertions and extending LTL with path-accumulation assertions, result in temporal logics whose model-checking problem is decidable. The extended logics allow to significantly extend the currently known energy and mean-payoff objectives. Moreover, the prefix-accumulation assertions may be refined with “controlled-accumulation”, allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that the fragment we point to is, in a sense, the maximal logic whose extension with prefix-accumulation assertions permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, and in particular CTL and LTL, makes the problem undecidable.
AU - Boker, Udi
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 5385
SN - 2664-1690
TI - Temporal specifications with accumulative values
ER -
TY - CONF
AB - Streaming string transducers [1] define (partial) functions from input strings to output strings. A streaming string transducer makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. At every step, the transducer processes an input symbol, and updates all the variables in parallel using assignments whose right-hand-sides are concatenations of output symbols and variables with the restriction that a variable can be used at most once in a right-hand-side expression. It has been shown that streaming string transducers operating on strings over infinite data domains are of interest in algorithmic verification of list-processing programs, as they lead to PSPACE decision procedures for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of heap-manipulating programs. In order to understand the theoretical expressiveness of streaming transducers, we focus on streaming transducers processing strings over finite alphabets, given the existence of a robust and well-studied class of "regular" transductions for this case. Such regular transductions can be defined either by two-way deterministic finite-state transducers, or using a logical MSO-based characterization. Our main result is that the expressiveness of streaming string transducers coincides exactly with this class of regular transductions.
AU - Alur, Rajeev
AU - Cerny, Pavol
ID - 488
TI - Expressiveness of streaming string transducers
VL - 8
ER -
TY - JOUR
AB - Any programming error that can be revealed before compiling a program saves precious time for the programmer. While integrated development environments already do a good job by detecting, e.g., data-flow abnormalities, current static analysis tools suffer from false positives ("noise") or require strong user interaction. We propose to avoid this deficiency by defining a new class of errors. A program fragment is doomed if its execution will inevitably fail, regardless of which state it is started in. We use a formal verification method to identify such errors fully automatically and, most significantly, without producing noise. We report on experiments with a prototype tool.
AU - Hoenicke, Jochen
AU - Leino, Kari
AU - Podelski, Andreas
AU - Schäf, Martin
AU - Wies, Thomas
ID - 533
IS - 2-3
JF - Formal Methods in System Design
TI - Doomed program points
VL - 37
ER -
TY - GEN
AB - We present an algorithmic method for the synthesis of concurrent programs that are optimal with respect to quantitative performance measures. The input consists of a sequential sketch, that is, a program that does not contain synchronization constructs, and of a parametric performance model that assigns costs to actions such as locking, context switching, and idling. The quantitative synthesis problem is to automatically introduce synchronization constructs into the sequential sketch so that both correctness is guaranteed and worst-case (or average-case) performance is optimized. Correctness is formalized as race freedom or linearizability.
We show that for worst-case performance, the problem can be modeled
as a 2-player graph game with quantitative (limit-average) objectives, and
for average-case performance, as a 2 1/2 -player graph game (with probabilistic transitions). In both cases, the optimal correct program is derived from an optimal strategy in the corresponding quantitative game. We prove that the respective game problems are computationally expensive (NP-complete), and present several techniques that overcome the theoretical difficulty in cases of concurrent programs of practical interest.
We have implemented a prototype tool and used it for the automatic syn- thesis of programs that access a concurrent list. For certain parameter val- ues, our method automatically synthesizes various classical synchronization schemes for implementing a concurrent list, such as fine-grained locking or a lazy algorithm. For other parameter values, a new, hybrid synchronization style is synthesized, which uses both the lazy approach and coarse-grained locks (instead of standard fine-grained locks). The trade-off occurs because while fine-grained locking tends to decrease the cost that is due to waiting for locks, it increases cache size requirements.
AU - Chatterjee, Krishnendu
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
AU - Singh, Rohit
ID - 5388
SN - 2664-1690
TI - Quantitative synthesis for concurrent programs
ER -
TY - GEN
AB - Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the im- plementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ID - 5389
SN - 2664-1690
TI - Simulation distances
ER -
TY - GEN
AB - Concurrent data structures with fine-grained synchronization are notoriously difficult to implement correctly. The difficulty of reasoning about these implementations does not stem from the number of variables or the program size, but rather from the large number of possible interleavings. These implementations are therefore prime candidates for model checking. We introduce an algorithm for verifying linearizability of singly-linked heap-based concurrent data structures. We consider a model consisting of an unbounded heap where each node consists an element from an unbounded data domain, with a restricted set of operations for testing and updating pointers and data elements. Our main result is that linearizability is decidable for programs that invoke a fixed number of methods, possibly in parallel. This decidable fragment covers many of the common implementation techniques — fine-grained locking, lazy synchronization, and lock-free synchronization. We also show how the technique can be used to verify optimistic implementations with the help of programmer annotations. We developed a verification tool CoLT and evaluated it on a representative sample of Java implementations of the concurrent set data structure. The tool verified linearizability of a number of implementations, found a known error in a lock-free imple- mentation and proved that the corrected version is linearizable.
