@article{7343, abstract = {Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, issn = {1461-0248}, journal = {Ecology Letters}, number = {3}, pages = {565--574}, publisher = {Wiley}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.1111/ele.13458}, volume = {23}, year = {2020}, } @misc{13060, abstract = {Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level.}, author = {Milutinovic, Barbara and Stock, Miriam and Grasse, Anna V and Naderlinger, Elisabeth and Hilbe, Christian and Cremer, Sylvia}, publisher = {Dryad}, title = {{Social immunity modulates competition between coinfecting pathogens}}, doi = {10.5061/DRYAD.CRJDFN318}, year = {2020}, } @article{6105, abstract = { Hosts can alter their strategy towards pathogens during their lifetime; that is, they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e., resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fecundity consequences that result from a high pathogen burden. Finally, previous exposure may also lead to life‐history adjustments, such as terminal investment into reproduction. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested whether previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute‐phase infection (one day post‐challenge). We then asked whether previous pathogen exposure affects chronic‐phase pathogen persistence and longer‐term survival (28 days post‐challenge). We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long‐term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi‐faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host–pathogen system and that infection persistence may be bacterium‐specific. }, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie A.O.}, issn = {13652656}, journal = {Journal of Animal Ecology}, number = {4}, pages = {566--578}, publisher = {Wiley}, title = {{A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance}}, doi = {10.1111/1365-2656.12953}, volume = {88}, year = {2019}, } @misc{9806, abstract = {1. Hosts can alter their strategy towards pathogens during their lifetime, i.e., they can show phenotypic plasticity in immunity or life history. Immune priming is one such example, where a previous encounter with a pathogen confers enhanced protection upon secondary challenge, resulting in reduced pathogen load (i.e. resistance) and improved host survival. However, an initial encounter might also enhance tolerance, particularly to less virulent opportunistic pathogens that establish persistent infections. In this scenario, individuals are better able to reduce the negative fitness consequences that result from a high pathogen load. Finally, previous exposure may also lead to life history adjustments, such as terminal investment into reproduction. 2. Using different Drosophila melanogaster host genotypes and two bacterial pathogens, Lactococcus lactis and Pseudomonas entomophila, we tested if previous exposure results in resistance or tolerance and whether it modifies immune gene expression during an acute-phase infection (one day post-challenge). We then asked if previous pathogen exposure affects chronic-phase pathogen persistence and longer-term survival (28 days post-challenge). 3. We predicted that previous exposure would increase host resistance to an early stage bacterial infection while it might come at a cost to host fecundity tolerance. We reasoned that resistance would be due in part to stronger immune gene expression after challenge. We expected that previous exposure would improve long-term survival, that it would reduce infection persistence, and we expected to find genetic variation in these responses. 4. We found that previous exposure to P. entomophila weakened host resistance to a second infection independent of genotype and had no effect on immune gene expression. Fecundity tolerance showed genotypic variation but was not influenced by previous exposure. However, L. lactis persisted as a chronic infection, whereas survivors cleared the more pathogenic P. entomophila infection. 5. To our knowledge, this is the first study that addresses host tolerance to bacteria in relation to previous exposure, taking a multi-faceted approach to address the topic. Our results suggest that previous exposure comes with transient costs to resistance during the early stage of infection in this host-pathogen system and that infection persistence may be bacterium-specific.}, author = {Kutzer, Megan and Kurtz, Joachim and Armitage, Sophie A.O.}, publisher = {Dryad}, title = {{Data from: A multi-faceted approach testing the effects of previous bacterial exposure on resistance and tolerance}}, doi = {10.5061/dryad.9kj41f0}, year = {2019}, } @article{6415, abstract = {Ant invasions are often harmful to native species communities. Their pathogens and host disease defense mechanisms may be one component of their devastating success. First, they can introduce harmful diseases to their competitors in the introduced range, to which they themselves are tolerant. Second, their supercolonial social structure of huge multi-queen nest networks means that they will harbor a broad pathogen spectrum and high pathogen load while remaining resilient, unlike the smaller, territorial colonies of the native species. Thus, it is likely that invasive ants act as a disease reservoir, promoting their competitive advantage and invasive success.}, author = {Cremer, Sylvia}, issn = {22145753}, journal = {Current Opinion in Insect Science}, pages = {63--68}, publisher = {Elsevier}, title = {{Pathogens and disease defense of invasive ants}}, doi = {10.1016/j.cois.2019.03.011}, volume = {33}, year = {2019}, } @article{6552, abstract = {When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body's physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege). }, author = {Cremer, Sylvia}, issn = {09609822}, journal = {Current Biology}, number = {11}, pages = {R458--R463}, publisher = {Elsevier}, title = {{Social immunity in insects}}, doi = {10.1016/j.cub.2019.03.035}, volume = {29}, year = {2019}, } @inbook{7513, abstract = {Social insects (i.e., ants, termites and the social bees and wasps) protect their colonies from disease using a combination of individual immunity and collectively performed defenses, termed social immunity. The first line of social immune defense is sanitary care, which is performed by colony members to protect their pathogen-exposed nestmates from developing an infection. If sanitary care fails and an infection becomes established, a second line of social immune defense is deployed to stop disease transmission within the colony and to protect the valuable queens, which together with the males are the reproductive individuals of the colony. Insect colonies are separated into these reproductive individuals and the sterile worker force, forming a superorganismal reproductive unit reminiscent of the differentiated germline and soma in a multicellular organism. Ultimately, the social immune response preserves the germline of the superorganism insect colony and increases overall fitness of the colony in case of disease. }, author = {Cremer, Sylvia and Kutzer, Megan}, booktitle = {Encyclopedia of Animal Behavior}, editor = {Choe, Jae}, isbn = {9780128132517}, pages = {747--755}, publisher = {Elsevier}, title = {{Social immunity}}, doi = {10.1016/B978-0-12-809633-8.90721-0}, year = {2019}, } @phdthesis{6435, abstract = {Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ cells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are in charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units (i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''. Social immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social immunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop the collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of social immune responses have been dissected, but many more questions remain open. I present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals carrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate. The second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive and challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation. In addition to the two experimental chapters, this thesis includes a co-authored published review on organisational immunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built, identify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in two collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant behaviour.}, author = {Casillas Perez, Barbara E}, issn = {2663-337X}, keywords = {Social Immunity, Sanitary care, Social Insects, Organisational Immunity, Colony development, Multi-target tracking}, pages = {183}, publisher = {Institute of Science and Technology Austria}, title = {{Collective defenses of garden ants against a fungal pathogen}}, doi = {10.15479/AT:ISTA:6435}, year = {2019}, } @article{413, abstract = {Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.}, author = {Konrad, Matthias and Pull, Christopher and Metzler, Sina and Seif, Katharina and Naderlinger, Elisabeth and Grasse, Anna V and Cremer, Sylvia}, journal = {PNAS}, number = {11}, pages = {2782 -- 2787}, publisher = {National Academy of Sciences}, title = {{Ants avoid superinfections by performing risk-adjusted sanitary care}}, doi = {10.1073/pnas.1713501115}, volume = {115}, year = {2018}, } @article{616, abstract = {Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation.}, author = {Pull, Christopher and Ugelvig, Line V and Wiesenhofer, Florian and Grasse, Anna V and Tragust, Simon and Schmitt, Thomas and Brown, Mark and Cremer, Sylvia}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}}, doi = {10.7554/eLife.32073}, volume = {7}, year = {2018}, }