--- _id: '11336' abstract: - lang: eng text: The generation of a correctly-sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb Repressive Complex 2 (PRC2) and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here we utilize Mosaic Analysis with Double Markers (MADM)-based single cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior. acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc acknowledgement: We thank A. Heger (IST Austria Preclinical Facility), A. Sommer and C. Czepe (VBCF GmbH, NGS Unit) and S. Gharagozlou for technical support. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Imaging & Optics Facility (IOF), Lab Support Facility (LSF), and Preclinical Facility (PCF). N.A. received funding from the FWF Firnberg-Programm (T 1031). The work was supported by IST institutional funds and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 725780 LinPro) to S.H. article_number: abq1263 article_processing_charge: No article_type: original author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Pauler F, Streicher C, Hippenmeyer S. Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. 2022;8(44). doi:10.1126/sciadv.abq1263 apa: Amberg, N., Pauler, F., Streicher, C., & Hippenmeyer, S. (2022). Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.abq1263 chicago: Amberg, Nicole, Florian Pauler, Carmen Streicher, and Simon Hippenmeyer. “Tissue-Wide Genetic and Cellular Landscape Shapes the Execution of Sequential PRC2 Functions in Neural Stem Cell Lineage Progression.” Science Advances. American Association for the Advancement of Science, 2022. https://doi.org/10.1126/sciadv.abq1263. ieee: N. Amberg, F. Pauler, C. Streicher, and S. Hippenmeyer, “Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression,” Science Advances, vol. 8, no. 44. American Association for the Advancement of Science, 2022. ista: Amberg N, Pauler F, Streicher C, Hippenmeyer S. 2022. Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. Science Advances. 8(44), abq1263. mla: Amberg, Nicole, et al. “Tissue-Wide Genetic and Cellular Landscape Shapes the Execution of Sequential PRC2 Functions in Neural Stem Cell Lineage Progression.” Science Advances, vol. 8, no. 44, abq1263, American Association for the Advancement of Science, 2022, doi:10.1126/sciadv.abq1263. short: N. Amberg, F. Pauler, C. Streicher, S. Hippenmeyer, Science Advances 8 (2022). date_created: 2022-04-26T15:04:50Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-05-31T12:24:10Z day: '01' ddc: - '570' department: - _id: SiHi doi: 10.1126/sciadv.abq1263 ec_funded: 1 file: - access_level: open_access checksum: 0117023e188542082ca6693cf39e7f03 content_type: application/pdf creator: patrickd date_created: 2023-03-21T14:18:10Z date_updated: 2023-03-21T14:18:10Z file_id: '12742' file_name: sciadv.abq1263.pdf file_size: 2973998 relation: main_file success: 1 file_date_updated: 2023-03-21T14:18:10Z has_accepted_license: '1' intvolume: ' 8' issue: '44' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '11' oa: 1 oa_version: Published Version project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/whole-tissue-shapes-brain-development/ scopus_import: '1' status: public title: Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2022' ... --- _id: '9794' abstract: - lang: eng text: 'Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.' acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: PreCl - _id: LifeSc acknowledgement: This research was supported by the Scientific Service Units of IST Austria through resources provided by the Imaging and Optics, Electron Microscopy, Preclinical and Life Science Facilities. We thank C. Moussion for providing anti-PNAd antibody and D. Critchley for Talin1-floxed mice, and E. Papusheva for providing a custom 3D channel alignment script. This work was supported by a European Research Council grant ERC-CoG-72437 to M.S. M.H. was supported by Czech Sciencundation GACR 20-24603Y and Charles University PRIMUS/20/MED/013. article_processing_charge: No article_type: original author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 - first_name: Jun full_name: Abe, Jun last_name: Abe - first_name: Miroslav full_name: Hons, Miroslav id: 4167FE56-F248-11E8-B48F-1D18A9856A87 last_name: Hons orcid: 0000-0002-6625-3348 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Markus full_name: Brown, Markus id: 3DAB9AFC-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Burkhard full_name: Ludewig, Burkhard last_name: Ludewig - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Wolfgang full_name: Weninger, Wolfgang last_name: Weninger - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Sanjiv A. full_name: Luther, Sanjiv A. last_name: Luther - first_name: Jens V. full_name: Stein, Jens V. last_name: Stein - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X citation: ama: Assen FP, Abe J, Hons M, et al. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 2022;23:1246-1255. doi:10.1038/s41590-022-01257-4 apa: Assen, F. P., Abe, J., Hons, M., Hauschild, R., Shamipour, S., Kaufmann, W., … Sixt, M. K. (2022). Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. Springer Nature. https://doi.org/10.1038/s41590-022-01257-4 chicago: Assen, Frank P, Jun Abe, Miroslav Hons, Robert Hauschild, Shayan Shamipour, Walter Kaufmann, Tommaso Costanzo, et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology. Springer Nature, 2022. https://doi.org/10.1038/s41590-022-01257-4. ieee: F. P. Assen et al., “Multitier mechanics control stromal adaptations in swelling lymph nodes,” Nature Immunology, vol. 23. Springer Nature, pp. 1246–1255, 2022. ista: Assen FP, Abe J, Hons M, Hauschild R, Shamipour S, Kaufmann W, Costanzo T, Krens G, Brown M, Ludewig B, Hippenmeyer S, Heisenberg C-PJ, Weninger W, Hannezo EB, Luther SA, Stein JV, Sixt MK. 2022. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 23, 1246–1255. mla: Assen, Frank P., et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology, vol. 23, Springer Nature, 2022, pp. 1246–55, doi:10.1038/s41590-022-01257-4. short: F.P. Assen, J. Abe, M. Hons, R. Hauschild, S. Shamipour, W. Kaufmann, T. Costanzo, G. Krens, M. Brown, B. Ludewig, S. Hippenmeyer, C.-P.J. Heisenberg, W. Weninger, E.B. Hannezo, S.A. Luther, J.V. Stein, M.K. Sixt, Nature Immunology 23 (2022) 1246–1255. date_created: 2021-08-06T09:09:11Z date_published: 2022-07-11T00:00:00Z date_updated: 2023-08-02T06:53:07Z day: '11' ddc: - '570' department: - _id: SiHi - _id: CaHe - _id: EdHa - _id: EM-Fac - _id: Bio - _id: MiSi doi: 10.1038/s41590-022-01257-4 ec_funded: 1 external_id: isi: - '000822975900002' file: - access_level: open_access checksum: 628e7b49809f22c75b428842efe70c68 content_type: application/pdf creator: dernst date_created: 2022-07-25T07:11:32Z date_updated: 2022-07-25T07:11:32Z file_id: '11642' file_name: 2022_NatureImmunology_Assen.pdf file_size: 11475325 relation: main_file success: 1 file_date_updated: 2022-07-25T07:11:32Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1246-1255 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: Nature Immunology publication_identifier: eissn: - 1529-2916 issn: - 1529-2908 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Multitier mechanics control stromal adaptations in swelling lymph nodes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2022' ... --- _id: '10764' abstract: - lang: eng text: Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes. acknowledgement: 'We thank D. Mazaud and. J. Cazères for technical assistance. This work was supported by grants from the European Research Council (Consolidator grant #683154) and European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie Innovative Training Networks, grant #722053, EU-GliaPhD) to N.R. and from FP7-PEOPLE Marie Curie Intra-European Fellowship for career development (grant #622289) to G.C.' article_number: '753' article_processing_charge: No article_type: original author: - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung - first_name: Danijela full_name: Bataveljic, Danijela last_name: Bataveljic - first_name: Josien full_name: Visser, Josien last_name: Visser - first_name: Naresh full_name: Kumar, Naresh last_name: Kumar - first_name: Julien full_name: Moulard, Julien last_name: Moulard - first_name: Glenn full_name: Dallérac, Glenn last_name: Dallérac - first_name: Daria full_name: Mozheiko, Daria last_name: Mozheiko - first_name: Astrid full_name: Rollenhagen, Astrid last_name: Rollenhagen - first_name: Pascal full_name: Ezan, Pascal last_name: Ezan - first_name: Cédric full_name: Mongin, Cédric last_name: Mongin - first_name: Oana full_name: Chever, Oana last_name: Chever - first_name: Alexis Pierre full_name: Bemelmans, Alexis Pierre last_name: Bemelmans - first_name: Joachim full_name: Lübke, Joachim last_name: Lübke - first_name: Isabelle full_name: Leray, Isabelle last_name: Leray - first_name: Nathalie full_name: Rouach, Nathalie last_name: Rouach citation: ama: Cheung GT, Bataveljic D, Visser J, et al. Physiological synaptic activity and recognition memory require astroglial glutamine. Nature Communications. 