--- _id: '9860' article_processing_charge: No author: - first_name: Jenny full_name: Greenwood, Jenny last_name: Greenwood - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Robert full_name: Peuß, Robert last_name: Peuß - first_name: Sarah full_name: Behrens, Sarah last_name: Behrens - first_name: Daniela full_name: Essar, Daniela last_name: Essar - first_name: Philip full_name: Rosenstiel, Philip last_name: Rosenstiel - first_name: Hinrich full_name: Schulenburg, Hinrich last_name: Schulenburg - first_name: Joachim full_name: Kurtz, Joachim last_name: Kurtz citation: ama: 'Greenwood J, Milutinovic B, Peuß R, et al. Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. 2017. doi:10.6084/m9.figshare.c.3756974_d5.v1' apa: 'Greenwood, J., Milutinovic, B., Peuß, R., Behrens, S., Essar, D., Rosenstiel, P., … Kurtz, J. (2017). Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. Springer Nature. https://doi.org/10.6084/m9.figshare.c.3756974_d5.v1' chicago: 'Greenwood, Jenny, Barbara Milutinovic, Robert Peuß, Sarah Behrens, Daniela Essar, Philip Rosenstiel, Hinrich Schulenburg, and Joachim Kurtz. “Additional File 5: Table S3. of Oral Immune Priming with Bacillus Thuringiensis Induces a Shift in the Gene Expression of Tribolium Castaneum Larvae.” Springer Nature, 2017. https://doi.org/10.6084/m9.figshare.c.3756974_d5.v1.' ieee: 'J. Greenwood et al., “Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae.” Springer Nature, 2017.' ista: 'Greenwood J, Milutinovic B, Peuß R, Behrens S, Essar D, Rosenstiel P, Schulenburg H, Kurtz J. 2017. Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae, Springer Nature, 10.6084/m9.figshare.c.3756974_d5.v1.' mla: 'Greenwood, Jenny, et al. Additional File 5: Table S3. of Oral Immune Priming with Bacillus Thuringiensis Induces a Shift in the Gene Expression of Tribolium Castaneum Larvae. Springer Nature, 2017, doi:10.6084/m9.figshare.c.3756974_d5.v1.' short: J. Greenwood, B. Milutinovic, R. Peuß, S. Behrens, D. Essar, P. Rosenstiel, H. Schulenburg, J. Kurtz, (2017). date_created: 2021-08-10T08:07:12Z date_published: 2017-04-26T00:00:00Z date_updated: 2023-09-22T09:47:44Z day: '26' department: - _id: SyCr doi: 10.6084/m9.figshare.c.3756974_d5.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.c.3756974_d5.v1 month: '04' oa: 1 oa_version: Published Version publisher: Springer Nature related_material: record: - id: '1006' relation: used_in_publication status: public status: public title: 'Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '914' abstract: - lang: eng text: Infections with potentially lethal pathogens may negatively affect an individual’s lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect. acknowledgement: We thank two anonymous reviewers for helpful suggestions on the manuscript. article_number: '170547' article_processing_charge: No author: - first_name: Julia full_name: Giehr, Julia last_name: Giehr - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf citation: ama: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. 2017;4(7). doi:10.1098/rsos.170547 apa: Giehr, J., Grasse, A. V., Cremer, S., Heinze, J., & Schrempf, A. (2017). Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. Royal Society, The. https://doi.org/10.1098/rsos.170547 chicago: Giehr, Julia, Anna V Grasse, Sylvia Cremer, Jürgen Heinze, and Alexandra Schrempf. “Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” Royal Society Open Science. Royal Society, The, 2017. https://doi.org/10.1098/rsos.170547. ieee: J. Giehr, A. V. Grasse, S. Cremer, J. Heinze, and A. Schrempf, “Ant queens increase their reproductive efforts after pathogen infection,” Royal Society Open Science, vol. 4, no. 7. Royal Society, The, 2017. ista: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. 2017. Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. 4(7), 170547. mla: Giehr, Julia, et al. “Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” Royal Society Open Science, vol. 4, no. 7, 170547, Royal Society, The, 2017, doi:10.1098/rsos.170547. short: J. Giehr, A.V. Grasse, S. Cremer, J. Heinze, A. Schrempf, Royal Society Open Science 4 (2017). date_created: 2018-12-11T11:49:10Z date_published: 2017-07-05T00:00:00Z date_updated: 2023-09-26T15:45:47Z day: '05' ddc: - '576' - '592' department: - _id: SyCr doi: 10.1098/rsos.170547 external_id: isi: - '000406670000025' file: - access_level: open_access checksum: 351ae5e7a37e6e7d9295cd41146c4190 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:24Z date_updated: 2020-07-14T12:48:15Z file_id: '4684' file_name: IST-2017-849-v1+1_2017_Grasse_Cremer_AntQueens.pdf