@misc{5436,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time.
In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2015-170-v2-2},
year = {2015},
}
@inproceedings{1657,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) ~the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) ~the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., Ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems, which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem. },
author = {Chatterjee, Krishnendu and Komárková, Zuzana and Kretinsky, Jan},
location = {Kyoto, Japan},
pages = {244 -- 256},
publisher = {IEEE},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.1109/LICS.2015.32},
year = {2015},
}
@inproceedings{1656,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
booktitle = {Proceedings - Symposium on Logic in Computer Science},
location = {Kyoto, Japan},
publisher = {IEEE},
title = {{Nested weighted automata}},
doi = {10.1109/LICS.2015.72},
volume = {2015-July},
year = {2015},
}
@inproceedings{1659,
abstract = {The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata.},
author = {Boker, Udi and Henzinger, Thomas A and Otop, Jan},
booktitle = {LICS},
issn = {1043-6871 },
location = {Kyoto, Japan},
pages = {750 -- 761},
publisher = {IEEE},
title = {{The target discounted-sum problem}},
doi = {10.1109/LICS.2015.74},
year = {2015},
}
@inproceedings{1610,
abstract = {The edit distance between two words w1, w2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1 to w2. The edit distance generalizes to languages L1,L2, where the edit distance is the minimal number k such that for every word from L1 there exists a word in L2 with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to pushdown automata is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
location = {Kyoto, Japan},
number = {Part II},
pages = {121 -- 133},
publisher = {Springer},
title = {{Edit distance for pushdown automata}},
doi = {10.1007/978-3-662-47666-6_10},
volume = {9135},
year = {2015},
}
@misc{5439,
abstract = {The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata. },
author = {Boker, Udi and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{The target discounted-sum problem}},
doi = {10.15479/AT:IST-2015-335-v1-1},
year = {2015},
}
@misc{5549,
abstract = {This repository contains the experimental part of the CAV 2015 publication Counterexample Explanation by Learning Small Strategies in Markov Decision Processes.
We extended the probabilistic model checker PRISM to represent strategies of Markov Decision Processes as Decision Trees.
The archive contains a java executable version of the extended tool (prism_dectree.jar) together with a few examples of the PRISM benchmark library.
To execute the program, please have a look at the README.txt, which provides instructions and further information on the archive.
The archive contains scripts that (if run often enough) reproduces the data presented in the publication.},
author = {Fellner, Andreas},
keywords = {Markov Decision Process, Decision Tree, Probabilistic Verification, Counterexample Explanation},
publisher = {IST Austria},
title = {{Experimental part of CAV 2015 publication: Counterexample Explanation by Learning Small Strategies in Markov Decision Processes}},
doi = {10.15479/AT:ISTA:28},
year = {2015},
}
@inproceedings{1603,
abstract = {For deterministic systems, a counterexample to a property can simply be an error trace, whereas counterexamples in probabilistic systems are necessarily more complex. For instance, a set of erroneous traces with a sufficient cumulative probability mass can be used. Since these are too large objects to understand and manipulate, compact representations such as subchains have been considered. In the case of probabilistic systems with non-determinism, the situation is even more complex. While a subchain for a given strategy (or scheduler, resolving non-determinism) is a straightforward choice, we take a different approach. Instead, we focus on the strategy itself, and extract the most important decisions it makes, and present its succinct representation.
The key tools we employ to achieve this are (1) introducing a concept of importance of a state w.r.t. the strategy, and (2) learning using decision trees. There are three main consequent advantages of our approach. Firstly, it exploits the quantitative information on states, stressing the more important decisions. Secondly, it leads to a greater variability and degree of freedom in representing the strategies. Thirdly, the representation uses a self-explanatory data structure. In summary, our approach produces more succinct and more explainable strategies, as opposed to e.g. binary decision diagrams. Finally, our experimental results show that we can extract several rules describing the strategy even for very large systems that do not fit in memory, and based on the rules explain the erroneous behaviour.},
author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Chmelik, Martin and Fellner, Andreas and Kretinsky, Jan},
location = {San Francisco, CA, United States},
pages = {158 -- 177},
publisher = {Springer},
title = {{Counterexample explanation by learning small strategies in Markov decision processes}},
doi = {10.1007/978-3-319-21690-4_10},
volume = {9206},
year = {2015},
}
@inproceedings{1392,
abstract = {Fault-tolerant distributed algorithms play an important role in ensuring the reliability of many software applications. In this paper we consider distributed algorithms whose computations are organized in rounds. To verify the correctness of such algorithms, we reason about (i) properties (such as invariants) of the state, (ii) the transitions controlled by the algorithm, and (iii) the communication graph. We introduce a logic that addresses these points, and contains set comprehensions with cardinality constraints, function symbols to describe the local states of each process, and a limited form of quantifier alternation to express the verification conditions. We show its use in automating the verification of consensus algorithms. In particular, we give a semi-decision procedure for the unsatisfiability problem of the logic and identify a decidable fragment. We successfully applied our framework to verify the correctness of a variety of consensus algorithms tolerant to both benign faults (message loss, process crashes) and value faults (message corruption).},
author = {Dragoi, Cezara and Henzinger, Thomas A and Veith, Helmut and Widder, Josef and Zufferey, Damien},
location = {San Diego, USA},
pages = {161 -- 181},
publisher = {Springer},
title = {{A logic-based framework for verifying consensus algorithms}},
doi = {10.1007/978-3-642-54013-4_10},
volume = {8318},
year = {2014},
}
@inproceedings{1393,
abstract = {Probabilistic programs are usual functional or imperative programs with two added constructs: (1) the ability to draw values at random from distributions, and (2) the ability to condition values of variables in a program via observations. Models from diverse application areas such as computer vision, coding theory, cryptographic protocols, biology and reliability analysis can be written as probabilistic programs. Probabilistic inference is the problem of computing an explicit representation of the probability distribution implicitly specified by a probabilistic program. Depending on the application, the desired output from inference may vary-we may want to estimate the expected value of some function f with respect to the distribution, or the mode of the distribution, or simply a set of samples drawn from the distribution. In this paper, we describe connections this research area called \Probabilistic Programming" has with programming languages and software engineering, and this includes language design, and the static and dynamic analysis of programs. We survey current state of the art and speculate on promising directions for future research.},
author = {Gordon, Andrew and Henzinger, Thomas A and Nori, Aditya and Rajamani, Sriram},
booktitle = {Proceedings of the on Future of Software Engineering},
location = {Hyderabad, India},
pages = {167 -- 181},
publisher = {ACM},
title = {{Probabilistic programming}},
doi = {10.1145/2593882.2593900},
year = {2014},
}