2022;13. doi:10.1038/s41467-022-28331-7 apa: Cheung, G. T., Bataveljic, D., Visser, J., Kumar, N., Moulard, J., Dallérac, G., … Rouach, N. (2022). Physiological synaptic activity and recognition memory require astroglial glutamine. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-28331-7 chicago: Cheung, Giselle T, Danijela Bataveljic, Josien Visser, Naresh Kumar, Julien Moulard, Glenn Dallérac, Daria Mozheiko, et al. “Physiological Synaptic Activity and Recognition Memory Require Astroglial Glutamine.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-28331-7. ieee: G. T. Cheung et al., “Physiological synaptic activity and recognition memory require astroglial glutamine,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Cheung GT, Bataveljic D, Visser J, Kumar N, Moulard J, Dallérac G, Mozheiko D, Rollenhagen A, Ezan P, Mongin C, Chever O, Bemelmans AP, Lübke J, Leray I, Rouach N. 2022. Physiological synaptic activity and recognition memory require astroglial glutamine. Nature Communications. 13, 753. mla: Cheung, Giselle T., et al. “Physiological Synaptic Activity and Recognition Memory Require Astroglial Glutamine.” Nature Communications, vol. 13, 753, Springer Nature, 2022, doi:10.1038/s41467-022-28331-7. short: G.T. Cheung, D. Bataveljic, J. Visser, N. Kumar, J. Moulard, G. Dallérac, D. Mozheiko, A. Rollenhagen, P. Ezan, C. Mongin, O. Chever, A.P. Bemelmans, J. Lübke, I. Leray, N. Rouach, Nature Communications 13 (2022). date_created: 2022-02-20T23:01:30Z date_published: 2022-02-08T00:00:00Z date_updated: 2023-08-02T14:25:01Z day: '08' ddc: - '570' department: - _id: SiHi doi: 10.1038/s41467-022-28331-7 external_id: isi: - '000757297200017' pmid: - '35136061' file: - access_level: open_access checksum: 51d580aff2327dd957946208a9749e1a content_type: application/pdf creator: dernst date_created: 2022-02-21T07:51:33Z date_updated: 2022-02-21T07:51:33Z file_id: '10777' file_name: 2022_NatureCommunications_Cheung.pdf file_size: 7910519 relation: main_file success: 1 file_date_updated: 2022-02-21T07:51:33Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Physiological synaptic activity and recognition memory require astroglial glutamine tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '11460' abstract: - lang: eng text: "Background: Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology.\r\nMethods: Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques.\r\nResults: We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages.\r\nLimitations: While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation.\r\nConclusions: Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life." acknowledgement: "This study was funded by NIMH R21MH115347 to KSZ. KSZ is further supported by Shriners Hospitals for Children.\r\nWe would like to thank Angelo Harlan de Crescenzo for early contributions to this project." article_number: '27' article_processing_charge: No article_type: original author: - first_name: Zachary A. full_name: Schaaf, Zachary A. last_name: Schaaf - first_name: Lyvin full_name: Tat, Lyvin last_name: Tat - first_name: Noemi full_name: Cannizzaro, Noemi last_name: Cannizzaro - first_name: Ralph full_name: Green, Ralph last_name: Green - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Konstantinos S. full_name: Zarbalis, Konstantinos S. last_name: Zarbalis citation: ama: Schaaf ZA, Tat L, Cannizzaro N, et al. WDFY3 mutation alters laminar position and morphology of cortical neurons. Molecular Autism. 2022;13. doi:10.1186/s13229-022-00508-3 apa: Schaaf, Z. A., Tat, L., Cannizzaro, N., Green, R., Rülicke, T., Hippenmeyer, S., & Zarbalis, K. S. (2022). WDFY3 mutation alters laminar position and morphology of cortical neurons. Molecular Autism. Springer Nature. https://doi.org/10.1186/s13229-022-00508-3 chicago: Schaaf, Zachary A., Lyvin Tat, Noemi Cannizzaro, Ralph Green, Thomas Rülicke, Simon Hippenmeyer, and Konstantinos S. Zarbalis. “WDFY3 Mutation Alters Laminar Position and Morphology of Cortical Neurons.” Molecular Autism. Springer Nature, 2022. https://doi.org/10.1186/s13229-022-00508-3. ieee: Z. A. Schaaf et al., “WDFY3 mutation alters laminar position and morphology of cortical neurons,” Molecular Autism, vol. 13. Springer Nature, 2022. ista: Schaaf ZA, Tat L, Cannizzaro N, Green R, Rülicke T, Hippenmeyer S, Zarbalis KS. 2022. WDFY3 mutation alters laminar position and morphology of cortical neurons. Molecular Autism. 