--- _id: '1027' abstract: - lang: eng text: The rising prevalence of antibiotic resistant bacteria is an increasingly serious public health challenge. To address this problem, recent work ranging from clinical studies to theoretical modeling has provided valuable insights into the mechanisms of resistance, its emergence and spread, and ways to counteract it. A deeper understanding of the underlying dynamics of resistance evolution will require a combination of experimental and theoretical expertise from different disciplines and new technology for studying evolution in the laboratory. Here, we review recent advances in the quantitative understanding of the mechanisms and evolution of antibiotic resistance. We focus on key theoretical concepts and new technology that enables well-controlled experiments. We further highlight key challenges that can be met in the near future to ultimately develop effective strategies for combating resistance. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X citation: ama: Lukacisinova M, Bollenbach MT. Toward a quantitative understanding of antibiotic resistance evolution. Current Opinion in Biotechnology. 2017;46:90-97. doi:10.1016/j.copbio.2017.02.013 apa: Lukacisinova, M., & Bollenbach, M. T. (2017). Toward a quantitative understanding of antibiotic resistance evolution. Current Opinion in Biotechnology. Elsevier. https://doi.org/10.1016/j.copbio.2017.02.013 chicago: Lukacisinova, Marta, and Mark Tobias Bollenbach. “Toward a Quantitative Understanding of Antibiotic Resistance Evolution.” Current Opinion in Biotechnology. Elsevier, 2017. https://doi.org/10.1016/j.copbio.2017.02.013. ieee: M. Lukacisinova and M. T. Bollenbach, “Toward a quantitative understanding of antibiotic resistance evolution,” Current Opinion in Biotechnology, vol. 46. Elsevier, pp. 90–97, 2017. ista: Lukacisinova M, Bollenbach MT. 2017. Toward a quantitative understanding of antibiotic resistance evolution. Current Opinion in Biotechnology. 46, 90–97. mla: Lukacisinova, Marta, and Mark Tobias Bollenbach. “Toward a Quantitative Understanding of Antibiotic Resistance Evolution.” Current Opinion in Biotechnology, vol. 46, Elsevier, 2017, pp. 90–97, doi:10.1016/j.copbio.2017.02.013. short: M. Lukacisinova, M.T. Bollenbach, Current Opinion in Biotechnology 46 (2017) 90–97. date_created: 2018-12-11T11:49:45Z date_published: 2017-08-01T00:00:00Z date_updated: 2024-03-28T23:30:29Z day: '01' ddc: - '570' department: - _id: ToBo doi: 10.1016/j.copbio.2017.02.013 ec_funded: 1 external_id: isi: - '000408077400015' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-18T09:57:57Z date_updated: 2019-01-18T09:57:57Z file_id: '5846' file_name: 2017_CurrentOpinion_Lukaciinova.pdf file_size: 858338 relation: main_file success: 1 file_date_updated: 2019-01-18T09:57:57Z has_accepted_license: '1' intvolume: ' 46' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: 90 - 97 project: - _id: 25E9AF9E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27201-B22 name: Revealing the mechanisms underlying drug interactions - _id: 25E83C2C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303507' name: Optimality principles in responses to antibiotics - _id: 25EB3A80-B435-11E9-9278-68D0E5697425 grant_number: RGP0042/2013 name: Revealing the fundamental limits of cell growth publication: Current Opinion in Biotechnology publication_status: published publisher: Elsevier publist_id: '6364' pubrep_id: '801' quality_controlled: '1' related_material: record: - id: '6263' relation: dissertation_contains status: public scopus_import: '1' status: public title: Toward a quantitative understanding of antibiotic resistance evolution tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 46 year: '2017' ... --- _id: '1154' abstract: - lang: eng text: "Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue. \r\n" acknowledgement: 'This work was supported by the Swiss National Science Foundation (Ambizione fellowship; PZ00P3-154733 to M.M.), the Swiss Multiple Sclerosis Society (research support to M.M.), a fellowship from the Boehringer Ingelheim Fonds (BIF) to J.S., the European Research Council (grant ERC GA 281556) and a START award from the Austrian Science Foundation (FWF) to M.S. #BioimagingFacility' article_number: '36440' author: - first_name: Jan full_name: Schwarz, Jan id: 346C1EC6-F248-11E8-B48F-1D18A9856A87 last_name: Schwarz - first_name: Veronika full_name: Bierbaum, Veronika id: 3FD04378-F248-11E8-B48F-1D18A9856A87 last_name: Bierbaum - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Tino full_name: Frank, Tino last_name: Frank - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X - first_name: Savaş full_name: Tay, Savaş last_name: Tay - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Matthias full_name: Mehling, Matthias id: 3C23B994-F248-11E8-B48F-1D18A9856A87 last_name: Mehling orcid: 0000-0001-8599-1226 citation: ama: Schwarz J, Bierbaum V, Merrin J, et al. A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients. Scientific Reports. 2016;6. doi:10.1038/srep36440 apa: Schwarz, J., Bierbaum, V., Merrin, J., Frank, T., Hauschild, R., Bollenbach, M. T., … Mehling, M. (2016). A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep36440 chicago: Schwarz, Jan, Veronika Bierbaum, Jack Merrin, Tino Frank, Robert Hauschild, Mark Tobias Bollenbach, Savaş Tay, Michael K Sixt, and Matthias Mehling. “A Microfluidic Device for Measuring Cell Migration towards Substrate Bound and Soluble Chemokine Gradients.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep36440. ieee: J. Schwarz et al., “A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients,” Scientific Reports, vol. 6. Nature Publishing Group, 2016. ista: Schwarz J, Bierbaum V, Merrin J, Frank T, Hauschild R, Bollenbach MT, Tay S, Sixt MK, Mehling M. 2016. A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients. Scientific Reports. 6, 36440. mla: Schwarz, Jan, et al. “A Microfluidic Device for Measuring Cell Migration towards Substrate Bound and Soluble Chemokine Gradients.” Scientific Reports, vol. 6, 36440, Nature Publishing Group, 2016, doi:10.1038/srep36440. short: J. Schwarz, V. Bierbaum, J. Merrin, T. Frank, R. Hauschild, M.T. Bollenbach, S. Tay, M.K. Sixt, M. Mehling, Scientific Reports 6 (2016). date_created: 2018-12-11T11:50:27Z date_published: 2016-11-07T00:00:00Z date_updated: 2021-01-12T06:48:41Z day: '07' ddc: - '579' department: - _id: MiSi - _id: NanoFab - _id: Bio - _id: ToBo doi: 10.1038/srep36440 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:09:32Z date_updated: 2018-12-12T10:09:32Z file_id: '4756' file_name: IST-2017-744-v1+1_srep36440.pdf file_size: 2353456 relation: main_file file_date_updated: 2018-12-12T10:09:32Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) - _id: 25A8E5EA-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Y 564-B12 name: Cytoskeletal force generation and transduction of leukocytes (FWF) publication: Scientific Reports publication_status: published publisher: Nature Publishing Group publist_id: '6204' pubrep_id: '744' quality_controlled: '1' scopus_import: 1 status: public title: A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1218' abstract: - lang: eng text: Investigating the physiology of cyanobacteria cultured under a diel light regime is relevant for a better understanding of the resulting growth characteristics and for specific biotechnological applications that are foreseen for these photosynthetic organisms. Here, we present the results of a multiomics study of the model cyanobacterium Synechocystis sp. strain PCC 6803, cultured in a lab-scale photobioreactor in physiological conditions relevant for large-scale culturing. The culture was sparged withN2 andCO2, leading to an anoxic environment during the dark period. Growth followed the availability of light. Metabolite analysis performed with 1Hnuclear magnetic resonance analysis showed that amino acids involved in nitrogen and sulfur assimilation showed elevated levels in the light. Most protein levels, analyzed through mass spectrometry, remained rather stable. However, several high-light-response proteins and stress-response proteins showed distinct changes at the onset of the light period. Microarray-based transcript analysis found common patterns of~56% of the transcriptome following the diel regime. These oscillating transcripts could be grouped coarsely into genes that were upregulated and downregulated in the dark period. The accumulated glycogen was degraded in the anaerobic environment in the dark. A small part was degraded gradually, reflecting basic maintenance requirements of the cells in darkness. Surprisingly, the largest part was degraded rapidly in a short time span at the end of the dark period. This degradation could allow rapid formation of metabolic intermediates at the end of the dark period, preparing the cells for the resumption of growth at the start of the light period. acknowledgement: "Dutch Ministry of Economic Affairs, Agriculture, and Innovation through the program BioSolar CellsS. Andreas Angermayr,Pascal van Alphen, Klaas J. Hellingwerf\r\nWe thank Naira Quintana (presently at Rousselot, Belgium) for the ini-\r\ntiative at the 10th Cyanobacterial Molecular Biology Workshop\r\n(CMBW), June 2010, Lake Arrowhead, Los Angeles, CA, USA, to start the\r\ncollaborative endeavor reported here. We thank Timo Maarleveld from\r\nCWI/VU (Amsterdam) for a custom-made Python script handling the output from the NMR analysis and for evaluating and visualizing the\r\nseparate metabolites for their evaluation. We thank Rob Verpoorte from\r\nLeiden University (metabolome analysis) and Hans Aerts from the AMC\r\n(proteome analysis) for lab space and equipment. We thank Robert Leh-\r\nmann (Humboldt University Berlin) and Ilka Axmann (University of\r\nDüsseldorf) for sharing the R-code for the LOS transformation of the\r\ntranscript data. We thank Hans C. P. Matthijs from IBED for inspiring\r\ndialogues and insightful thoughts on continuous culturing of cyanobac-\r\nteria. We thank Sandra Waaijenborg for performing the transcript nor-\r\nmalization and Johan Westerhuis from BDA, Jeroen van der Steen and\r\nFilipe Branco dos Santos from MMP, and Lucas Stal from IBED/NIOZ for\r\nhelpful discussions. We thank Milou Schuurmans from MMP for help\r\nwith sampling and glycogen determination. We thank the members of the\r\nRNA Biology & Applied Bioinformatics group at SILS, in particular Selina\r\nvan Leeuwen, Elisa Hoekstra, and Martijs Jonker, for the microarray anal-\r\nysis. We thank the reviewers of this work for their insightful comments\r\nwhich improved the quality of the manuscript. This work, including the efforts of S. Andreas Angermayr, Pascal van\r\nAlphen, and Klaas J. Hellingwerf, was funded by Dutch Ministry of Eco-\r\nnomic Affairs, Agriculture, and Innovation through the program BioSolar\r\nCells." author: - first_name: Andreas full_name: Angermayr, Andreas id: 4677C796-F248-11E8-B48F-1D18A9856A87 last_name: Angermayr orcid: 0000-0001-8619-2223 - first_name: Pascal full_name: Van Alphen, Pascal last_name: Van Alphen - first_name: Dicle full_name: Hasdemir, Dicle last_name: Hasdemir - first_name: Gertjan full_name: Kramer, Gertjan last_name: Kramer - first_name: Muzamal full_name: Iqbal, Muzamal last_name: Iqbal - first_name: Wilmar full_name: Van Grondelle, Wilmar last_name: Van Grondelle - first_name: Huub full_name: Hoefsloot, Huub last_name: Hoefsloot - first_name: Younghae full_name: Choi, Younghae last_name: Choi - first_name: Klaas full_name: Hellingwerf, Klaas last_name: Hellingwerf citation: ama: Angermayr A, Van Alphen P, Hasdemir D, et al. Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs. Applied and Environmental Microbiology. 2016;82(14):4180-4189. doi:10.1128/AEM.00256-16 apa: Angermayr, A., Van Alphen, P., Hasdemir, D., Kramer, G., Iqbal, M., Van Grondelle, W., … Hellingwerf, K. (2016). Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs. Applied and Environmental Microbiology. American Society for Microbiology. https://doi.org/10.1128/AEM.00256-16 chicago: Angermayr, Andreas, Pascal Van Alphen, Dicle Hasdemir, Gertjan Kramer, Muzamal Iqbal, Wilmar Van Grondelle, Huub Hoefsloot, Younghae Choi, and Klaas Hellingwerf. “Culturing Synechocystis Sp. Strain Pcc 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs.” Applied and Environmental Microbiology. American Society for Microbiology, 2016. https://doi.org/10.1128/AEM.00256-16. ieee: A. Angermayr et al., “Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs,” Applied and Environmental Microbiology, vol. 82, no. 14. American Society for Microbiology, pp. 4180–4189, 2016. ista: Angermayr A, Van Alphen P, Hasdemir D, Kramer G, Iqbal M, Van Grondelle W, Hoefsloot H, Choi Y, Hellingwerf K. 2016. Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs. Applied and Environmental Microbiology. 82(14), 4180–4189. mla: Angermayr, Andreas, et al. “Culturing Synechocystis Sp. Strain Pcc 6803 with N2 and CO2 in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs.” Applied and Environmental Microbiology, vol. 82, no. 14, American Society for Microbiology, 2016, pp. 4180–89, doi:10.1128/AEM.00256-16. short: A. Angermayr, P. Van Alphen, D. Hasdemir, G. Kramer, M. Iqbal, W. Van Grondelle, H. Hoefsloot, Y. Choi, K. Hellingwerf, Applied and Environmental Microbiology 82 (2016) 4180–4189. date_created: 2018-12-11T11:50:46Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:49:10Z day: '01' department: - _id: ToBo doi: 10.1128/AEM.00256-16 intvolume: ' 82' issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959195/ month: '07' oa: 1 oa_version: Submitted Version page: 4180 - 4189 publication: Applied and Environmental Microbiology publication_status: published publisher: American Society for Microbiology publist_id: '6117' quality_controlled: '1' scopus_import: 1 status: public title: Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 82 year: '2016' ... --- _id: '1552' abstract: - lang: eng text: Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings. acknowledgement: "We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics funded by Wellcome\r\nTrust grant reference 090532/Z/09/Z and Medical Research Council Hub grant no. G0900747 91070 for generation of the high-throughput sequencing data. We thank Wook Kim and two anonymous reviewers for their constructive feedback on previous versions of our manuscript." article_number: '20152452' author: - first_name: Qin full_name: Qi, Qin id: 3B22D412-F248-11E8-B48F-1D18A9856A87 last_name: Qi orcid: 0000-0002-6148-2416 - first_name: Macarena full_name: Toll Riera, Macarena last_name: Toll Riera - first_name: Karl full_name: Heilbron, Karl last_name: Heilbron - first_name: Gail full_name: Preston, Gail last_name: Preston - first_name: R Craig full_name: Maclean, R Craig last_name: Maclean citation: ama: Qi Q, Toll Riera M, Heilbron K, Preston G, Maclean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society of London Series B Biological Sciences. 2016;283(1822). doi:10.1098/rspb.2015.2452 apa: Qi, Q., Toll Riera, M., Heilbron, K., Preston, G., & Maclean, R. C. (2016). The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society of London Series B Biological Sciences. Royal Society, The. https://doi.org/10.1098/rspb.2015.2452 chicago: Qi, Qin, Macarena Toll Riera, Karl Heilbron, Gail Preston, and R Craig Maclean. “The Genomic Basis of Adaptation to the Fitness Cost of Rifampicin Resistance in Pseudomonas Aeruginosa.” Proceedings of the Royal Society of London Series B Biological Sciences. Royal Society, The, 2016. https://doi.org/10.1098/rspb.2015.2452. ieee: Q. Qi, M. Toll Riera, K. Heilbron, G. Preston, and R. C. Maclean, “The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa,” Proceedings of the Royal Society of London Series B Biological Sciences, vol. 283, no. 1822. Royal Society, The, 2016. ista: Qi Q, Toll Riera M, Heilbron K, Preston G, Maclean RC. 2016. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the Royal Society of London Series B Biological Sciences. 283(1822), 20152452. mla: Qi, Qin, et al. “The Genomic Basis of Adaptation to the Fitness Cost of Rifampicin Resistance in Pseudomonas Aeruginosa.” Proceedings of the Royal Society of London Series B Biological Sciences, vol. 283, no. 1822, 20152452, Royal Society, The, 2016, doi:10.1098/rspb.2015.2452. short: Q. Qi, M. Toll Riera, K. Heilbron, G. Preston, R.C. Maclean, Proceedings of the Royal Society of London Series B Biological Sciences 283 (2016). date_created: 2018-12-11T11:52:40Z date_published: 2016-01-13T00:00:00Z date_updated: 2021-01-12T06:51:33Z day: '13' ddc: - '570' department: - _id: ToBo doi: 10.1098/rspb.2015.2452 file: - access_level: open_access checksum: 78ffe70c1c88af3856d31ca6b7195a27 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:43Z date_updated: 2020-07-14T12:45:02Z file_id: '4899' file_name: IST-2016-488-v1+1_20152452.full.pdf file_size: 626804 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 283' issue: '1822' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Proceedings of the Royal Society of London Series B Biological Sciences publication_status: published publisher: Royal Society, The publist_id: '5619' pubrep_id: '488' quality_controlled: '1' scopus_import: 1 status: public title: The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 283 year: '2016' ... --- _id: '5556' abstract: - lang: eng text: "MATLAB code and processed datasets available for reproducing the results in: \r\nLukačišin, M.*, Landon, M.*, Jajoo, R*. (2016) Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.\r\n*equal contributions" article_processing_charge: No author: - first_name: Martin full_name: Lukacisin, Martin id: 298FFE8C-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisin orcid: 0000-0001-6549-4177 - first_name: Matthieu full_name: Landon, Matthieu last_name: Landon - first_name: Rishi full_name: Jajoo, Rishi last_name: Jajoo citation: ama: Lukacisin M, Landon M, Jajoo R. MATLAB analysis code for “Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.” 2016. doi:10.15479/AT:ISTA:45 apa: Lukacisin, M., Landon, M., & Jajoo, R. (2016). MATLAB analysis code for “Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.” Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:45 chicago: Lukacisin, Martin, Matthieu Landon, and Rishi Jajoo. “MATLAB Analysis Code for ‘Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.’” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:45. ieee: M. Lukacisin, M. Landon, and R. Jajoo, “MATLAB analysis code for ‘Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.’” Institute of Science and Technology Austria, 2016. ista: Lukacisin M, Landon M, Jajoo R. 2016. MATLAB analysis code for ‘Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast’, Institute of Science and Technology Austria, 10.15479/AT:ISTA:45. mla: Lukacisin, Martin, et al. MATLAB Analysis Code for “Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.” Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:45. short: M. Lukacisin, M. Landon, R. Jajoo, (2016). datarep_id: '45' date_created: 2018-12-12T12:31:31Z date_published: 2016-08-25T00:00:00Z date_updated: 2024-02-21T13:51:53Z day: '25' ddc: - '571' department: - _id: ToBo doi: 10.15479/AT:ISTA:45 file: - access_level: open_access checksum: ee697f2b1ade4dc14d6ac0334dd832ab content_type: application/zip creator: system date_created: 2018-12-12T13:02:58Z date_updated: 2020-07-14T12:47:02Z file_id: '5616' file_name: IST-2016-45-v1+1_PaperCode.zip file_size: 296722548 relation: main_file file_date_updated: 2020-07-14T12:47:02Z has_accepted_license: '1' keyword: - transcription - pausing - backtracking - polymerase - RNA - NET-seq - nucleosome - basepairing license: https://creativecommons.org/licenses/by-sa/4.0/ month: '08' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '8431' relation: used_in_publication status: deleted - id: '1029' relation: research_paper status: public status: public title: MATLAB analysis code for 'Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast' tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ...