@article{732, abstract = {Background: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results: Using Lasius Niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.}, author = {Pull, Christopher and Cremer, Sylvia}, issn = {14712148}, journal = {BMC Evolutionary Biology}, number = {1}, publisher = {BioMed Central}, title = {{Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour}}, doi = {10.1186/s12862-017-1062-4}, volume = {17}, year = {2017}, } @article{459, abstract = {The social insects bees, wasps, ants, and termites are species-rich, occur in many habitats, and often constitute a large part of the biomass. Many are also invasive, including species of termites, the red imported fire ant, and the Argentine ant. While invasive social insects have been a problem in Southern Europe for some time, Central Europa was free of invasive ant species until recently because most ants are adapted to warmer climates. Only in the 1990s, did Lasius neglectus, a close relative of the common black garden ant, arrive in Germany. First described in 1990 based on individuals collected in Budapest, the species has since been detected for example in France, Germany, Spain, England, and Kyrgyzstan. The species is spread with soil during construction work or plantings, and L. neglectus therefore is often found in parks and botanical gardens. Another invasive ant now spreading in southern Germany is Formica fuscocinerea, which occurs along rivers, including in the sandy floodplains of the river Isar. As is typical of pioneer species, F. fuscocinerea quickly becomes extremely abundant and therefore causes problems for example on playgrounds in Munich. All invasive ant species are characterized by cooperation across nests, leading to strongly interconnected, very large super-colonies. The resulting dominance results in the extinction of native ant species as well as other arthropod species and thus in the reduction of biodiversity.}, author = {Cremer, Sylvia}, issn = {2366-2875}, journal = {Rundgespräche Forum Ökologie}, pages = {105 -- 116}, publisher = {Verlag Dr. Friedrich Pfeil}, title = {{Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern}}, volume = {46}, year = {2017}, } @article{558, abstract = {Immune specificity is the degree to which a host’s immune system discriminates among various pathogens or antigenic variants. Vertebrate immune memory is highly specific due to antibody responses. On the other hand, some invertebrates show immune priming, i.e. improved survival after secondary exposure to a previously encountered pathogen. Until now, specificity of priming has only been demonstrated via the septic infection route or when live pathogens were used for priming. Therefore, we tested for specificity in the oral priming route in the red flour beetle, Tribolium castaneum. For priming, we used pathogen-free supernatants derived from three different strains of the entomopathogen, Bacillus thuringiensis, which express different Cry toxin variants known for their toxicity against this beetle. Subsequent exposure to the infective spores showed that oral priming was specific for two naturally occurring strains, while a third engineered strain did not induce any priming effect. Our data demonstrate that oral immune priming with a non-infectious bacterial agent can be specific, but the priming effect is not universal across all bacterial strains.}, author = {Futo, Momir and Sell, Marie and Kutzer, Megan and Kurtz, Joachim}, issn = {1744-9561}, journal = {Biology Letters}, number = {12}, publisher = {The Royal Society}, title = {{Specificity of oral immune priming in the red flour beetle Tribolium castaneum}}, doi = {10.1098/rsbl.2017.0632}, volume = {13}, year = {2017}, } @article{1184, abstract = {Across multicellular organisms, the costs of reproduction and self-maintenance result in a life history trade-off between fecundity and longevity. Queens of perennial social Hymenoptera are both highly fertile and long-lived, and thus, this fundamental trade-off is lacking. Whether social insect males similarly evade the fecundity/longevity trade-off remains largely unstudied. Wingless males of the ant genus Cardiocondyla stay in their natal colonies throughout their relatively long lives and mate with multiple female sexuals. Here, we show that Cardiocondyla obscurior males that were allowed to mate with large numbers of female sexuals had a shortened life span compared to males that mated at a low frequency or virgin males. Although frequent mating negatively affects longevity, males clearly benefit from a “live fast, die young strategy” by inseminating as many female sexuals as possible at a cost to their own survival.}, author = {Metzler, Sina and Heinze, Jürgen and Schrempf, Alexandra}, journal = {Ecology and Evolution}, number = {24}, pages = {8903 -- 8906}, publisher = {Wiley-Blackwell}, title = {{Mating and longevity in ant males}}, doi = {10.1002/ece3.2474}, volume = {6}, year = {2016}, } @article{1202, author = {Milutinovic, Barbara and Peuß, Robert and Ferro, Kevin and Kurtz, Joachim}, journal = {Zoology }, number = {4}, pages = {254 -- 261}, publisher = {Elsevier}, title = {{Immune priming in arthropods: an update focusing on the red flour beetle}}, doi = {10.1016/j.zool.2016.03.006}, volume = {119}, year = {2016}, }