AU - Cerny, Pavol
AU - Radhakrishna, Arjun
AU - Zufferey, Damien
AU - Chaudhuri, Swarat
AU - Alur, Rajeev
ID - 5391
SN - 2664-1690
TI - Model checking of linearizability of concurrent list implementations
ER -
TY - CONF
AB - The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a math- ematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the com- binatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk.
AU - Feret, Jérôme
AU - Henzinger, Thomas A
AU - Koeppl, Heinz
AU - Petrov, Tatjana
ID - 3719
TI - Lumpability abstractions of rule-based systems
VL - 40
ER -
TY - JOUR
AB - Background
The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species.
Results
In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy.
Conclusions
The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori.
AU - Wolf, Verena
AU - Goel, Rushil
AU - Mateescu, Maria
AU - Henzinger, Thomas A
ID - 3834
IS - 42
JF - BMC Systems Biology
TI - Solving the chemical master equation using sliding windows
VL - 4
ER -
TY - CONF
AB - We present a numerical approximation technique for the analysis of continuous-time Markov chains that describe net- works of biochemical reactions and play an important role in the stochastic modeling of biological systems. Our approach is based on the construction of a stochastic hybrid model in which certain discrete random variables of the original Markov chain are approximated by continuous deterministic variables. We compute the solution of the stochastic hybrid model using a numerical algorithm that discretizes time and in each step performs a mutual update of the transient prob- ability distribution of the discrete stochastic variables and the values of the continuous deterministic variables. We im- plemented the algorithm and we demonstrate its usefulness and efficiency on several case studies from systems biology.
AU - Henzinger, Thomas A
AU - Mateescu, Maria
AU - Mikeev, Linar
AU - Wolf, Verena
ID - 3838
TI - Hybrid numerical solution of the chemical master equation
ER -
TY - CONF
AB - We present a loop property generation method for loops iterating over multi-dimensional arrays. When used on matrices, our method is able to infer their shapes (also called types), such as upper-triangular, diagonal, etc. To gen- erate loop properties, we first transform a nested loop iterating over a multi- dimensional array into an equivalent collection of unnested loops. Then, we in- fer quantified loop invariants for each unnested loop using a generalization of a recurrence-based invariant generation technique. These loop invariants give us conditions on matrices from which we can derive matrix types automatically us- ing theorem provers. Invariant generation is implemented in the software package Aligator and types are derived by theorem provers and SMT solvers, including Vampire and Z3. When run on the Java matrix package JAMA, our tool was able to infer automatically all matrix types describing the matrix shapes guaranteed by JAMA’s API.
AU - Henzinger, Thomas A
AU - Hottelier, Thibaud
AU - Kovács, Laura
AU - Voronkov, Andrei
ID - 3839
TI - Invariant and type inference for matrices
VL - 5944
ER -
TY - CONF
AB - Classical formalizations of systems and properties are boolean: given a system and a property, the property is either true or false of the system. Correspondingly, classical methods for system analysis determine the truth value of a property, preferably giving a proof if the property is true, and a counterexample if the property is false; classical methods for system synthesis construct a system for which a property is true; classical methods for system transformation, composition, and abstraction aim to preserve the truth of properties. The boolean view is prevalent even if the system, the property, or both refer to numerical quantities, such as the times or probabilities of events. For example, a timed automaton either satisfies or violates a formula of a real-time logic; a stochastic process either satisfies or violates a formula of a probabilistic logic. The classical black-and-white view partitions the world into "correct" and "incorrect" systems, offering few nuances. In reality, of several systems that satisfy a property in the boolean sense, often some are more desirable than others, and of the many systems that violate a property, usually some are less objectionable than others. For instance, among the systems that satisfy the response property that every request be granted, we may prefer systems that grant requests quickly (the quicker, the better), or we may prefer systems that issue few unnecessary grants (the fewer, the better); and among the systems that violate the response property, we may prefer systems that serve many initial requests (the more, the better), or we may prefer systems that serve many requests in the long run (the greater the fraction of served to unserved requests, the better). Formally, while a boolean notion of correctness is given by a preorder on systems and properties, a quantitative notion of correctness is defined by a directed metric on systems and properties, where the distance between a system and a property provides a measure of "fit" or "desirability." There are many ways how such distances can be defined. In a linear-time framework, one assigns numerical values to individual behaviors before assigning values to systems and properties, which are sets of behaviors. For example, the value of a single behavior may be a discounted value, which is largely determined by a prefix of the behavior, e.g., by the number of requests that are granted before the first request that is not granted; or a limit value, which is independent of any finite prefix. A limit value may be an average, such as the average response time over an infinite sequence of requests and grants, or a supremum, such as the worst-case response time. Similarly, the value of a set of behaviors may be an extremum or an average across the values of all behaviors in the set: in this way one can measure the worst of all possible average-case response times, or the average of all possible worst-case response times, etc. Accordingly, the distance between two sets of behaviors may be defined as the worst or average difference between the values of corresponding behaviors. In summary, we propagate replacing boolean specifications for the correctness of systems with quantitative measures for the desirability of systems. In quantitative analysis, the aim is to compute the distance between a system and a property (or between two systems, or two properties); in quantitative synthesis, the objective is to construct a system that has minimal distance from a given property. Multiple quantitative measures can be prioritized (e.g., combined lexicographically into a single measure) or studied along the Pareto curve. Quantitative transformations, compositions, and abstractions of systems are useful if they allow us to bound the induced change in distance from a property. We present some initial results in some of these directions. We also give some potential applications, which not only generalize tradiditional correctness concerns in the functional, timed, and probabilistic domains, but also capture such system measures as resource use, performance, cost, reliability, and robustness.