13, 27. mla: Schaaf, Zachary A., et al. “WDFY3 Mutation Alters Laminar Position and Morphology of Cortical Neurons.” Molecular Autism, vol. 13, 27, Springer Nature, 2022, doi:10.1186/s13229-022-00508-3. short: Z.A. Schaaf, L. Tat, N. Cannizzaro, R. Green, T. Rülicke, S. Hippenmeyer, K.S. Zarbalis, Molecular Autism 13 (2022). date_created: 2022-06-23T14:28:55Z date_published: 2022-06-22T00:00:00Z date_updated: 2023-08-03T07:21:32Z day: '22' ddc: - '570' department: - _id: SiHi doi: 10.1186/s13229-022-00508-3 external_id: isi: - '000814641400001' file: - access_level: open_access checksum: 525d2618e855139089bbfc3e3d49d1b2 content_type: application/pdf creator: dernst date_created: 2022-06-24T08:22:59Z date_updated: 2022-06-24T08:22:59Z file_id: '11461' file_name: 2022_MolecularAutism_Schaaf.pdf file_size: 7552298 relation: main_file success: 1 file_date_updated: 2022-06-24T08:22:59Z has_accepted_license: '1' intvolume: ' 13' isi: 1 keyword: - Psychiatry and Mental health - Developmental Biology - Developmental Neuroscience - Molecular Biology language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Molecular Autism publication_identifier: issn: - 2040-2392 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1186/s13229-023-00539-4 status: public title: WDFY3 mutation alters laminar position and morphology of cortical neurons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '11449' abstract: - lang: eng text: Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans. acknowledgement: D.J.A. thanks Wayne K. Potts, Alan R. Rogers, Kristen Hawkes, Ryk Ward, and Jon Seger for inspiring a young undergraduate to apply evolutionary theory to intraorganism development. Supported by the Paul G. Allen Frontiers Group (University of Washington); NIH R00HG010152 (Dartmouth); and NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program 725780 LinPro to S.H. article_processing_charge: No article_type: original author: - first_name: Donovan J. full_name: Anderson, Donovan J. last_name: Anderson - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Aaron full_name: Mckenna, Aaron last_name: Mckenna - first_name: Jay full_name: Shendure, Jay last_name: Shendure - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Marshall S. full_name: Horwitz, Marshall S. last_name: Horwitz citation: ama: Anderson DJ, Pauler F, Mckenna A, Shendure J, Hippenmeyer S, Horwitz MS. Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Systems. 2022;13(6):438-453.e5. doi:10.1016/j.cels.2022.03.006 apa: Anderson, D. J., Pauler, F., Mckenna, A., Shendure, J., Hippenmeyer, S., & Horwitz, M. S. (2022). Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Systems. Elsevier. https://doi.org/10.1016/j.cels.2022.03.006 chicago: Anderson, Donovan J., Florian Pauler, Aaron Mckenna, Jay Shendure, Simon Hippenmeyer, and Marshall S. Horwitz. “Simultaneous Brain Cell Type and Lineage Determined by ScRNA-Seq Reveals Stereotyped Cortical Development.” Cell Systems. Elsevier, 2022. https://doi.org/10.1016/j.cels.2022.03.006. ieee: D. J. Anderson, F. Pauler, A. Mckenna, J. Shendure, S. Hippenmeyer, and M. S. Horwitz, “Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development,” Cell Systems, vol. 13, no. 6. Elsevier, p. 438–453.e5, 2022. ista: Anderson DJ, Pauler F, Mckenna A, Shendure J, Hippenmeyer S, Horwitz MS. 2022. Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Systems. 13(6), 438–453.e5. mla: Anderson, Donovan J., et al. “Simultaneous Brain Cell Type and Lineage Determined by ScRNA-Seq Reveals Stereotyped Cortical Development.” Cell Systems, vol. 13, no. 6, Elsevier, 2022, p. 438–453.e5, doi:10.1016/j.cels.2022.03.006. short: D.J. Anderson, F. Pauler, A. Mckenna, J. Shendure, S. Hippenmeyer, M.S. Horwitz, Cell Systems 13 (2022) 438–453.e5. date_created: 2022-06-19T22:01:57Z date_published: 2022-06-15T00:00:00Z date_updated: 2023-08-03T07:19:43Z day: '15' department: - _id: SiHi doi: 10.1016/j.cels.2022.03.006 ec_funded: 1 external_id: isi: - '000814124400002' pmid: - '35452605' intvolume: ' 13' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cels.2022.03.006 month: '06' oa: 1 oa_version: Published Version page: 438-453.e5 pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain publication: Cell Systems publication_identifier: eissn: - 2405-4720 issn: - 2405-4712 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ...