@misc{13061, abstract = {Infections early in life can have enduring effects on an organism’s development and immunity. In this study, we show that this equally applies to developing “superorganisms” – incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen’s immune system to suppress pathogen proliferation. Early-life queen pathogen-exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen’s pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.}, author = {Casillas Perez, Barbara E and Pull, Christopher and Naiser, Filip and Naderlinger, Elisabeth and Matas, Jiri and Cremer, Sylvia}, publisher = {Dryad}, title = {{Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies}}, doi = {10.5061/DRYAD.7PVMCVDTJ}, year = {2021}, } @article{10568, abstract = {Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibrio bacteria) stressor using six different populations of the broad-nosed pipefish Syngnathus typhle that originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected with Vibrio alginolyticus bacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation, trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.}, author = {Goehlich, Henry and Sartoris, Linda and Wagner, Kim-Sara and Wendling, Carolin C. and Roth, Olivia}, issn = {2296-701X}, journal = {Frontiers in Ecology and Evolution}, keywords = {ecology, evolution, behavior and systematics, trans-generational plasticity, genetic adaptation, local adaptation, phenotypic plasticity, Baltic Sea, climate change, salinity, syngnathids}, publisher = {Frontiers Media}, title = {{Pipefish locally adapted to low salinity in the Baltic Sea retain phenotypic plasticity to cope with ancestral salinity levels}}, doi = {10.3389/fevo.2021.626442}, volume = {9}, year = {2021}, } @article{10569, abstract = {For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.}, author = {Szabo, B and Mangione, R and Rath, M and Pašukonis, A and Reber, SA and Oh, Jinook and Ringler, M and Ringler, E}, issn = {1477-9145}, journal = {Journal of Experimental Biology}, number = {24}, publisher = {The Company of Biologists}, title = {{Naïve poison frog tadpoles use bi-modal cues to avoid insect predators but not heterospecific predatory tadpoles}}, doi = {10.1242/jeb.243647}, volume = {224}, year = {2021}, } @inbook{9096, author = {Schmid-Hempel, Paul and Cremer, Sylvia M}, booktitle = {Encyclopedia of Social Insects}, editor = {Starr, C}, isbn = {9783319903064}, publisher = {Springer Nature}, title = {{Parasites and Pathogens}}, doi = {10.1007/978-3-319-90306-4_94-1}, year = {2020}, } @article{7490, abstract = {In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.}, author = {Narasimhan, Madhumitha and Johnson, Alexander J and Prizak, Roshan and Kaufmann, Walter and Tan, Shutang and Casillas Perez, Barbara E and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants}}, doi = {10.7554/eLife.52067}, volume = {9}, year = {2020}, } @article{7343, abstract = {Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {565--574}, publisher = {Wiley}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.1111/ele.13458}, volume = {23}, year = {2020}, } @misc{13060, abstract = {Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, publisher = {Dryad}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.5061/DRYAD.CRJDFN318}, year = {2020}, } @article{6105, abstract = { Hosts can alter their strategy towards pathogens during their lifetime; that is, they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e., resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fecundity consequences that result from a high pathogen burden. Finally, previous exposure may also lead to life‐history adjustments, such as terminal investment into reproduction. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested whether previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute‐phase infection (one day post‐challenge). We then asked whether previous pathogen exposure affects chronic‐phase pathogen persistence and longer‐term survival (28 days post‐challenge). We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long‐term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi‐faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host–pathogen system and that infection persistence may be bacterium‐specific. }, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie A.O.}, issn = {13652656}, journal = {Journal of Animal Ecology}, number = {4}, pages = {566--578}, publisher = {Wiley}, title = {{A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance}}, doi = {10.1111/1365-2656.12953}, volume = {88}, year = {2019}, } @misc{9806, abstract = {1. Hosts can alter their strategy towards pathogens during their lifetime, i.e., they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e. resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fitness consequences that result from a high pathogen load. Finally, previous exposure may also lead to life history adjustments, such as terminal investment into reproduction. 2. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested if previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute-phase infection (one day post-challenge). We then asked if previous pathogen exposure affects chronic-phase pathogen persistence and longer-term survival (28 days post-challenge). 3. We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long-term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. 4. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. 5. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi-faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host-pathogen system and that infection persistence may be bacterium-specific.}, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie A.O.}, publisher = {Dryad}, title = {{Data from: A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance}}, doi = {10.5061/dryad.9kj41f0}, year = {2019}, } @article{6415, abstract = {Ant invasions are often harmful to native species communities. Their pathogens and host disease defense mechanisms may be one component of their devastating success. First, they can introduce harmful diseases to their competitors in the introduced range, to which they themselves are tolerant. Second, their supercolonial social structure of huge multi-queen nest networks means that they will harbor a broad pathogen spectrum and high pathogen load while remaining resilient, unlike the smaller, territorial colonies of the native species. Thus, it is likely that invasive ants act as a disease reservoir, promoting their competitive advantage and invasive success.}, author = {Cremer, Sylvia}, issn = {22145753}, journal = {Current Opinion in Insect Science}, pages = {63--68}, publisher = {Elsevier}, title = {{Pathogens and disease defense of invasive ants}}, doi = {10.1016/j.cois.2019.03.011}, volume = {33}, year = {2019}, } @article{6552, abstract = {When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body's physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege). }, author = {Cremer, Sylvia}, issn = {09609822}, journal = {Current Biology}, number = {11}, pages = {R458--R463}, publisher = {Elsevier}, title = {{Social immunity in insects}}, doi = {10.1016/j.cub.2019.03.035}, volume = {29}, year = {2019}, } @inbook{7513, abstract = {Social insects (i.e., ants, termites and the social bees and wasps) protect their colonies from disease using a combination of individual immunity and collectively performed defenses, termed social immunity. The first line of social immune defense is sanitary care, which is performed by colony members to protect their pathogen-exposed nestmates from developing an infection. If sanitary care fails and an infection becomes established, a second line of social immune defense is deployed to stop disease transmission within the colony and to protect the valuable queens, which together with the males are the reproductive individuals of the colony. Insect colonies are separated into these reproductive individuals and the sterile worker force, forming a superorganismal reproductive unit reminiscent of the differentiated germline and soma in a multicellular organism. Ultimately, the social immune response preserves the germline of the superorganism insect colony and increases overall fitness of the colony in case of disease. }, author = {Cremer, Sylvia and Kutzer, Megan}, booktitle = {Encyclopedia of Animal Behavior}, editor = {Choe, Jae}, isbn = {9780128132517}, pages = {747--755}, publisher = {Elsevier}, title = {{Social immunity}}, doi = {10.1016/B978-0-12-809633-8.90721-0}, year = {2019}, } @phdthesis{6435, abstract = {Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ cells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are in charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units (i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''. Social immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social immunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop the collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of social immune responses have been dissected, but many more questions remain open. I present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals carrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate. The second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive and challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation. In addition to the two experimental chapters, this thesis includes a co-authored published review on organisational immunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built, identify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in two collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant behaviour.}, author = {Casillas Perez, Barbara E}, issn = {2663-337X}, keywords = {Social Immunity, Sanitary care, Social Insects, Organisational Immunity, Colony development, Multi-target tracking}, pages = {183}, publisher = {Institute of Science and Technology Austria}, title = {{Collective defenses of garden ants against a fungal pathogen}}, doi = {10.15479/AT:ISTA:6435}, year = {2019}, } @article{413, abstract = {Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.}, author = {Konrad, Matthias and Pull, Christopher and Metzler, Sina and Seif, Katharina and Naderlinger, Elisabeth and Grasse, Anna V and Cremer, Sylvia}, journal = {PNAS}, number = {11}, pages = {2782 -- 2787}, publisher = {National Academy of Sciences}, title = {{Ants avoid superinfections by performing risk-adjusted sanitary care}}, doi = {10.1073/pnas.1713501115}, volume = {115}, year = {2018}, } @article{616, abstract = {Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation.}, author = {Pull, Christopher and Ugelvig, Line V and Wiesenhofer, Florian and Grasse, Anna V and Tragust, Simon and Schmitt, Thomas and Brown, Mark and Cremer, Sylvia}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}}, doi = {10.7554/eLife.32073}, volume = {7}, year = {2018}, } @article{617, abstract = {Insects are exposed to a variety of potential pathogens in their environment, many of which can severely impact fitness and health. Consequently, hosts have evolved resistance and tolerance strategies to suppress or cope with infections. Hosts utilizing resistance improve fitness by clearing or reducing pathogen loads, and hosts utilizing tolerance reduce harmful fitness effects per pathogen load. To understand variation in, and selective pressures on, resistance and tolerance, we asked to what degree they are shaped by host genetic background, whether plasticity in these responses depends upon dietary environment, and whether there are interactions between these two factors. Females from ten wild-type Drosophila melanogaster genotypes were kept on high- or low-protein (yeast) diets and infected with one of two opportunistic bacterial pathogens, Lactococcus lactis or Pseudomonas entomophila. We measured host resistance as the inverse of bacterial load in the early infection phase. The relationship (slope) between fly fecundity and individual-level bacteria load provided our fecundity tolerance measure. Genotype and dietary yeast determined host fecundity and strongly affected survival after infection with pathogenic P. entomophila. There was considerable genetic variation in host resistance, a commonly found phenomenon resulting from for example varying resistance costs or frequency-dependent selection. Despite this variation and the reproductive cost of higher P. entomophila loads, fecundity tolerance did not vary across genotypes. The absence of genetic variation in tolerance may suggest that at this early infection stage, fecundity tolerance is fixed or that any evolved tolerance mechanisms are not expressed under these infection conditions.}, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie}, issn = {1420-9101}, journal = {Journal of Evolutionary Biology}, number = {1}, pages = {159 -- 171}, publisher = {Wiley}, title = {{Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance}}, doi = {10.1111/jeb.13211}, volume = {31}, year = {2018}, } @article{426, abstract = {Sperm cells are the most morphologically diverse cells across animal taxa. Within species, sperm and ejaculate traits have been suggested to vary with the male's competitive environment, e.g., level of sperm competition, female mating status and quality, and also with male age, body mass, physiological condition, and resource availability. Most previous studies have based their conclusions on the analysis of only one or a few ejaculates per male without investigating differences among the ejaculates of the same individual. This masks potential ejaculate-specific traits. Here, we provide data on the length, quantity, and viability of sperm ejaculated by wingless males of the ant Cardiocondyla obscurior. Males of this ant species are relatively long-lived and can mate with large numbers of female sexuals throughout their lives. We analyzed all ejaculates across the individuals' lifespan and manipulated the availability of mating partners. Our study shows that both the number and size of sperm cells transferred during copulations differ among individuals and also among ejaculates of the same male. Sperm quality does not decrease with male age, but the variation in sperm number between ejaculates indicates that males need considerable time to replenish their sperm supplies. Producing many ejaculates in a short time appears to be traded-off against male longevity rather than sperm quality.}, author = {Metzler, Sina and Schrempf, Alexandra and Heinze, Jürgen}, journal = {Journal of Insect Physiology}, pages = {284--290}, publisher = {Elsevier}, title = {{Individual- and ejaculate-specific sperm traits in ant males}}, doi = {10.1016/j.jinsphys.2017.12.003}, volume = {107}, year = {2018}, } @article{194, abstract = {Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.}, author = {Liutkeviciute, Zita and Gil Mansilla, Esther and Eder, Thomas and Casillas Perez, Barbara E and Giulia Di Giglio, Maria and Muratspahić, Edin and Grebien, Florian and Rattei, Thomas and Muttenthaler, Markus and Cremer, Sylvia and Gruber, Christian}, issn = {08926638}, journal = {The FASEB Journal}, number = {12}, pages = {6808--6821}, publisher = {FASEB}, title = {{Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity}}, doi = {10.1096/fj.201800443}, volume = {32}, year = {2018}, } @article{55, abstract = {Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms — such as soil and rotting wood — and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This ‘social immunity’ utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon. Garden ants spray their nests with an antimicrobial poison to sanitize contaminated nestmates and brood. Here, Pull et al show that they also prophylactically sanitise their colonies, and that the silk cocoon serves as a barrier to protect developing pupae, thus preventing collateral damage during nest sanitation.}, author = {Pull, Christopher and Metzler, Sina and Naderlinger, Elisabeth and Cremer, Sylvia}, journal = {Current Biology}, number = {19}, pages = {R1139 -- R1140}, publisher = {Cell Press}, title = {{Protection against the lethal side effects of social immunity in ants}}, doi = {10.1016/j.cub.2018.08.063}, volume = {28}, year = {2018}, } @article{29, abstract = {Social insects have evolved enormous capacities to collectively build nests and defend their colonies against both predators and pathogens. The latter is achieved by a combination of individual immune responses and sophisticated collective behavioral and organizational disease defenses, that is, social immunity. We investigated how the presence or absence of these social defense lines affects individual-level immunity in ant queens after bacterial infection. To this end, we injected queens of the ant Linepithema humile with a mix of gram+ and gram− bacteria or a control solution, reared them either with workers or alone and analyzed their gene expression patterns at 2, 4, 8, and 12 hr post-injection, using RNA-seq. This allowed us to test for the effect of bacterial infection, social context, as well as the interaction between the two over the course of infection and raising of an immune response. We found that social isolation per se affected queen gene expression for metabolism genes, but not for immune genes. When infected, queens reared with and without workers up-regulated similar numbers of innate immune genes revealing activation of Toll and Imd signaling pathways and melanization. Interestingly, however, they mostly regulated different genes along the pathways and showed a different pattern of overall gene up-regulation or down-regulation. Hence, we can conclude that the absence of workers does not compromise the onset of an individual immune response by the queens, but that the social environment impacts the route of the individual innate immune responses.}, author = {Viljakainen, Lumi and Jurvansuu, Jaana and Holmberg, Ida and Pamminger, Tobias and Erler, Silvio and Cremer, Sylvia}, issn = {20457758}, journal = {Ecology and Evolution}, number = {22}, pages = {11031--11070}, publisher = {Wiley}, title = {{Social environment affects the transcriptomic response to bacteria in ant queens}}, doi = {10.1002/ece3.4573}, volume = {8}, year = {2018}, }