--- _id: '7875' abstract: - lang: eng text: 'Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.' acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: PreCl acknowledgement: "The authors thank the Scientific Service Units (Life Sciences, Bioimaging, Preclinical) of the Institute of Science and Technology Austria for excellent support. This work was funded by the European Research Council (ERC StG 281556 and CoG 724373), two grants from the Austrian\r\nScience Fund (FWF; P29911 and DK Nanocell W1250-B20 to M. Sixt) and by the German Research Foundation (DFG SFB1032 project B09) to O. Thorn-Seshold and D. Trauner. J. Renkawitz was supported by ISTFELLOW funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under the Research Executive Agency grant agreement (291734) and a European Molecular Biology Organization long-term fellowship (ALTF 1396-2014) co-funded by the European Commission (LTFCOFUND2013, GA-2013-609409), E. Kiermaier by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2151—390873048, and H. Hacker by the American Lebanese Syrian Associated ¨Charities. K.-D. Fischer was supported by the Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes graduate school funded by the Ministry of Economics, Science, and Digitisation of the State Saxony-Anhalt and by the European Funds for Social and Regional Development." article_number: e201907154 article_processing_charge: No article_type: original author: - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Irute full_name: Girkontaite, Irute last_name: Girkontaite - first_name: Kerry full_name: Tedford, Kerry last_name: Tedford - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Oliver full_name: Thorn-Seshold, Oliver last_name: Thorn-Seshold - first_name: Dirk full_name: Trauner, Dirk id: E8F27F48-3EBA-11E9-92A1-B709E6697425 last_name: Trauner - first_name: Hans full_name: Häcker, Hans last_name: Häcker - first_name: Klaus Dieter full_name: Fischer, Klaus Dieter last_name: Fischer - first_name: Eva full_name: Kiermaier, Eva id: 3EB04B78-F248-11E8-B48F-1D18A9856A87 last_name: Kiermaier orcid: 0000-0001-6165-5738 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Kopf A, Renkawitz J, Hauschild R, et al. Microtubules control cellular shape and coherence in amoeboid migrating cells. The Journal of Cell Biology. 2020;219(6). doi:10.1083/jcb.201907154 apa: Kopf, A., Renkawitz, J., Hauschild, R., Girkontaite, I., Tedford, K., Merrin, J., … Sixt, M. K. (2020). Microtubules control cellular shape and coherence in amoeboid migrating cells. The Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201907154 chicago: Kopf, Aglaja, Jörg Renkawitz, Robert Hauschild, Irute Girkontaite, Kerry Tedford, Jack Merrin, Oliver Thorn-Seshold, et al. “Microtubules Control Cellular Shape and Coherence in Amoeboid Migrating Cells.” The Journal of Cell Biology. Rockefeller University Press, 2020. https://doi.org/10.1083/jcb.201907154. ieee: A. Kopf et al., “Microtubules control cellular shape and coherence in amoeboid migrating cells,” The Journal of Cell Biology, vol. 219, no. 6. Rockefeller University Press, 2020. ista: Kopf A, Renkawitz J, Hauschild R, Girkontaite I, Tedford K, Merrin J, Thorn-Seshold O, Trauner D, Häcker H, Fischer KD, Kiermaier E, Sixt MK. 2020. Microtubules control cellular shape and coherence in amoeboid migrating cells. The Journal of Cell Biology. 219(6), e201907154. mla: Kopf, Aglaja, et al. “Microtubules Control Cellular Shape and Coherence in Amoeboid Migrating Cells.” The Journal of Cell Biology, vol. 219, no. 6, e201907154, Rockefeller University Press, 2020, doi:10.1083/jcb.201907154. short: A. Kopf, J. Renkawitz, R. Hauschild, I. Girkontaite, K. Tedford, J. Merrin, O. Thorn-Seshold, D. Trauner, H. Häcker, K.D. Fischer, E. Kiermaier, M.K. Sixt, The Journal of Cell Biology 219 (2020). date_created: 2020-05-24T22:00:56Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-21T06:28:17Z day: '01' ddc: - '570' department: - _id: MiSi - _id: Bio - _id: NanoFab doi: 10.1083/jcb.201907154 ec_funded: 1 external_id: isi: - '000538141100020' pmid: - '32379884' file: - access_level: open_access checksum: cb0b9c77842ae1214caade7b77e4d82d content_type: application/pdf creator: dernst date_created: 2020-11-24T13:25:13Z date_updated: 2020-11-24T13:25:13Z file_id: '8801' file_name: 2020_JCellBiol_Kopf.pdf file_size: 7536712 relation: main_file success: 1 file_date_updated: 2020-11-24T13:25:13Z has_accepted_license: '1' intvolume: ' 219' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 26018E70-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29911 name: Mechanical adaptation of lamellipodial actin - _id: 252C3B08-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W 1250-B20 name: Nano-Analytics of Cellular Systems - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25A48D24-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1396-2014 name: Molecular and system level view of immune cell migration publication: The Journal of Cell Biology publication_identifier: eissn: - 1540-8140 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Microtubules control cellular shape and coherence in amoeboid migrating cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 219 year: '2020' ... --- _id: '7888' abstract: - lang: eng text: Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order. article_number: e55190 article_processing_charge: No article_type: original author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: Diana C full_name: Nunes Pinheiro, Diana C id: 2E839F16-F248-11E8-B48F-1D18A9856A87 last_name: Nunes Pinheiro orcid: 0000-0003-4333-7503 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schauer A, Nunes Pinheiro DC, Hauschild R, Heisenberg C-PJ. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife. 2020;9. doi:10.7554/elife.55190 apa: Schauer, A., Nunes Pinheiro, D. C., Hauschild, R., & Heisenberg, C.-P. J. (2020). Zebrafish embryonic explants undergo genetically encoded self-assembly. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.55190 chicago: Schauer, Alexandra, Diana C Nunes Pinheiro, Robert Hauschild, and Carl-Philipp J Heisenberg. “Zebrafish Embryonic Explants Undergo Genetically Encoded Self-Assembly.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/elife.55190. ieee: A. Schauer, D. C. Nunes Pinheiro, R. Hauschild, and C.-P. J. Heisenberg, “Zebrafish embryonic explants undergo genetically encoded self-assembly,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Schauer A, Nunes Pinheiro DC, Hauschild R, Heisenberg C-PJ. 2020. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife. 9, e55190. mla: Schauer, Alexandra, et al. “Zebrafish Embryonic Explants Undergo Genetically Encoded Self-Assembly.” ELife, vol. 9, e55190, eLife Sciences Publications, 2020, doi:10.7554/elife.55190. short: A. Schauer, D.C. Nunes Pinheiro, R. Hauschild, C.-P.J. Heisenberg, ELife 9 (2020). date_created: 2020-05-25T15:01:40Z date_published: 2020-04-06T00:00:00Z date_updated: 2023-08-21T06:25:49Z day: '06' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.7554/elife.55190 ec_funded: 1 external_id: isi: - '000531544400001' pmid: - '32250246' file: - access_level: open_access checksum: f6aad884cf706846ae9357fcd728f8b5 content_type: application/pdf creator: dernst date_created: 2020-05-25T15:15:43Z date_updated: 2020-07-14T12:48:04Z file_id: '7890' file_name: 2020_eLife_Schauer.pdf file_size: 7744848 relation: main_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' - _id: 26520D1E-B435-11E9-9278-68D0E5697425 grant_number: ALTF 850-2017 name: Coordination of mesendoderm cell fate specification and internalization during zebrafish gastrulation - _id: 266BC5CE-B435-11E9-9278-68D0E5697425 grant_number: LT000429 name: Coordination of mesendoderm fate specification and internalization during zebrafish gastrulation publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '12891' relation: dissertation_contains status: public scopus_import: '1' status: public title: Zebrafish embryonic explants undergo genetically encoded self-assembly tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7864' abstract: - lang: eng text: "Purpose of review: Cancer is one of the leading causes of death and the incidence rates are constantly rising. The heterogeneity of tumors poses a big challenge for the treatment of the disease and natural antibodies additionally affect disease progression. The introduction of engineered mAbs for anticancer immunotherapies has substantially improved progression-free and overall survival of cancer patients, but little efforts have been made to exploit other antibody isotypes than IgG.\r\nRecent findings: In order to improve these therapies, ‘next-generation antibodies’ were engineered to enhance a specific feature of classical antibodies and form a group of highly effective and precise therapy compounds. Advanced antibody approaches include among others antibody-drug conjugates, glyco-engineered and Fc-engineered antibodies, antibody fragments, radioimmunotherapy compounds, bispecific antibodies and alternative (non-IgG) immunoglobulin classes, especially IgE.\r\nSummary: The current review describes solutions for the needs of next-generation antibody therapies through different approaches. Careful selection of the best-suited engineering methodology is a key factor in developing personalized, more specific and more efficient mAbs against cancer to improve the outcomes of cancer patients. We highlight here the large evidence of IgE exploiting a highly cytotoxic effector arm as potential next-generation anticancer immunotherapy." article_processing_charge: No article_type: original author: - first_name: Judit full_name: Singer, Judit id: 36432834-F248-11E8-B48F-1D18A9856A87 last_name: Singer orcid: 0000-0002-8777-3502 - first_name: Josef full_name: Singer, Josef last_name: Singer - first_name: Erika full_name: Jensen-Jarolim, Erika last_name: Jensen-Jarolim citation: ama: 'Singer J, Singer J, Jensen-Jarolim E. Precision medicine in clinical oncology: the journey from IgG antibody to IgE. Current opinion in allergy and clinical immunology. 2020;20(3):282-289. doi:10.1097/ACI.0000000000000637' apa: 'Singer, J., Singer, J., & Jensen-Jarolim, E. (2020). Precision medicine in clinical oncology: the journey from IgG antibody to IgE. Current Opinion in Allergy and Clinical Immunology. Wolters Kluwer. https://doi.org/10.1097/ACI.0000000000000637' chicago: 'Singer, Judit, Josef Singer, and Erika Jensen-Jarolim. “Precision Medicine in Clinical Oncology: The Journey from IgG Antibody to IgE.” Current Opinion in Allergy and Clinical Immunology. Wolters Kluwer, 2020. https://doi.org/10.1097/ACI.0000000000000637.' ieee: 'J. Singer, J. Singer, and E. Jensen-Jarolim, “Precision medicine in clinical oncology: the journey from IgG antibody to IgE,” Current opinion in allergy and clinical immunology, vol. 20, no. 3. Wolters Kluwer, pp. 282–289, 2020.' ista: 'Singer J, Singer J, Jensen-Jarolim E. 2020. Precision medicine in clinical oncology: the journey from IgG antibody to IgE. Current opinion in allergy and clinical immunology. 20(3), 282–289.' mla: 'Singer, Judit, et al. “Precision Medicine in Clinical Oncology: The Journey from IgG Antibody to IgE.” Current Opinion in Allergy and Clinical Immunology, vol. 20, no. 3, Wolters Kluwer, 2020, pp. 282–89, doi:10.1097/ACI.0000000000000637.' short: J. Singer, J. Singer, E. Jensen-Jarolim, Current Opinion in Allergy and Clinical Immunology 20 (2020) 282–289. date_created: 2020-05-17T22:00:44Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-21T06:28:52Z day: '01' department: - _id: Bio doi: 10.1097/ACI.0000000000000637 external_id: isi: - '000561358300010' intvolume: ' 20' isi: 1 issue: '3' language: - iso: eng month: '06' oa_version: None page: 282-289 publication: Current opinion in allergy and clinical immunology publication_identifier: eissn: - '14736322' publication_status: published publisher: Wolters Kluwer quality_controlled: '1' scopus_import: '1' status: public title: 'Precision medicine in clinical oncology: the journey from IgG antibody to IgE' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2020' ... --- _id: '8261' abstract: - lang: eng text: Dentate gyrus granule cells (GCs) connect the entorhinal cortex to the hippocampal CA3 region, but how they process spatial information remains enigmatic. To examine the role of GCs in spatial coding, we measured excitatory postsynaptic potentials (EPSPs) and action potentials (APs) in head-fixed mice running on a linear belt. Intracellular recording from morphologically identified GCs revealed that most cells were active, but activity level varied over a wide range. Whereas only ∼5% of GCs showed spatially tuned spiking, ∼50% received spatially tuned input. Thus, the GC population broadly encodes spatial information, but only a subset relays this information to the CA3 network. Fourier analysis indicated that GCs received conjunctive place-grid-like synaptic input, suggesting code conversion in single neurons. GC firing was correlated with dendritic complexity and intrinsic excitability, but not extrinsic excitatory input or dendritic cable properties. Thus, functional maturation may control input-output transformation and spatial code conversion. acknowledged_ssus: - _id: M-Shop - _id: ScienComp - _id: PreCl acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 692692, P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award, P.J.). We thank Gyorgy Buzsáki, Jozsef Csicsvari, Juan Ramirez Villegas, and Federico Stella for commenting on earlier versions of this manuscript. We also thank Katie Bittner, Michael Brecht, Albert Lee, Jeffery Magee, and Alejandro Pernía-Andrade for sharing expertise in in vivo patch-clamp recording. We are grateful to Florian Marr for cell labeling, cell reconstruction, and technical assistance; Ben Suter for helpful discussions; Christina Altmutter for technical support; Eleftheria Kralli-Beller for manuscript editing; and Todor Asenov (Machine Shop) for device construction. We also thank the Scientific Service Units (SSUs) of IST Austria (Machine Shop, Scientific Computing, and Preclinical Facility) for efficient support. article_processing_charge: No article_type: original author: - first_name: Xiaomin full_name: Zhang, Xiaomin id: 423EC9C2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Zhang X, Schlögl A, Jonas PM. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. 2020;107(6):1212-1225. doi:10.1016/j.neuron.2020.07.006 apa: Zhang, X., Schlögl, A., & Jonas, P. M. (2020). Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.07.006 chicago: Zhang, Xiaomin, Alois Schlögl, and Peter M Jonas. “Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.07.006. ieee: X. Zhang, A. Schlögl, and P. M. Jonas, “Selective routing of spatial information flow from input to output in hippocampal granule cells,” Neuron, vol. 107, no. 6. Elsevier, pp. 1212–1225, 2020. ista: Zhang X, Schlögl A, Jonas PM. 2020. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. 107(6), 1212–1225. mla: Zhang, Xiaomin, et al. “Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells.” Neuron, vol. 107, no. 6, Elsevier, 2020, pp. 1212–25, doi:10.1016/j.neuron.2020.07.006. short: X. Zhang, A. Schlögl, P.M. Jonas, Neuron 107 (2020) 1212–1225. date_created: 2020-08-14T09:36:05Z date_published: 2020-09-23T00:00:00Z date_updated: 2023-08-22T08:30:55Z day: '23' ddc: - '570' department: - _id: PeJo - _id: ScienComp doi: 10.1016/j.neuron.2020.07.006 ec_funded: 1 external_id: isi: - '000579698700009' pmid: - '32763145' file: - access_level: open_access checksum: 44a5960fc083a4cb3488d22224859fdc content_type: application/pdf creator: dernst date_created: 2020-12-04T09:29:21Z date_updated: 2020-12-04T09:29:21Z file_id: '8920' file_name: 2020_Neuron_Zhang.pdf file_size: 3011120 relation: main_file success: 1 file_date_updated: 2020-12-04T09:29:21Z has_accepted_license: '1' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '09' oa: 1 oa_version: Published Version page: 1212-1225 pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Website relation: press_release url: https://ist.ac.at/en/news/the-bouncer-in-the-brain/ status: public title: Selective routing of spatial information flow from input to output in hippocampal granule cells tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2020' ... --- _id: '8597' abstract: - lang: eng text: Error analysis and data visualization of positive COVID-19 cases in 27 countries have been performed up to August 8, 2020. This survey generally observes a progression from early exponential growth transitioning to an intermediate power-law growth phase, as recently suggested by Ziff and Ziff. The occurrence of logistic growth after the power-law phase with lockdowns or social distancing may be described as an effect of avoidance. A visualization of the power-law growth exponent over short time windows is qualitatively similar to the Bhatia visualization for pandemic progression. Visualizations like these can indicate the onset of second waves and may influence social policy. acknowledgement: I would especially like to thank Michael Sixt for encouraging me to think about these problems while working at home due to restrictions in place. I want to thank Nick Barton, Katka Bodova, Matthew Robinson, Simon Rella, Federico Sau, Ivan Prieto, and Pradeep Kumar for useful discussions. article_number: '065005' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 citation: ama: Merrin J. Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide. Physical Biology. 2020;17(6). doi:10.1088/1478-3975/abb2db apa: Merrin, J. (2020). Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide. Physical Biology. IOP Publishing. https://doi.org/10.1088/1478-3975/abb2db chicago: Merrin, Jack. “Differences in Power Law Growth over Time and Indicators of COVID-19 Pandemic Progression Worldwide.” Physical Biology. IOP Publishing, 2020. https://doi.org/10.1088/1478-3975/abb2db. ieee: J. Merrin, “Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide,” Physical Biology, vol. 17, no. 6. IOP Publishing, 2020. ista: Merrin J. 2020. Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide. Physical Biology. 17(6), 065005. mla: Merrin, Jack. “Differences in Power Law Growth over Time and Indicators of COVID-19 Pandemic Progression Worldwide.” Physical Biology, vol. 17, no. 6, 065005, IOP Publishing, 2020, doi:10.1088/1478-3975/abb2db. short: J. Merrin, Physical Biology 17 (2020). date_created: 2020-10-04T22:01:35Z date_published: 2020-09-23T00:00:00Z date_updated: 2023-08-22T09:53:29Z day: '23' ddc: - '510' - '570' department: - _id: NanoFab doi: 10.1088/1478-3975/abb2db external_id: isi: - '000575539700001' file: - access_level: open_access checksum: fec9bdd355ed349f09990faab20838a7 content_type: application/pdf creator: dernst date_created: 2020-10-05T13:53:59Z date_updated: 2020-10-05T13:53:59Z file_id: '8609' file_name: 2020_PhysBio_Merrin.pdf file_size: 1667111 relation: main_file success: 1 file_date_updated: 2020-10-05T13:53:59Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '6' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: Physical Biology publication_identifier: eissn: - '14783975' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Differences in power law growth over time and indicators of COVID-19 pandemic progression worldwide tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2020' ...