file_size: 530412 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version publication: Royal Society Open Science publication_identifier: issn: - '20545703' publication_status: published publisher: Royal Society, The publist_id: '6527' pubrep_id: '849' quality_controlled: '1' related_material: record: - id: '9853' relation: research_data status: public scopus_import: '1' status: public title: Ant queens increase their reproductive efforts after pathogen infection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2017' ... --- _id: '9853' abstract: - lang: eng text: Egg laying rates and infection loads of C. obscurior queens article_processing_charge: No author: - first_name: Julia full_name: Giehr, Julia last_name: Giehr - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf citation: ama: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Raw data from ant queens increase their reproductive efforts after pathogen infection. 2017. doi:10.6084/m9.figshare.5117788.v1 apa: Giehr, J., Grasse, A. V., Cremer, S., Heinze, J., & Schrempf, A. (2017). Raw data from ant queens increase their reproductive efforts after pathogen infection. The Royal Society. https://doi.org/10.6084/m9.figshare.5117788.v1 chicago: Giehr, Julia, Anna V Grasse, Sylvia Cremer, Jürgen Heinze, and Alexandra Schrempf. “Raw Data from Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” The Royal Society, 2017. https://doi.org/10.6084/m9.figshare.5117788.v1. ieee: J. Giehr, A. V. Grasse, S. Cremer, J. Heinze, and A. Schrempf, “Raw data from ant queens increase their reproductive efforts after pathogen infection.” The Royal Society, 2017. ista: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. 2017. Raw data from ant queens increase their reproductive efforts after pathogen infection, The Royal Society, 10.6084/m9.figshare.5117788.v1. mla: Giehr, Julia, et al. Raw Data from Ant Queens Increase Their Reproductive Efforts after Pathogen Infection. The Royal Society, 2017, doi:10.6084/m9.figshare.5117788.v1. short: J. Giehr, A.V. Grasse, S. Cremer, J. Heinze, A. Schrempf, (2017). date_created: 2021-08-10T06:57:57Z date_published: 2017-06-19T00:00:00Z date_updated: 2023-09-26T15:45:47Z day: '19' department: - _id: SyCr doi: 10.6084/m9.figshare.5117788.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.5117788.v1 month: '06' oa: 1 oa_version: Published Version publisher: The Royal Society related_material: record: - id: '914' relation: used_in_publication status: public status: public title: Raw data from ant queens increase their reproductive efforts after pathogen infection type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '734' abstract: - lang: eng text: 'Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality.' article_processing_charge: No article_type: original author: - first_name: Patrick full_name: Kennedy, Patrick last_name: Kennedy - first_name: Gemma full_name: Baron, Gemma last_name: Baron - first_name: Bitao full_name: Qiu, Bitao last_name: Qiu - first_name: Dalial full_name: Freitak, Dalial last_name: Freitak - first_name: Heikki full_name: Helantera, Heikki last_name: Helantera - first_name: Edmund full_name: Hunt, Edmund last_name: Hunt - first_name: Fabio full_name: Manfredini, Fabio last_name: Manfredini - first_name: Thomas full_name: O'Shea Wheller, Thomas last_name: O'Shea Wheller - first_name: Solenn full_name: Patalano, Solenn last_name: Patalano - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Takao full_name: Sasaki, Takao last_name: Sasaki - first_name: Daisy full_name: Taylor, Daisy last_name: Taylor - first_name: Christopher full_name: Wyatt, Christopher last_name: Wyatt - first_name: Seirian full_name: Sumner, Seirian last_name: Sumner citation: ama: Kennedy P, Baron G, Qiu B, et al. Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. 2017;32(11):861-872. doi:10.1016/j.tree.2017.08.004 apa: Kennedy, P., Baron, G., Qiu, B., Freitak, D., Helantera, H., Hunt, E., … Sumner, S. (2017). Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. Cell Press. https://doi.org/10.1016/j.tree.2017.08.004 chicago: Kennedy, Patrick, Gemma Baron, Bitao Qiu, Dalial Freitak, Heikki Helantera, Edmund Hunt, Fabio Manfredini, et al. “Deconstructing Superorganisms and Societies to Address Big Questions in Biology.” Trends in Ecology and Evolution. Cell Press, 2017. https://doi.org/10.1016/j.tree.2017.08.004. ieee: P. Kennedy et al., “Deconstructing superorganisms and societies to address big questions in biology,” Trends in Ecology and Evolution, vol. 32, no. 11. Cell Press, pp. 861–872, 2017. ista: Kennedy P, Baron G, Qiu B, Freitak D, Helantera H, Hunt E, Manfredini F, O’Shea Wheller T, Patalano S, Pull C, Sasaki T, Taylor D, Wyatt C, Sumner S. 2017. Deconstructing superorganisms and societies to address big questions in biology. Trends in Ecology and Evolution. 32(11), 861–872. mla: Kennedy, Patrick, et al. “Deconstructing Superorganisms and Societies to Address Big Questions in Biology.” Trends in Ecology and Evolution, vol. 32, no. 11, Cell Press, 2017, pp. 861–72, doi:10.1016/j.tree.2017.08.004. short: P. Kennedy, G. Baron, B. Qiu, D. Freitak, H. Helantera, E. Hunt, F. Manfredini, T. O’Shea Wheller, S. Patalano, C. Pull, T. Sasaki, D. Taylor, C. Wyatt, S. Sumner, Trends in Ecology and Evolution 32 (2017) 861–872. date_created: 2018-12-11T11:48:13Z date_published: 2017-11-01T00:00:00Z date_updated: 2023-09-27T14:15:15Z day: '01' ddc: - '570' department: - _id: SyCr doi: 10.1016/j.tree.2017.08.004 external_id: isi: - '000413231900011' file: - access_level: open_access checksum: c8f49309ed9436201814fa7153d66a99 content_type: application/pdf creator: dernst date_created: 2020-05-14T16:22:27Z date_updated: 2020-07-14T12:47:56Z file_id: '7842' file_name: 2017_TrendsEcology_Kennedy.pdf file_size: 15018382 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 32' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 861 - 872 publication: Trends in Ecology and Evolution publication_identifier: issn: - '01695347' publication_status: published publisher: Cell Press publist_id: '6933' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: Deconstructing superorganisms and societies to address big questions in biology type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2017' ... --- _id: '819' abstract: - lang: eng text: 'Contagious diseases must transmit from infectious to susceptible hosts in order to reproduce. Whilst vectored pathogens can rely on intermediaries to find new hosts for them, many infectious pathogens require close contact or direct interaction between hosts for transmission. Hence, this means that conspecifics are often the main source of infection for most animals and so, in theory, animals should avoid conspecifics to reduce their risk of infection. Of course, in reality animals must interact with one another, as a bare minimum, to mate. However, being social provides many additional benefits and group living has become a taxonomically diverse and widespread trait. How then do social animals overcome the issue of increased disease? Over the last few decades, the social insects (ants, termites and some bees and wasps) have become a model system for studying disease in social animals. On paper, a social insect colony should be particularly susceptible to disease, given that they often contain thousands of potential hosts that are closely related and frequently interact, as well as exhibiting stable environmental conditions that encourage microbial growth. Yet, disease outbreaks appear to be rare and attempts to eradicate pest species using pathogens have failed time and again. Evolutionary biologists investigating this observation have discovered that the reduced disease susceptibility in social insects is, in part, due to collectively performed disease defences of the workers. These defences act like a “social immune system” for the colony, resulting in a per capita decrease in disease, termed social immunity. Our understanding of social immunity, and its importance in relation to the immunological defences of each insect, continues to grow, but there remain many open questions. In this thesis I have studied disease defence in garden ants. In the first data chapter, I use the invasive garden ant, Lasius neglectus, to investigate how colonies mitigate lethal infections and prevent them from spreading systemically. I find that ants have evolved ‘destructive disinfection’ – a behaviour that uses endogenously produced acidic poison to kill diseased brood and to prevent the pathogen from replicating. In the second experimental chapter, I continue to study the use of poison in invasive garden ant colonies, finding that it is sprayed prophylactically within the nest. However, this spraying has negative effects on developing pupae when they have had their cocoons artificially removed. Hence, I suggest that acidic nest sanitation may be maintaining larval cocoon spinning in this species. In the next experimental chapter, I investigated how colony founding black garden ant queens (Lasius niger) prevent disease when a co-foundress dies. I show that ant queens prophylactically perform undertaking behaviours, similar to those performed by the workers in mature nests. When a co-foundress was infected, these undertaking behaviours improved the survival of the healthy queen. In the final data chapter, I explored how immunocompetence (measured as antifungal activity) changes as incipient black garden ant colonies grow and mature, from the solitary queen phase to colonies with several hundred workers. Queen and worker antifungal activity varied throughout this time period, but despite social immunity, did not decrease as colonies matured. In addition to the above data chapters, this thesis includes two co-authored reviews. In the first, we examine the state of the art in the field of social immunity and how it might develop in the future. In the second, we identify several challenges and open questions in the study of disease defence in animals. We highlight how social insects offer a unique model to tackle some of these problems, as disease defence can be studied from the cell to the society. ' acknowledgement: "ERC FP7 programme (grant agreement no. 240371)\r\nI have been supremely spoilt to work in a lab with such good resources and I must thank the wonderful Cremer group technicians, Anna, Barbara, Eva and Florian, for all of their help and keeping the lab up and running. You guys will probably be the most missed once I realise just how much work you have been saving me! For the same reason, I must say a big Dzi ę kuj ę Ci to Wonder Woman Wanda, for her tireless efforts feeding my colonies and cranking out thousands of petri dishes and sugar tubes. Again, you will be sorely missed now that I will have to take this task on myself. Of course, I will be eternally indebted to Prof. Sylvia Cremer for taking me under her wing and being a constant source of guidance and inspiration. You have given me the perfect balance of independence and supervision. I cannot thank you enough for creating such a great working environment and allowing me the freedom to follow my own research questions. I have had so many exceptional opportunities – attending and presenting at conferences all over the world, inviting me to write the ARE with you, going to workshops in Panama and Switzerland, and even organising our own PhD course – that I often think I must have had the best PhD in the world. You have taught me so much and made me a scientist. I sincerely hope we get the chance to work together again in the future. Thank you for everything. I must also thank my PhD Committee, Daria Siekhaus and Jacobus “Koos” Boomsma, for being very supportive throughout the duration of my PhD. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 citation: ama: Pull C. Disease defence in garden ants. 2017. doi:10.15479/AT:ISTA:th_861 apa: Pull, C. (2017). Disease defence in garden ants. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_861 chicago: Pull, Christopher. “Disease Defence in Garden Ants.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_861. ieee: C. Pull, “Disease defence in garden ants,” Institute of Science and Technology Austria, 2017. ista: Pull C. 2017. Disease defence in garden ants. Institute of Science and Technology Austria. mla: Pull, Christopher. Disease Defence in Garden Ants. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_861. short: C. Pull, Disease Defence in Garden Ants, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:48:40Z date_published: 2017-09-26T00:00:00Z date_updated: 2023-09-28T11:31:32Z day: '26' ddc: - '576' - '577' - '578' - '579' - '590' - '592' degree_awarded: PhD department: - _id: SyCr doi: 10.15479/AT:ISTA:th_861 file: - access_level: closed checksum: 4993cdd5382295758ecc3ecbd2a9aaff content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6199' file_name: 2017_Thesis_Pull.docx file_size: 18580400 relation: source_file - access_level: open_access checksum: ee2e3ebb5b53c154c866f5b052b25153 content_type: application/pdf creator: dernst date_created: 2019-04-05T07:53:04Z date_updated: 2020-07-14T12:48:09Z file_id: '6200' file_name: 2017_Thesis_Pull.pdf file_size: 14400681 relation: main_file file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '122' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6830' pubrep_id: '861' related_material: record: - id: '616' relation: part_of_dissertation status: public - id: '806' relation: part_of_dissertation status: public - id: '734' relation: part_of_dissertation status: public - id: '732' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Disease defence in garden ants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ...