@article{11336, abstract = {The generation of a correctly-sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb Repressive Complex 2 (PRC2) and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here we utilize Mosaic Analysis with Double Markers (MADM)-based single cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior.}, author = {Amberg, Nicole and Pauler, Florian and Streicher, Carmen and Hippenmeyer, Simon}, issn = {2375-2548}, journal = {Science Advances}, number = {44}, publisher = {American Association for the Advancement of Science}, title = {{Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression}}, doi = {10.1126/sciadv.abq1263}, volume = {8}, year = {2022}, } @article{9794, abstract = {Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.}, author = {Assen, Frank P and Abe, Jun and Hons, Miroslav and Hauschild, Robert and Shamipour, Shayan and Kaufmann, Walter and Costanzo, Tommaso and Krens, Gabriel and Brown, Markus and Ludewig, Burkhard and Hippenmeyer, Simon and Heisenberg, Carl-Philipp J and Weninger, Wolfgang and Hannezo, Edouard B and Luther, Sanjiv A. and Stein, Jens V. and Sixt, Michael K}, issn = {1529-2916}, journal = {Nature Immunology}, pages = {1246--1255}, publisher = {Springer Nature}, title = {{Multitier mechanics control stromal adaptations in swelling lymph nodes}}, doi = {10.1038/s41590-022-01257-4}, volume = {23}, year = {2022}, } @article{10764, abstract = {Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.}, author = {Cheung, Giselle T and Bataveljic, Danijela and Visser, Josien and Kumar, Naresh and Moulard, Julien and Dallérac, Glenn and Mozheiko, Daria and Rollenhagen, Astrid and Ezan, Pascal and Mongin, Cédric and Chever, Oana and Bemelmans, Alexis Pierre and Lübke, Joachim and Leray, Isabelle and Rouach, Nathalie}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Physiological synaptic activity and recognition memory require astroglial glutamine}}, doi = {10.1038/s41467-022-28331-7}, volume = {13}, year = {2022}, } @article{11460, abstract = {Background: Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Methods: Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. Results: We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. Limitations: While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Conclusions: Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.}, author = {Schaaf, Zachary A. and Tat, Lyvin and Cannizzaro, Noemi and Green, Ralph and Rülicke, Thomas and Hippenmeyer, Simon and Zarbalis, Konstantinos S.}, issn = {2040-2392}, journal = {Molecular Autism}, keywords = {Psychiatry and Mental health, Developmental Biology, Developmental Neuroscience, Molecular Biology}, publisher = {Springer Nature}, title = {{WDFY3 mutation alters laminar position and morphology of cortical neurons}}, doi = {10.1186/s13229-022-00508-3}, volume = {13}, year = {2022}, } @article{11449, abstract = {Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.}, author = {Anderson, Donovan J. and Pauler, Florian and Mckenna, Aaron and Shendure, Jay and Hippenmeyer, Simon and Horwitz, Marshall S.}, issn = {2405-4720}, journal = {Cell Systems}, number = {6}, pages = {438--453.e5}, publisher = {Elsevier}, title = {{Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development}}, doi = {10.1016/j.cels.2022.03.006}, volume = {13}, year = {2022}, } @article{12283, abstract = {Neurons extend axons to form the complex circuitry of the mature brain. This depends on the coordinated response and continuous remodelling of the microtubule and F-actin networks in the axonal growth cone. Growth cone architecture remains poorly understood at nanoscales. We therefore investigated mouse hippocampal neuron growth cones using cryo-electron tomography to directly visualise their three-dimensional subcellular architecture with molecular detail. Our data showed that the hexagonal arrays of actin bundles that form filopodia penetrate and terminate deep within the growth cone interior. We directly observed the modulation of these and other growth cone actin bundles by alteration of individual F-actin helical structures. Microtubules with blunt, slightly flared or gently curved ends predominated in the growth cone, frequently contained lumenal particles and exhibited lattice defects. Investigation of the effect of absence of doublecortin, a neurodevelopmental cytoskeleton regulator, on growth cone cytoskeleton showed no major anomalies in overall growth cone organisation or in F-actin subpopulations. However, our data suggested that microtubules sustained more structural defects, highlighting the importance of microtubule integrity during growth cone migration.