AU - Henzinger, Thomas A
ID - 3840
IS - 1
TI - From boolean to quantitative notions of correctness
VL - 45
ER -
TY - JOUR
AB - Within systems biology there is an increasing interest in the stochastic behavior of biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous-time Markov chain (CTMC). The uniformization technique is an efficient method to compute probability distributions of a CTMC if the number of states is manageable. However, the size of a CTMC that represents a biochemical reaction network is usually far beyond what is feasible. In this paper we present an on-the-fly variant of uniformization, where we improve the original algorithm at the cost of a small approximation error. By means of several examples, we show that our approach is particularly well-suited for biochemical reaction networks.
AU - Didier, Frédéric
AU - Henzinger, Thomas A
AU - Mateescu, Maria
AU - Wolf, Verena
ID - 3842
IS - 6
JF - IET Systems Biology
TI - Fast adaptive uniformization of the chemical master equation
VL - 4
ER -
TY - CONF
AB - This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurrence and algebraic solving techniques for reasoning about arrays.
AU - Henzinger, Thomas A
AU - Hottelier, Thibaud
AU - Kovács, Laura
AU - Rybalchenko, Andrey
ID - 3845
TI - Aligators for arrays
VL - 6397
ER -
TY - CONF
AB - The importance of stochasticity within biological systems has been shown repeatedly during the last years and has raised the need for efficient stochastic tools. We present SABRE, a tool for stochastic analysis of biochemical reaction networks. SABRE implements fast adaptive uniformization (FAU), a direct numerical approximation algorithm for computing transient solutions of biochemical reaction networks. Biochemical reactions networks represent biological systems studied at a molecular level and these reactions can be modeled as transitions of a Markov chain. SABRE accepts as input the formalism of guarded commands, which it interprets either as continuous-time or as discrete-time Markov chains. Besides operating in a stochastic mode, SABRE may also perform a deterministic analysis by directly computing a mean-field approximation of the system under study. We illustrate the different functionalities of SABRE by means of biological case studies.
AU - Didier, Frédéric
AU - Henzinger, Thomas A
AU - Mateescu, Maria
AU - Wolf, Verena
ID - 3847
TI - SABRE: A tool for the stochastic analysis of biochemical reaction networks
ER -
TY - CONF
AB - Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Edelsbrunner, Herbert
AU - Henzinger, Thomas A
AU - Rannou, Philippe
ID - 3853
TI - Mean-payoff automaton expressions
VL - 6269
ER -
TY - CONF
AB - We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Henzinger, Thomas A
ID - 3855
TI - Qualitative analysis of partially-observable Markov Decision Processes
VL - 6281
ER -
TY - CONF
AB - We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (players interact simultaneously); and (b) turn-based (players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. We present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function (probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Gimbert, Hugo
AU - Henzinger, Thomas A
ID - 3856
TI - Randomness for free
VL - 6281
ER -
TY - CONF
AB - We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present an almost complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
ID - 3857
TI - Probabilistic Automata on infinite words: decidability and undecidability results
VL - 6252
ER -
TY - GEN
AB - This book constitutes the proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2010, held in Klosterneuburg, Austria in September 2010. The 14 papers presented were carefully reviewed and selected from 31 submissions. In addition, the volume contains 3 invited talks and 2 invited tutorials.The aim of FORMATS is to promote the study of fundamental and practical aspects of timed systems, and to bring together researchers from different disciplines that share an interest in the modeling and analysis of timed systems. Typical topics include foundations and semantics, methods and tools, and applications.
ED - Chatterjee, Krishnendu
ED - Henzinger, Thomas A
ID - 3859
TI - Formal modeling and analysis of timed systems
VL - 6246
ER -
TY - CONF
AB - In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Generalized mean-payoff and energy games replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of generalized energy games and show the inter- reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Henzinger, Thomas A
AU - Raskin, Jean
ID - 3860
TI - Generalized mean-payoff and energy games
VL - 8
ER -
TY - JOUR
AB - We introduce strategy logic, a logic that treats strategies in two-player games as explicit first-order objects. The explicit treatment of strategies allows us to specify properties of nonzero-sum games in a simple and natural way. We show that the one-alternation fragment of strategy logic is strong enough to express the existence of Nash equilibria and secure equilibria, and subsumes other logics that were introduced to reason about games, such as ATL, ATL*, and game logic. We show that strategy logic is decidable, by constructing tree automata that recognize sets of strategies. While for the general logic, our decision procedure is nonelementary, for the simple fragment that is used above we show that the complexity is polynomial in the size of the game graph and optimal in the size of the formula (ranging from polynomial to 2EXPTIME depending on the form of the formula).
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Piterman, Nir
ID - 3861
IS - 6
JF - Information and Computation
TI - Strategy logic
VL - 208
ER -
TY - JOUR
AB - We consider two-player parity games with imperfect information in which strategies rely on observations that provide imperfect information about the history of a play. To solve such games, i.e., to determine the winning regions of players and corresponding winning strategies, one can use the subset construction to build an equivalent perfect-information game. Recently, an algorithm that avoids the inefficient subset construction has been proposed. The algorithm performs a fixed-point computation in a lattice of antichains, thus maintaining a succinct representation of state sets. However, this representation does not allow to recover winning strategies. In this paper, we build on the antichain approach to develop an algorithm for constructing the winning strategies in parity games of imperfect information. One major obstacle in adapting the classical procedure is that the complementation of attractor sets would break the invariant of downward-closedness on which the antichain representation relies. We overcome this difficulty by decomposing problem instances recursively into games with a combination of reachability, safety, and simpler parity conditions. We also report on an experimental implementation of our algorithm: to our knowledge, this is the first implementation of a procedure for solving imperfect-information parity games on graphs.
AU - Berwanger, Dietmar
AU - Chatterjee, Krishnendu
AU - De Wulf, Martin
AU - Doyen, Laurent
AU - Henzinger, Thomas A
ID - 3863
IS - 10
JF - Information and Computation
TI - Strategy construction for parity games with imperfect information
VL - 208
ER -
TY - CONF
AB - Often one has a preference order among the different systems that satisfy a given specification. Under a probabilistic assumption about the possible inputs, such a preference order is naturally expressed by a weighted automaton, which assigns to each word a value, such that a system is preferred if it generates a higher expected value. We solve the following optimal-synthesis problem: given an omega-regular specification, a Markov chain that describes the distribution of inputs, and a weighted automaton that measures how well a system satisfies the given specification tinder the given input assumption, synthesize a system that optimizes the measured value. For safety specifications and measures that are defined by mean-payoff automata, the optimal-synthesis problem amounts to finding a strategy in a Markov decision process (MDP) that is optimal for a long-run average reward objective, which can be done in polynomial time. For general omega-regular specifications, the solution rests on a new, polynomial-time algorithm for computing optimal strategies in MDPs with mean-payoff parity objectives. We present some experimental results showing optimal systems that were automatically generated in this way.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Singh, Rohit
ID - 3864
TI - Measuring and synthesizing systems in probabilistic environments
VL - 6174
ER -
TY - CONF
AB - Systems ought to behave reasonably even in circumstances that are not anticipated in their specifications. We propose a definition of robustness for liveness specifications which prescribes, for any number of environment assumptions that are violated, a minimal number of system guarantees that must still be fulfilled. This notion of robustness can be formulated and realized using a Generalized Reactivity formula. We present an algorithm for synthesizing robust systems from such formulas. For the important special case of Generalized Reactivity formulas of rank 1, our algorithm improves the complexity of [PPS06] for large specifications with a small number of assumptions and guarantees.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Greimel, Karin
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
ED - Touili, Tayssir
ED - Cook, Byron
ED - Jackson, Paul
ID - 3866
TI - Robustness in the presence of liveness
VL - 6174
ER -
TY - JOUR
AB - Weighted automata are nondeterministic automata with numerical weights on transitions. They can define quantitative languages L that assign to each word w a real number L(w). In the case of infinite words, the value of a run is naturally computed as the maximum, limsup, liminf, limit-average, or discounted-sum of the transition weights. The value of a word w is the supremum of the values of the runs over w. We study expressiveness and closure questions about these quantitative languages. We first show that the set of words with value greater than a threshold can be omega-regular for deterministic limit-average and discounted-sum automata, while this set is always omega-regular when the threshold is isolated (i.e., some neighborhood around the threshold contains no word). In the latter case, we prove that the omega-regular language is robust against small perturbations of the transition weights. We next consider automata with transition weights 0 or 1 and show that they are as expressive as general weighted automata in the limit-average case, but not in the discounted-sum case. Third, for quantitative languages L-1 and L-2, we consider the operations max(L-1, L-2), min(L-1, L-2), and 1 - L-1, which generalize the boolean operations on languages, as well as the sum L-1 + L-2. We establish the closure properties of all classes of quantitative languages with respect to these four operations.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Henzinger, Thomas A
ID - 3867
IS - 3
JF - Logical Methods in Computer Science
TI - Expressiveness and closure properties for quantitative languages
VL - 6
ER -
TY - CONF
AB - Depth-bounded processes form the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. In this paper we develop an adequate domain of limits for the well-structured transition systems that are induced by depth-bounded processes. An immediate consequence of our result is that there exists a forward algorithm that decides the covering problem for this class. Unlike backward algorithms, the forward algorithm terminates even if the depth of the process is not known a priori. More importantly, our result suggests a whole spectrum of forward algorithms that enable the effective verification of a large class of mobile systems.
AU - Wies, Thomas
AU - Zufferey, Damien
AU - Henzinger, Thomas A
ED - Ong, Luke
ID - 4361
TI - Forward analysis of depth-bounded processes
VL - 6014
ER -
TY - CONF
AB - Software transactional memories (STMs) promise simple and efficient concurrent programming. Several correctness properties have been proposed for STMs. Based on a bounded conflict graph algorithm for verifying correctness of STMs, we develop TRACER, a tool for runtime verification of STM implementations. The novelty of TRACER lies in the way it combines coarse and precise runtime analyses to guarantee sound and complete verification in an efficient manner. We implement TRACER in the TL2 STM implementation. We evaluate the performance of TRACER on STAMP benchmarks. While a precise runtime verification technique based on conflict graphs results in an average slowdown of 60x, the two-level approach of TRACER performs complete verification with an average slowdown of around 25x across different benchmarks.
AU - Singh, Vasu
ED - Sokolsky, Oleg
ED - Rosu, Grigore
ED - Tilmann, Nikolai
ED - Barringer, Howard
ED - Falcone, Ylies
ED - Finkbeiner, Bernd
ED - Havelund, Klaus
ED - Lee, Insup
ED - Pace, Gordon
ID - 4362
TI - Runtime verification for software transactional memories
VL - 6418
ER -
TY - CONF
AB - In this paper we propose a novel technique for constructing timed automata from properties expressed in the logic mtl, under bounded-variability assumptions. We handle full mtl and include all future operators. Our construction is based on separation of the continuous time monitoring of the input sequence and discrete predictions regarding the future. The separation of the continuous from the discrete allows us to determinize our automata in an exponential construction that does not increase the number of clocks. This leads to a doubly exponential construction from mtl to deterministic timed automata, compared with triply exponential using existing approaches. We offer an alternative to the existing approach to linear real-time model checking, which has never been implemented. It further offers a unified framework for model checking, runtime monitoring, and synthesis, in an approach that can reuse tools, implementations, and insights from the discrete setting.
AU - Nickovic, Dejan
AU - Piterman, Nir
ED - Henzinger, Thomas A.
ED - Chatterjee, Krishnendu
ID - 4369
TI - From MTL to deterministic timed automata
VL - 6246
ER -
TY - CONF
AB - Techniques such as verification condition generation, predicate abstraction, and expressive type systems reduce software verification to proving formulas in expressive logics. Programs and their specifications often make use of data structures such as sets, multisets, algebraic data types, or graphs. Consequently, formulas generated from verification also involve such data structures. To automate the proofs of such formulas we propose a logic (a “calculus”) of such data structures. We build the calculus by starting from decidable logics of individual data structures, and connecting them through functions and sets, in ways that go beyond the frameworks such as Nelson-Oppen. The result are new decidable logics that can simultaneously specify properties of different kinds of data structures and overcome the limitations of the individual logics. Several of our decidable logics include abstraction functions that map a data structure into its more abstract view (a tree into a multiset, a multiset into a set), into a numerical quantity (the size or the height), or into the truth value of a candidate data structure invariant (sortedness, or the heap property). For algebraic data types, we identify an asymptotic many-to-one condition on the abstraction function that guarantees the existence of a decision procedure. In addition to the combination based on abstraction functions, we can combine multiple data structure theories if they all reduce to the same data structure logic. As an instance of this approach, we describe a decidable logic whose formulas are propositional combinations of formulas in: weak monadic second-order logic of two successors, two-variable logic with counting, multiset algebra with Presburger arithmetic, the Bernays-Schönfinkel-Ramsey class of first-order logic, and the logic of algebraic data types with the set content function. The subformulas in this combination can share common variables that refer to sets of objects along with the common set algebra operations. Such sound and complete combination is possible because the relations on sets definable in the component logics are all expressible in Boolean Algebra with Presburger Arithmetic. Presburger arithmetic and its new extensions play an important role in our decidability results. In several cases, when we combine logics that belong to NP, we can prove the satisfiability for the combined logic is still in NP.
AU - Kuncak, Viktor
AU - Piskac, Ruzica
AU - Suter, Philippe
AU - Wies, Thomas
ED - Barthe, Gilles
ED - Hermenegildo, Manuel
ID - 4378
TI - Building a calculus of data structures
VL - 5944
ER -
TY - CONF
AB - Cloud computing is an emerging paradigm aimed to offer users pay-per-use computing resources, while leaving the burden of managing the computing infrastructure to the cloud provider. We present a new programming and pricing model that gives the cloud user the flexibility of trading execution speed and price on a per-job basis. We discuss the scheduling and resource management challenges for the cloud provider that arise in the implementation of this model. We argue that techniques from real-time and embedded software can be useful in this context.
AU - Henzinger, Thomas A
AU - Tomar, Anmol
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 4380
TI - A marketplace for cloud resources
ER -
TY - CONF
AB - Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We claim that, in order to realize the full potential of cloud computing, the user must be presented with a pricing model that offers flexibility at the requirements level, such as a choice between different degrees of execution speed and the cloud provider must be presented with a programming model that offers flexibility at the execution level, such as a choice between different scheduling policies. In such a flexible framework, with each job, the user purchases a virtual computer with the desired speed and cost characteristics, and the cloud provider can optimize the utilization of resources across a stream of jobs from different users. We designed a flexible framework to test our hypothesis, which is called FlexPRICE (Flexible Provisioning of Resources in a Cloud Environment) and works as follows. A user presents a job to the cloud. The cloud finds different schedules to execute the job and presents a set of quotes to the user in terms of price and duration for the execution. The user then chooses a particular quote and the cloud is obliged to execute the job according to the chosen quote. FlexPRICE thus hides the complexity of the actual scheduling decisions from the user, but still provides enough flexibility to meet the users actual demands. We implemented FlexPRICE in a simulator called PRICES that allows us to experiment with our framework. We observe that FlexPRICE provides a wide range of execution options-from fast and expensive to slow and cheap-- for the whole spectrum of data-intensive and computation-intensive jobs. We also observe that the set of quotes computed by FlexPRICE do not vary as the number of simultaneous jobs increases.
AU - Henzinger, Thomas A
AU - Tomar, Anmol
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 4381
TI - FlexPRICE: Flexible provisioning of resources in a cloud environment
ER -
TY - CONF
AB - Transactional memory (TM) has shown potential to simplify the task of writing concurrent programs. Inspired by classical work on databases, formal definitions of the semantics of TM executions have been proposed. Many of these definitions assumed that accesses to shared data are solely performed through transactions. In practice, due to legacy code and concurrency libraries, transactions in a TM have to share data with non-transactional operations. The semantics of such interaction, while widely discussed by practitioners, lacks a clear formal specification. Those interactions can vary, sometimes in subtle ways, between TM implementations and underlying memory models. We propose a correctness condition for TMs, parametrized opacity, to formally capture the now folklore notion of strong atomicity by stipulating the two following intuitive requirements: first, every transaction appears as if it is executed instantaneously with respect to other transactions and non-transactional operations, and second, non-transactional operations conform to the given underlying memory model. We investigate the inherent cost of implementing parametrized opacity. We first prove that parametrized opacity requires either instrumenting non-transactional operations (for most memory models) or writing to memory by transactions using potentially expensive read-modify-write instructions (such as compare-and-swap). Then, we show that for a class of practical relaxed memory models, parametrized opacity can indeed be implemented with constant-time instrumentation of non-transactional writes and no instrumentation of non-transactional reads. We show that, in practice, parametrizing the notion of correctness allows developing more efficient TM implementations.
AU - Guerraoui, Rachid
AU - Henzinger, Thomas A
AU - Kapalka, Michal
AU - Singh, Vasu
ID - 4382
TI - Transactions in the jungle
ER -
TY - CONF
AB - GIST is a tool that (a) solves the qualitative analysis problem of turn-based probabilistic games with ω-regular objectives; and (b) synthesizes reasonable environment assumptions for synthesis of unrealizable specifications. Our tool provides the first and efficient implementations of several reduction-based techniques to solve turn-based probabilistic games, and uses the analysis of turn-based probabilistic games for synthesizing environment assumptions for unrealizable specifications.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Radhakrishna, Arjun
ID - 4388
TI - GIST: A solver for probabilistic games
VL - 6174
ER -
TY - CONF
AB - Digital components play a central role in the design of complex embedded systems. These components are interconnected with other, possibly analog, devices and the physical environment. This environment cannot be entirely captured and can provide inaccurate input data to the component. It is thus important for digital components to have a robust behavior, i.e. the presence of a small change in the input sequences should not result in a drastic change in the output sequences. In this paper, we study a notion of robustness for sequential circuits. However, since sequential circuits may have parts that are naturally discontinuous (e.g., digital controllers with switching behavior), we need a flexible framework that accommodates this fact and leaves discontinuous parts of the circuit out from the robustness analysis. As a consequence, we consider sequential circuits that have their input variables partitioned into two disjoint sets: control and disturbance variables. Our contributions are (1) a definition of robustness for sequential circuits as a form of continuity with respect to disturbance variables, (2) the characterization of the exact class of sequential circuits that are robust according to our definition, (3) an algorithm to decide whether a sequential circuit is robust or not.
AU - Doyen, Laurent
AU - Henzinger, Thomas A
AU - Legay, Axel
AU - Nickovic, Dejan
ID - 4389
TI - Robustness of sequential circuits
ER -
TY - CONF
AB - Concurrent data structures with fine-grained synchronization are notoriously difficult to implement correctly. The difficulty of reasoning about these implementations does not stem from the number of variables or the program size, but rather from the large number of possible interleavings. These implementations are therefore prime candidates for model checking. We introduce an algorithm for verifying linearizability of singly-linked heap-based concurrent data structures. We consider a model consisting of an unbounded heap where each vertex stores an element from an unbounded data domain, with a restricted set of operations for testing and updating pointers and data elements. Our main result is that linearizability is decidable for programs that invoke a fixed number of methods, possibly in parallel. This decidable fragment covers many of the common implementation techniques — fine-grained locking, lazy synchronization, and lock-free synchronization. We also show how the technique can be used to verify optimistic implementations with the help of programmer annotations. We developed a verification tool CoLT and evaluated it on a representative sample of Java implementations of the concurrent set data structure. The tool verified linearizability of a number of implementations, found a known error in a lock-free implementation and proved that the corrected version is linearizable.
AU - Cerny, Pavol
AU - Radhakrishna, Arjun
AU - Zufferey, Damien
AU - Chaudhuri, Swarat
AU - Alur, Rajeev
ID - 4390
TI - Model checking of linearizability of concurrent list implementations
VL - 6174
ER -
TY - CHAP
AB - While a boolean notion of correctness is given by a preorder on systems and properties, a quantitative notion of correctness is defined by a distance function on systems and properties, where the distance between a system and a property provides a measure of “fit” or “desirability.” In this article, we explore several ways how the simulation preorder can be generalized to a distance function. This is done by equipping the classical simulation game between a system and a property with quantitative objectives. In particular, for systems that satisfy a property, a quantitative simulation game can measure the “robustness” of the satisfaction, that is, how much the system can deviate from its nominal behavior while still satisfying the property. For systems that violate a property, a quantitative simulation game can measure the “seriousness” of the violation, that is, how much the property has to be modified so that it is satisfied by the system. These distances can be computed in polynomial time, since the computation reduces to the value problem in limit average games with constant weights. Finally, we demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ED - Manna, Zohar
ED - Peled, Doron
ID - 4392
T2 - Time For Verification: Essays in Memory of Amir Pnueli
TI - Quantitative Simulation Games
VL - 6200
ER -
TY - CONF
AB - Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the implementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.
AU - Cerny, Pavol
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ID - 4393
TI - Simulation distances
VL - 6269
ER -
TY - CONF
AB - Shape analysis is a promising technique to prove program properties about recursive data structures. The challenge is to automatically determine the data-structure type, and to supply the shape analysis with the necessary information about the data structure. We present a stepwise approach to the selection of instrumentation predicates for a TVLA-based shape analysis, which takes us a step closer towards the fully automatic verification of data structures. The approach uses two techniques to guide the refinement of shape abstractions: (1) during program exploration, an explicit heap analysis collects sample instances of the heap structures, which are used to identify the data structures that are manipulated by the program; and (2) during abstraction refinement along an infeasible error path, we consider different possible heap abstractions and choose the coarsest one that eliminates the infeasible path. We have implemented this combined approach for automatic shape refinement as an extension of the software model checker BLAST. Example programs from a data-structure library that manipulate doubly-linked lists and trees were successfully verified by our tool.
AU - Beyer, Dirk
AU - Henzinger, Thomas A
AU - Théoduloz, Grégory
AU - Zufferey, Damien
ED - Rosenblum, David
ED - Taenzer, Gabriele
ID - 4396
TI - Shape refinement through explicit heap analysis
VL - 6013
ER -
TY - CONF
AB - We present ABC, a software tool for automatically computing symbolic upper bounds on the number of iterations of nested program loops. The system combines static analysis of programs with symbolic summation techniques to derive loop invariant relations between program variables. Iteration bounds are obtained from the inferred invariants, by replacing variables with bounds on their greatest values. We have successfully applied ABC to a large number of examples. The derived symbolic bounds express non-trivial polynomial relations over loop variables. We also report on results to automatically infer symbolic expressions over harmonic numbers as upper bounds on loop iteration counts.
AU - Blanc, Régis
AU - Henzinger, Thomas A
AU - Hottelier, Thibaud
AU - Kovács, Laura
ED - Clarke, Edmund M
ED - Voronkov, Andrei
ID - 10908
SN - 0302-9743
T2 - Logic for Programming, Artificial Intelligence, and Reasoning
TI - ABC: Algebraic Bound Computation for loops
VL - 6355
ER -
TY - GEN
AB - Gist is a tool that (a) solves the qualitative analysis problem of turn-based probabilistic games with ω-regular objectives; and (b) synthesizes reasonable environment assumptions for synthesis of unrealizable specifications. Our tool provides efficient implementations of several reduction based techniques to solve turn-based probabilistic games, and uses the analysis of turn-based probabilistic games for synthesizing environment assumptions for unrealizable specifications.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Radhakrishna, Arjun
ID - 5393
SN - 2664-1690
TI - Gist: A solver for probabilistic games
ER -
TY - GEN
AB - We consider two-player games played on graphs with request-response and finitary Streett objectives. We show these games are PSPACE-hard, improving the previous known NP-hardness. We also improve the lower bounds on memory required by the winning strategies for the players.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Horn, Florian
ID - 5394
SN - 2664-1690
TI - Improved lower bounds for request-response and finitary Streett games
ER -
TY - GEN
AB - We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observa- tions. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDPs with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDPs with parity objectives and its subclasses.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Henzinger, Thomas A
ID - 5395
SN - 2664-1690
TI - Qualitative analysis of partially-observable Markov decision processes
ER -
TY - CONF
AB - In this paper we extend the work of Alfaro, Henzinger et al. on interface theories for component-based design. Existing interface theories often fail to capture functional relations between the inputs and outputs of an interface. For example, a simple synchronous interface that takes as input a number n ≥ 0 and returns, at the same time, as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational interfaces, where such input-output relations can be captured. Our theory supports synchronous interfaces, both stateless and stateful. It includes explicit notions of environments and pluggability, and satisfies fundamental properties such as preservation of refinement by composition, and characterization of pluggability by refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface compositions.
AU - Tripakis, Stavros
AU - Lickly, Ben
AU - Henzinger, Thomas A
AU - Lee, Edward
ID - 3837
T2 - EMSOFT '09 Proceedings of the seventh ACM international conference on Embedded software
TI - On relational interfaces
ER -
TY - CONF
AB - We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
AU - Wolf, Verena
ID - 3841
TI - Formalisms for specifying Markovian population models
VL - 5797
ER -
TY - CONF
AB - Within systems biology there is an increasing interest in the stochastic behavior of biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous- time Markov chain (CTMC).
Standard Uniformization (SU) is an efficient method for the transient analysis of CTMCs. For systems with very different time scales, such as biochemical reaction networks, SU is computationally expensive. In these cases, a variant of SU, called adaptive uniformization (AU), is known to reduce the large number of iterations needed by SU. The additional difficulty of AU is that it requires the solution of a birth process.
In this paper we present an on-the-fly variant of AU, where we improve the original algorithm for AU at the cost of a small approximation error. By means of several examples, we show that our approach is particularly well-suited for biochemical reaction networks.
AU - Didier, Frédéric
AU - Henzinger, Thomas A
AU - Mateescu, Maria
AU - Wolf, Verena
ID - 3843
IS - 6
TI - Fast adaptive uniformization of the chemical master equation
VL - 4
ER -
TY - CONF
AB - The Hierarchical Timing Language (HTL) is a real-time coordination language for distributed control systems. HTL programs must be checked for well-formedness, race freedom, transmission safety (schedulability of inter-host communication), and time safety (schedulability of host computation). We present a modular abstract syntax and semantics for HTL, modular checks of well-formedness, race freedom, and transmission safety, and modular code distribution. Our contributions here complement previous results on HTL time safety and modular code generation. Modularity in HTL can be utilized in easy program composition as well as fast program analysis and code generation, but also in so-called runtime patching, where program components may be modified at runtime.
AU - Henzinger, Thomas A
AU - Kirsch, Christoph
AU - Marques, Eduardo
AU - Sokolova, Ana
ID - 3844
TI - Distributed, modular HTL
ER -