@misc{13061, abstract = {Infections early in life can have enduring effects on an organism’s development and immunity. In this study, we show that this equally applies to developing “superorganisms” – incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen’s immune system to suppress pathogen proliferation. Early-life queen pathogen-exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen’s pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.}, author = {Casillas Perez, Barbara E and Pull, Christopher and Naiser, Filip and Naderlinger, Elisabeth and Matas, Jiri and Cremer, Sylvia}, publisher = {Dryad}, title = {{Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies}}, doi = {10.5061/DRYAD.7PVMCVDTJ}, year = {2021}, } @article{10568, abstract = {Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibrio bacteria) stressor using six different populations of the broad-nosed pipefish Syngnathus typhle that originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected with Vibrio alginolyticus bacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation, trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.}, author = {Goehlich, Henry and Sartoris, Linda and Wagner, Kim-Sara and Wendling, Carolin C. and Roth, Olivia}, issn = {2296-701X}, journal = {Frontiers in Ecology and Evolution}, keywords = {ecology, evolution, behavior and systematics, trans-generational plasticity, genetic adaptation, local adaptation, phenotypic plasticity, Baltic Sea, climate change, salinity, syngnathids}, publisher = {Frontiers Media}, title = {{Pipefish locally adapted to low salinity in the Baltic Sea retain phenotypic plasticity to cope with ancestral salinity levels}}, doi = {10.3389/fevo.2021.626442}, volume = {9}, year = {2021}, } @article{10569, abstract = {For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.}, author = {Szabo, B and Mangione, R and Rath, M and Pašukonis, A and Reber, SA and Oh, Jinook and Ringler, M and Ringler, E}, issn = {1477-9145}, journal = {Journal of Experimental Biology}, number = {24}, publisher = {The Company of Biologists}, title = {{Naïve poison frog tadpoles use bi-modal cues to avoid insect predators but not heterospecific predatory tadpoles}}, doi = {10.1242/jeb.243647}, volume = {224}, year = {2021}, } @inbook{9096, author = {Schmid-Hempel, Paul and Cremer, Sylvia M}, booktitle = {Encyclopedia of Social Insects}, editor = {Starr, C}, isbn = {9783319903064}, publisher = {Springer Nature}, title = {{Parasites and Pathogens}}, doi = {10.1007/978-3-319-90306-4_94-1}, year = {2020}, } @article{7490, abstract = {In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.}, author = {Narasimhan, Madhumitha and Johnson, Alexander J and Prizak, Roshan and Kaufmann, Walter and Tan, Shutang and Casillas Perez, Barbara E and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants}}, doi = {10.7554/eLife.52067}, volume = {9}, year = {2020}, }