}, author = {Atherton, Joseph and Stouffer, Melissa A and Francis, Fiona and Moores, Carolyn A.}, issn = {1477-9137}, journal = {Journal of Cell Science}, keywords = {Cell Biology}, number = {7}, publisher = {The Company of Biologists}, title = {{Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography}}, doi = {10.1242/jcs.259234}, volume = {135}, year = {2022}, } @article{12282, abstract = {From a simple thought to a multicellular movement}, author = {Amberg, Nicole and Stouffer, Melissa A and Vercellino, Irene}, issn = {1477-9137}, journal = {Journal of Cell Science}, number = {8}, publisher = {The Company of Biologists}, title = {{Operation STEM fatale – how an equity, diversity and inclusion initiative has brought us to reflect on the current challenges in cell biology and science as a whole}}, doi = {10.1242/jcs.260017}, volume = {135}, year = {2022}, } @unpublished{10792, abstract = {Background Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology . Methods Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild type cells concomitantly in vivo using immunofluorescent techniques. Results We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. Limitations While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients. Conclusions Our genetic approach revealed several cell autonomous requirements of Wdfy3 in neuronal development that could underly the pathogenic mechanisms of WDFY3-related ASD conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for Wdfy3 in regulating neuronal function and interconnectivity in postnatal life.}, author = {Schaaf, Zachary and Tat, Lyvin and Cannizzaro, Noemi and Green, Ralph and Rülicke, Thomas and Hippenmeyer, Simon and Zarbalis, K}, issn = {2693-5015}, pages = {30}, publisher = {Research Square}, title = {{WDFY3 cell autonomously controls neuronal migration}}, doi = {10.21203/rs.3.rs-1316167/v1}, year = {2022}, } @article{10791, abstract = {The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.}, author = {Hansen, Andi H and Pauler, Florian and Riedl, Michael and Streicher, Carmen and Heger, Anna-Magdalena and Laukoter, Susanne and Sommer, Christoph M and Nicolas, Armel and Hof, Björn and Tsai, Li Huei and Rülicke, Thomas and Hippenmeyer, Simon}, issn = {2753-149X}, journal = {Oxford Open Neuroscience}, number = {1}, publisher = {Oxford Academic}, title = {{Tissue-wide effects override cell-intrinsic gene function in radial neuron migration}}, doi = {10.1093/oons/kvac009}, volume = {1}, year = {2022}, } @unpublished{9082, abstract = {Acquired mutations are sufficiently frequent such that the genome of a single cell offers a record of its history of cell divisions. Among more common somatic genomic alterations are loss of heterozygosity (LOH). Large LOH events are potentially detectable in single cell RNA sequencing (scRNA-seq) datasets as tracts of monoallelic expression for constitutionally heterozygous single nucleotide variants (SNVs) located among contiguous genes. We identified runs of monoallelic expression, consistent with LOH, uniquely distributed throughout the genome in single cell brain cortex transcriptomes of F1 hybrids involving different inbred mouse strains. We then phylogenetically reconstructed single cell lineages and simultaneously identified cell types by corresponding gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. Compared to engineered recording systems, LOH events accumulate throughout the genome and across the lifetime of an organism, affording tremendous capacity for encoding lineage information and increasing resolution for later cell divisions. This approach can conceivably be computationally incorporated into scRNA-seq analysis and may be useful for organisms where genetic engineering is prohibitive, such as humans.}, author = {Anderson, Donovan J. and Pauler, Florian and McKenna, Aaron and Shendure, Jay and Hippenmeyer, Simon and Horwitz, Marshall S.}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Simultaneous identification of brain cell type and lineage via single cell RNA sequencing}}, doi = {10.1101/2020.12.31.425016}, year = {2021}, }