--- _id: '1404' abstract: - lang: eng text: "The co-evolution of hosts and pathogens is characterized by continuous adaptations of both parties. Pathogens of social insects need to adapt towards disease defences at two levels: 1) individual immunity of each colony member consisting of behavioural defence strategies as well as humoral and cellular immune responses and 2) social immunity that is collectively performed by all group members comprising behavioural, physiological and organisational defence strategies.\r\n\r\nTo disentangle the selection pressure on pathogens by the collective versus individual level of disease defence in social insects, we performed an evolution experiment using the Argentine Ant, Linepithema humile, as a host and a mixture of the general insect pathogenic fungus Metarhizium spp. (6 strains) as a pathogen. We allowed pathogen evolution over 10 serial host passages to two different evolution host treatments: (1) only individual host immunity in a single host treatment, and (2) simultaneously acting individual and social immunity in a social host treatment, in which an exposed ant was accompanied by two untreated nestmates.\r\n\r\nBefore starting the pathogen evolution experiment, the 6 Metarhizium spp. strains were characterised concerning conidiospore size killing rates in singly and socially reared ants, their competitiveness under coinfecting conditions and their influence on ant behaviour. We analysed how the ancestral atrain mixture changed in conidiospere size, killing rate and strain composition dependent on host treatment (single or social hosts) during 10 passages and found that killing rate and conidiospere size of the pathogen increased under both evolution regimes, but different depending on host treatment.\r\n\r\nTesting the evolved strain mixtures that evolved under either the single or social host treatment under both single and social current rearing conditions in a full factorial design experiment revealed that the additional collective defences in insect societies add new selection pressure for their coevolving pathogens that compromise their ability to adapt to its host at the group level. To our knowledge, this is the first study directly measuring the influence of social immunity on pathogen evolution." acknowledgement: This work was funded by the DFG and the ERC. alternative_title: - IST Austria Thesis author: - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock citation: ama: Stock M. Evolution of a fungal pathogen towards individual versus social immunity in ants. 2014. apa: Stock, M. (2014). Evolution of a fungal pathogen towards individual versus social immunity in ants. IST Austria. chicago: Stock, Miriam. “Evolution of a Fungal Pathogen towards Individual versus Social Immunity in Ants.” IST Austria, 2014. ieee: M. Stock, “Evolution of a fungal pathogen towards individual versus social immunity in ants,” IST Austria, 2014. ista: Stock M. 2014. Evolution of a fungal pathogen towards individual versus social immunity in ants. IST Austria. mla: Stock, Miriam. Evolution of a Fungal Pathogen towards Individual versus Social Immunity in Ants. IST Austria, 2014. short: M. Stock, Evolution of a Fungal Pathogen towards Individual versus Social Immunity in Ants, IST Austria, 2014. date_created: 2018-12-11T11:51:49Z date_published: 2014-04-01T00:00:00Z date_updated: 2021-01-12T06:50:30Z day: '01' department: - _id: SyCr language: - iso: eng month: '04' oa_version: None page: '101' publication_status: published publisher: IST Austria publist_id: '5803' status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Evolution of a fungal pathogen towards individual versus social immunity in ants type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '1905' abstract: - lang: eng text: The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). acknowledgement: This study was funded by grants from the National Science Foundation (NSF) to MT (IOS-1121832) and IS (DEB-0743406) and from the German Science Foundation (DFG; PL 470/1-2) and ‘LOEWE − Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz’ of Hesse's Ministry of Higher Education, Research, and the Arts, to MP. article_processing_charge: No article_type: original author: - first_name: Michael full_name: Tobler, Michael last_name: Tobler - first_name: Martin full_name: Plath, Martin last_name: Plath - first_name: Rüdiger full_name: Riesch, Rüdiger last_name: Riesch - first_name: Ingo full_name: Schlupp, Ingo last_name: Schlupp - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Gopi full_name: Munimanda, Gopi last_name: Munimanda - first_name: C full_name: Setzer, C last_name: Setzer - first_name: Dustin full_name: Penn, Dustin last_name: Penn - first_name: Yoshan full_name: Moodley, Yoshan last_name: Moodley citation: ama: Tobler M, Plath M, Riesch R, et al. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. 2014;27(5):960-974. doi:10.1111/jeb.12370 apa: Tobler, M., Plath, M., Riesch, R., Schlupp, I., Grasse, A. V., Munimanda, G., … Moodley, Y. (2014). Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.12370 chicago: Tobler, Michael, Martin Plath, Rüdiger Riesch, Ingo Schlupp, Anna V Grasse, Gopi Munimanda, C Setzer, Dustin Penn, and Yoshan Moodley. “Selection from Parasites Favours Immunogenetic Diversity but Not Divergence among Locally Adapted Host Populations.” Journal of Evolutionary Biology. Wiley, 2014. https://doi.org/10.1111/jeb.12370. ieee: M. Tobler et al., “Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations,” Journal of Evolutionary Biology, vol. 27, no. 5. Wiley, pp. 960–974, 2014. ista: Tobler M, Plath M, Riesch R, Schlupp I, Grasse AV, Munimanda G, Setzer C, Penn D, Moodley Y. 2014. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. 27(5), 960–974. mla: Tobler, Michael, et al. “Selection from Parasites Favours Immunogenetic Diversity but Not Divergence among Locally Adapted Host Populations.” Journal of Evolutionary Biology, vol. 27, no. 5, Wiley, 2014, pp. 960–74, doi:10.1111/jeb.12370. short: M. Tobler, M. Plath, R. Riesch, I. Schlupp, A.V. Grasse, G. Munimanda, C. Setzer, D. Penn, Y. Moodley, Journal of Evolutionary Biology 27 (2014) 960–974. date_created: 2018-12-11T11:54:38Z date_published: 2014-04-12T00:00:00Z date_updated: 2022-06-07T09:22:20Z day: '12' department: - _id: SyCr doi: 10.1111/jeb.12370 external_id: pmid: - '24725091' intvolume: ' 27' issue: '5' language: - iso: eng month: '04' oa_version: None page: 960 - 974 pmid: 1 publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: published publisher: Wiley publist_id: '5190' quality_controlled: '1' scopus_import: '1' status: public title: Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2014' ... --- _id: '1998' abstract: - lang: eng text: Immune systems are able to protect the body against secondary infection with the same parasite. In insect colonies, this protection is not restricted to the level of the individual organism, but also occurs at the societal level. Here, we review recent evidence for and insights into the mechanisms underlying individual and social immunisation in insects. We disentangle general immune-protective effects from specific immune memory (priming), and examine immunisation in the context of the lifetime of an individual and that of a colony, and of transgenerational immunisation that benefits offspring. When appropriate, we discuss parallels with disease defence strategies in human societies. We propose that recurrent parasitic threats have shaped the evolution of both the individual immune systems and colony-level social immunity in insects. acknowledgement: "This work was funded by an ERC Starting Grant by the European Research Council (to S.C.) and the ISTFELLOW program (Co-fund Marie Curie Actions of the European Commission; to L.M.).\r\nWe thank Christopher D. Pull, Sophie A.O. Armitage, Hinrich Schulenburg, Line V. Ugelvig, Matthias Konrad, Matthias Fürst, Miriam Stock, Barbara Casillas-Perez and three anonymous referees for comments on the manuscript. " author: - first_name: Leila full_name: El Masri, Leila id: 349A6E66-F248-11E8-B48F-1D18A9856A87 last_name: El Masri - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: El Masri L, Cremer S. Individual and social immunisation in insects. Trends in Immunology. 2014;35(10):471-482. doi:10.1016/j.it.2014.08.005 apa: El Masri, L., & Cremer, S. (2014). Individual and social immunisation in insects. Trends in Immunology. Elsevier. https://doi.org/10.1016/j.it.2014.08.005 chicago: El Masri, Leila, and Sylvia Cremer. “Individual and Social Immunisation in Insects.” Trends in Immunology. Elsevier, 2014. https://doi.org/10.1016/j.it.2014.08.005. ieee: L. El Masri and S. Cremer, “Individual and social immunisation in insects,” Trends in Immunology, vol. 35, no. 10. Elsevier, pp. 471–482, 2014. ista: El Masri L, Cremer S. 2014. Individual and social immunisation in insects. Trends in Immunology. 35(10), 471–482. mla: El Masri, Leila, and Sylvia Cremer. “Individual and Social Immunisation in Insects.” Trends in Immunology, vol. 35, no. 10, Elsevier, 2014, pp. 471–82, doi:10.1016/j.it.2014.08.005. short: L. El Masri, S. Cremer, Trends in Immunology 35 (2014) 471–482. date_created: 2018-12-11T11:55:07Z date_published: 2014-10-01T00:00:00Z date_updated: 2021-01-12T06:54:35Z day: '01' department: - _id: SyCr doi: 10.1016/j.it.2014.08.005 intvolume: ' 35' issue: '10' language: - iso: eng month: '10' oa_version: None page: 471 - 482 publication: Trends in Immunology publication_status: published publisher: Elsevier publist_id: '5081' quality_controlled: '1' scopus_import: 1 status: public title: Individual and social immunisation in insects type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2014' ... --- _id: '2235' abstract: - lang: eng text: Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators. author: - first_name: Matthias full_name: Fürst, Matthias id: 393B1196-F248-11E8-B48F-1D18A9856A87 last_name: Fürst orcid: 0000-0002-3712-925X - first_name: Dino full_name: Mcmahon, Dino last_name: Mcmahon - first_name: Juliet full_name: Osborne, Juliet last_name: Osborne - first_name: Robert full_name: Paxton, Robert last_name: Paxton - first_name: Mark full_name: Brown, Mark last_name: Brown citation: ama: Fürst M, Mcmahon D, Osborne J, Paxton R, Brown M. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature. 2014;506(7488):364-366. doi:10.1038/nature12977 apa: Fürst, M., Mcmahon, D., Osborne, J., Paxton, R., & Brown, M. (2014). Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature. Nature Publishing Group. https://doi.org/10.1038/nature12977 chicago: Fürst, Matthias, Dino Mcmahon, Juliet Osborne, Robert Paxton, and Mark Brown. “Disease Associations between Honeybees and Bumblebees as a Threat to Wild Pollinators.” Nature. Nature Publishing Group, 2014. https://doi.org/10.1038/nature12977. ieee: M. Fürst, D. Mcmahon, J. Osborne, R. Paxton, and M. Brown, “Disease associations between honeybees and bumblebees as a threat to wild pollinators,” Nature, vol. 506, no. 7488. Nature Publishing Group, pp. 364–366, 2014. ista: Fürst M, Mcmahon D, Osborne J, Paxton R, Brown M. 2014. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature. 506(7488), 364–366. mla: Fürst, Matthias, et al. “Disease Associations between Honeybees and Bumblebees as a Threat to Wild Pollinators.” Nature, vol. 506, no. 7488, Nature Publishing Group, 2014, pp. 364–66, doi:10.1038/nature12977. short: M. Fürst, D. Mcmahon, J. Osborne, R. Paxton, M. Brown, Nature 506 (2014) 364–366. date_created: 2018-12-11T11:56:29Z date_published: 2014-02-20T00:00:00Z date_updated: 2021-01-12T06:56:11Z day: '20' department: - _id: SyCr doi: 10.1038/nature12977 intvolume: ' 506' issue: '7488' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985068/ month: '02' oa: 1 oa_version: Submitted Version page: 364 - 366 publication: Nature publication_identifier: issn: - '00280836' publication_status: published publisher: Nature Publishing Group publist_id: '4726' quality_controlled: '1' scopus_import: 1 status: public title: Disease associations between honeybees and bumblebees as a threat to wild pollinators type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 506 year: '2014' ... --- _id: '2086' abstract: - lang: eng text: Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. acknowledgement: This study was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative (grant numbers BB/I00097/1 and BB/I000100/1). Rothamsted Research is a national institute of bioscience strategically funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC). article_number: e103989 author: - first_name: Stephan full_name: Wolf, Stephan last_name: Wolf - first_name: Dino full_name: Mcmahon, Dino last_name: Mcmahon - first_name: Ka full_name: Lim, Ka last_name: Lim - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Suzanne full_name: Clark, Suzanne last_name: Clark - first_name: Robert full_name: Paxton, Robert last_name: Paxton - first_name: Juliet full_name: Osborne, Juliet last_name: Osborne citation: ama: 'Wolf S, Mcmahon D, Lim K, et al. So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS One. 2014;9(8). doi:10.1371/journal.pone.0103989' apa: 'Wolf, S., Mcmahon, D., Lim, K., Pull, C., Clark, S., Paxton, R., & Osborne, J. (2014). So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0103989' chicago: 'Wolf, Stephan, Dino Mcmahon, Ka Lim, Christopher Pull, Suzanne Clark, Robert Paxton, and Juliet Osborne. “So near and yet so Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees.” PLoS One. Public Library of Science, 2014. https://doi.org/10.1371/journal.pone.0103989.' ieee: 'S. Wolf et al., “So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees,” PLoS One, vol. 9, no. 8. Public Library of Science, 2014.' ista: 'Wolf S, Mcmahon D, Lim K, Pull C, Clark S, Paxton R, Osborne J. 2014. So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS One. 9(8), e103989.' mla: 'Wolf, Stephan, et al. “So near and yet so Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees.” PLoS One, vol. 9, no. 8, e103989, Public Library of Science, 2014, doi:10.1371/journal.pone.0103989.' short: S. Wolf, D. Mcmahon, K. Lim, C. Pull, S. Clark, R. Paxton, J. Osborne, PLoS One 9 (2014). date_created: 2018-12-11T11:55:37Z date_published: 2014-08-06T00:00:00Z date_updated: 2023-02-23T14:11:56Z day: '06' ddc: - '570' department: - _id: SyCr doi: 10.1371/journal.pone.0103989 file: - access_level: open_access checksum: 2fc62c6739eada4bddf026afbae669db content_type: application/pdf creator: system date_created: 2018-12-12T10:13:55Z date_updated: 2020-07-14T12:45:28Z file_id: '5042' file_name: IST-2016-437-v1+1_journal.pone.0103989.pdf file_size: 1013386 relation: main_file file_date_updated: 2020-07-14T12:45:28Z has_accepted_license: '1' intvolume: ' 9' issue: '8' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '4949' pubrep_id: '437' quality_controlled: '1' related_material: record: - id: '9888' relation: research_data status: public scopus_import: 1 status: public title: 'So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2014' ...