--- _id: '12334' abstract: - lang: eng text: Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: Bio - _id: EM-Fac acknowledgement: "We would like to thank K. von Peinen and B. Denker (Helmholtz Centre for Infection Research, Braunschweig, Germany) for experimental and technical assistance, respectively.\r\nThis research was supported by the Scientific Service Units (SSUs) of ISTA through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), the Imaging and Optics facility (IOF), and the Electron Microscopy Facility (EMF). We acknowledge support from ISTA and from the Austrian Science Fund (FWF) (P33367) to F.K.M.S., from the Research Training Group GRK2223 and the Helmholtz Society to K.R,. and from the Deutsche Forschungsgemeinschaft (DFG) to J.F. and K.R." article_number: add6495 article_processing_charge: No article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Manjunath full_name: Javoor, Manjunath id: 305ab18b-dc7d-11ea-9b2f-b58195228ea2 last_name: Javoor - first_name: Julia full_name: Datler, Julia id: 3B12E2E6-F248-11E8-B48F-1D18A9856A87 last_name: Datler orcid: 0000-0002-3616-8580 - first_name: Hermann full_name: Döring, Hermann last_name: Döring - first_name: Florian full_name: Hofer, Florian id: b9d234ba-9e33-11ed-95b6-cd561df280e6 last_name: Hofer - first_name: Georgi A full_name: Dimchev, Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Jan full_name: Faix, Jan last_name: Faix - first_name: Klemens full_name: Rottner, Klemens last_name: Rottner - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Javoor M, Datler J, et al. ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. 2023;9(3). doi:10.1126/sciadv.add6495 apa: Fäßler, F., Javoor, M., Datler, J., Döring, H., Hofer, F., Dimchev, G. A., … Schur, F. K. (2023). ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.add6495 chicago: Fäßler, Florian, Manjunath Javoor, Julia Datler, Hermann Döring, Florian Hofer, Georgi A Dimchev, Victor-Valentin Hodirnau, Jan Faix, Klemens Rottner, and Florian KM Schur. “ArpC5 Isoforms Regulate Arp2/3 Complex–Dependent Protrusion through Differential Ena/VASP Positioning.” Science Advances. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/sciadv.add6495. ieee: F. Fäßler et al., “ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning,” Science Advances, vol. 9, no. 3. American Association for the Advancement of Science, 2023. ista: Fäßler F, Javoor M, Datler J, Döring H, Hofer F, Dimchev GA, Hodirnau V-V, Faix J, Rottner K, Schur FK. 2023. ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning. Science Advances. 9(3), add6495. mla: Fäßler, Florian, et al. “ArpC5 Isoforms Regulate Arp2/3 Complex–Dependent Protrusion through Differential Ena/VASP Positioning.” Science Advances, vol. 9, no. 3, add6495, American Association for the Advancement of Science, 2023, doi:10.1126/sciadv.add6495. short: F. Fäßler, M. Javoor, J. Datler, H. Döring, F. Hofer, G.A. Dimchev, V.-V. Hodirnau, J. Faix, K. Rottner, F.K. Schur, Science Advances 9 (2023). date_created: 2023-01-23T07:26:42Z date_published: 2023-01-20T00:00:00Z date_updated: 2023-11-21T08:05:35Z day: '20' ddc: - '570' department: - _id: FlSc - _id: EM-Fac doi: 10.1126/sciadv.add6495 external_id: isi: - '000964550100015' file: - access_level: open_access checksum: ce81a6d0b84170e5e8c62f6acfa15d9e content_type: application/pdf creator: dernst date_created: 2023-01-23T07:45:54Z date_updated: 2023-01-23T07:45:54Z file_id: '12335' file_name: 2023_ScienceAdvances_Faessler.pdf file_size: 1756234 relation: main_file success: 1 file_date_updated: 2023-01-23T07:45:54Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '3' keyword: - Multidisciplinary language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: record: - id: '14562' relation: research_data status: public scopus_import: '1' status: public title: ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2023' ... --- _id: '13342' abstract: - lang: eng text: Motile cells moving in multicellular organisms encounter microenvironments of locally heterogeneous mechanochemical composition. Individual compositional parameters like chemotactic signals, adhesiveness, and pore sizes are well known to be sensed by motile cells, providing individual guidance cues for cellular pathfinding. However, motile cells encounter diverse mechanochemical signals at the same time, raising the question of how cells respond to locally diverse and potentially competing signals on their migration routes. Here, we reveal that motile amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical microenvironments. Using mammalian immune cells and the amoebaDictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step cell polarity switch and is driven by myosin II-forces, sliding the nucleus from a ‘losing’ to the ‘winning’ leading edge to re-adjust the nuclear to the cellular path. Impaired nucleokinesis distorts fast path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that motile single-cell amoebae, many immune cells, and some cancer cells utilize an amoeboid migration strategy, these results suggest that amoeboid nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease. acknowledgement: We thank Christoph Mayr and Bingzhi Wang for initial experiments on amoeboid nucleokinesis, Ana-Maria Lennon-Duménil and Aline Yatim for bone marrow from MyoIIA-Flox*CD11c-Cre mice, Michael Sixt and Aglaja Kopf for EMTB-mCherry, EB3-mCherry, Lifeact-GFP, Lfc knockout, and Myh9-GFP expressing HoxB8 cells, Malte Benjamin Braun, Mauricio Ruiz, and Madeleine T. Schmitt for critical reading of the manuscript, and the Core Facility Bioimaging, the Core Facility Flow Cytometry, and the Animal Core Facility of the Biomedical Center (BMC) for excellent support. This study was supported by the Peter Hans Hofschneider Professorship of the foundation “Stiftung Experimentelle Biomedizin” (to JR), the LMU Institutional Strategy LMU-Excellent within the framework of the German Excellence Initiative (to JR), and the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; SFB914 project A12, to JR), and the CZI grant DAF2020-225401 (https://doi.org/10.37921/120055ratwvi) from the Chan Zuckerberg Initiative DAF (to RH; an advised fund of Silicon Valley Community Foundation (funder https://doi.org/10.13039/100014989)). Open Access funding enabled and organized by Projekt DEAL. article_number: e114557 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Janina full_name: Kroll, Janina last_name: Kroll - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Arthur full_name: Kuznetcov, Arthur last_name: Kuznetcov - first_name: Kasia full_name: Stefanowski, Kasia last_name: Stefanowski - first_name: Monika D. full_name: Hermann, Monika D. last_name: Hermann - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Lubuna B full_name: Shafeek, Lubuna B id: 3CD37A82-F248-11E8-B48F-1D18A9856A87 last_name: Shafeek orcid: 0000-0001-7180-6050 - first_name: Annette full_name: Müller-Taubenberger, Annette last_name: Müller-Taubenberger - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 citation: ama: Kroll J, Hauschild R, Kuznetcov A, et al. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal. 2023. doi:10.15252/embj.2023114557 apa: Kroll, J., Hauschild, R., Kuznetcov, A., Stefanowski, K., Hermann, M. D., Merrin, J., … Renkawitz, J. (2023). Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal. Embo Press. https://doi.org/10.15252/embj.2023114557 chicago: Kroll, Janina, Robert Hauschild, Arthur Kuznetcov, Kasia Stefanowski, Monika D. Hermann, Jack Merrin, Lubuna B Shafeek, Annette Müller-Taubenberger, and Jörg Renkawitz. “Adaptive Pathfinding by Nucleokinesis during Amoeboid Migration.” EMBO Journal. Embo Press, 2023. https://doi.org/10.15252/embj.2023114557. ieee: J. Kroll et al., “Adaptive pathfinding by nucleokinesis during amoeboid migration,” EMBO Journal. Embo Press, 2023. ista: Kroll J, Hauschild R, Kuznetcov A, Stefanowski K, Hermann MD, Merrin J, Shafeek LB, Müller-Taubenberger A, Renkawitz J. 2023. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO Journal., e114557. mla: Kroll, Janina, et al. “Adaptive Pathfinding by Nucleokinesis during Amoeboid Migration.” EMBO Journal, e114557, Embo Press, 2023, doi:10.15252/embj.2023114557. short: J. Kroll, R. Hauschild, A. Kuznetcov, K. Stefanowski, M.D. Hermann, J. Merrin, L.B. Shafeek, A. Müller-Taubenberger, J. Renkawitz, EMBO Journal (2023). date_created: 2023-08-01T08:59:06Z date_published: 2023-11-21T00:00:00Z date_updated: 2023-11-27T08:47:45Z day: '21' ddc: - '570' department: - _id: NanoFab - _id: Bio doi: 10.15252/embj.2023114557 external_id: pmid: - '37987147' file: - access_level: open_access checksum: 6261d0041c7e8d284c39712c40079730 content_type: application/pdf creator: dernst date_created: 2023-11-27T08:45:56Z date_updated: 2023-11-27T08:45:56Z file_id: '14611' file_name: 2023_EmboJournal_Kroll.pdf file_size: 4862497 relation: main_file success: 1 file_date_updated: 2023-11-27T08:45:56Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: EMBO Journal publication_identifier: eissn: - 1460-2075 issn: - 0261-4189 publication_status: published publisher: Embo Press quality_controlled: '1' scopus_import: '1' status: public title: Adaptive pathfinding by nucleokinesis during amoeboid migration tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12747' abstract: - lang: eng text: Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing. acknowledgement: 'The authors thank the participants and their families for participating in the study. We thank all members of our laboratories for helpful discussions. We are grateful to Vienna BioCenter Core Facilities: Mouse Phenotyping Unit, Histopathology Unit, Bioinformatics Unit, BioOptics Unit, Electron Microscopy Unit and Comparative Medicine Unit. We are grateful to the Lipidomics Facility, and K. Klavins and T. Hannich at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences for assistance with lipidomics analysis. We also thank T. Huan and A. Hui (UBC Vancouver) for mouse tissue and mitochondria lipidomics analysis. We thank A. Klymchenko (Laboratoire de Bioimagerie et Pathologies Université de Strasbourg, Strasbourg, France) for providing the NR12S probe. We are thankful to the Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Specialized Research Center Viral Vector Core Facility for AAV6 production. We also thank K. P. Campbell and M. E. Anderson (University of Iowa, Carver College of Medicine) for advice on muscle tissue handling. We thank A. Al-Qassabi from the Sultan Qaboos University for the clinical assessment of the participants. D.C. and J.M.P. are supported by the Austrian Federal Ministry of Education, Science and Research, the Austrian Academy of Sciences, and the City of Vienna, and grants from the Austrian Science Fund (FWF) Wittgenstein award (Z 271-B19), the T. von Zastrow Foundation, and a Canada 150 Research Chairs Program (F18-01336). J.S.C. is supported by grants RO1AR44533 and P50AR065139 from the US National Institutes of Health. C.K. is supported by a grant from the Agence Nationale de la Recherche (ANR-18-CE14-0007-01). A.V.K. is supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 67544, and an Austrian Science Fund (FWF; no P-33799). A.W. is supported by Austrian Research Promotion Agency (FFG) project no 867674. E.S. is supported by a SciLifeLab fellowship and Karolinska Institutet Foundation Grants. Work in the laboratory of G.S.-F. is supported by the Austrian Academy of Sciences, the European Research Council (ERC AdG 695214 GameofGates) and the Innovative Medicines Initiative 2 Joint Undertaking (grant agreement no. 777372, ReSOLUTE). S.B., M.L. and R.Y. acknowledge the support of the Spastic Paraplegia Foundation.' article_processing_charge: No article_type: original author: - first_name: Domagoj full_name: Cikes, Domagoj last_name: Cikes - first_name: Kareem full_name: Elsayad, Kareem last_name: Elsayad - first_name: Erdinc full_name: Sezgin, Erdinc last_name: Sezgin - first_name: Erika full_name: Koitai, Erika last_name: Koitai - first_name: Torma full_name: Ferenc, Torma last_name: Ferenc - first_name: Michael full_name: Orthofer, Michael last_name: Orthofer - first_name: Rebecca full_name: Yarwood, Rebecca last_name: Yarwood - first_name: Leonhard X. full_name: Heinz, Leonhard X. last_name: Heinz - first_name: Vitaly full_name: Sedlyarov, Vitaly last_name: Sedlyarov - first_name: Nasser full_name: Darwish-Miranda, Nasser id: 39CD9926-F248-11E8-B48F-1D18A9856A87 last_name: Darwish-Miranda orcid: 0000-0002-8821-8236 - first_name: Adrian full_name: Taylor, Adrian last_name: Taylor - first_name: Sophie full_name: Grapentine, Sophie last_name: Grapentine - first_name: Fathiya full_name: al-Murshedi, Fathiya last_name: al-Murshedi - first_name: Anne full_name: Abot, Anne last_name: Abot - first_name: Adelheid full_name: Weidinger, Adelheid last_name: Weidinger - first_name: Candice full_name: Kutchukian, Candice last_name: Kutchukian - first_name: Colline full_name: Sanchez, Colline last_name: Sanchez - first_name: Shane J. F. full_name: Cronin, Shane J. F. last_name: Cronin - first_name: Maria full_name: Novatchkova, Maria last_name: Novatchkova - first_name: Anoop full_name: Kavirayani, Anoop last_name: Kavirayani - first_name: Thomas full_name: Schuetz, Thomas last_name: Schuetz - first_name: Bernhard full_name: Haubner, Bernhard last_name: Haubner - first_name: Lisa full_name: Haas, Lisa last_name: Haas - first_name: Astrid full_name: Hagelkruys, Astrid last_name: Hagelkruys - first_name: Suzanne full_name: Jackowski, Suzanne last_name: Jackowski - first_name: Andrey full_name: Kozlov, Andrey last_name: Kozlov - first_name: Vincent full_name: Jacquemond, Vincent last_name: Jacquemond - first_name: Claude full_name: Knauf, Claude last_name: Knauf - first_name: Giulio full_name: Superti-Furga, Giulio last_name: Superti-Furga - first_name: Eric full_name: Rullman, Eric last_name: Rullman - first_name: Thomas full_name: Gustafsson, Thomas last_name: Gustafsson - first_name: John full_name: McDermot, John last_name: McDermot - first_name: Martin full_name: Lowe, Martin last_name: Lowe - first_name: Zsolt full_name: Radak, Zsolt last_name: Radak - first_name: Jeffrey S. full_name: Chamberlain, Jeffrey S. last_name: Chamberlain - first_name: Marica full_name: Bakovic, Marica last_name: Bakovic - first_name: Siddharth full_name: Banka, Siddharth last_name: Banka - first_name: Josef M. full_name: Penninger, Josef M. last_name: Penninger citation: ama: Cikes D, Elsayad K, Sezgin E, et al. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. 2023;5:495-515. doi:10.1038/s42255-023-00766-2 apa: Cikes, D., Elsayad, K., Sezgin, E., Koitai, E., Ferenc, T., Orthofer, M., … Penninger, J. M. (2023). PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. Springer Nature. https://doi.org/10.1038/s42255-023-00766-2 chicago: Cikes, Domagoj, Kareem Elsayad, Erdinc Sezgin, Erika Koitai, Torma Ferenc, Michael Orthofer, Rebecca Yarwood, et al. “PCYT2-Regulated Lipid Biosynthesis Is Critical to Muscle Health and Ageing.” Nature Metabolism. Springer Nature, 2023. https://doi.org/10.1038/s42255-023-00766-2. ieee: D. Cikes et al., “PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing,” Nature Metabolism, vol. 5. Springer Nature, pp. 495–515, 2023. ista: Cikes D, Elsayad K, Sezgin E, Koitai E, Ferenc T, Orthofer M, Yarwood R, Heinz LX, Sedlyarov V, Darwish-Miranda N, Taylor A, Grapentine S, al-Murshedi F, Abot A, Weidinger A, Kutchukian C, Sanchez C, Cronin SJF, Novatchkova M, Kavirayani A, Schuetz T, Haubner B, Haas L, Hagelkruys A, Jackowski S, Kozlov A, Jacquemond V, Knauf C, Superti-Furga G, Rullman E, Gustafsson T, McDermot J, Lowe M, Radak Z, Chamberlain JS, Bakovic M, Banka S, Penninger JM. 2023. PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing. Nature Metabolism. 5, 495–515. mla: Cikes, Domagoj, et al. “PCYT2-Regulated Lipid Biosynthesis Is Critical to Muscle Health and Ageing.” Nature Metabolism, vol. 5, Springer Nature, 2023, pp. 495–515, doi:10.1038/s42255-023-00766-2. short: D. Cikes, K. Elsayad, E. Sezgin, E. Koitai, T. Ferenc, M. Orthofer, R. Yarwood, L.X. Heinz, V. Sedlyarov, N. Darwish-Miranda, A. Taylor, S. Grapentine, F. al-Murshedi, A. Abot, A. Weidinger, C. Kutchukian, C. Sanchez, S.J.F. Cronin, M. Novatchkova, A. Kavirayani, T. Schuetz, B. Haubner, L. Haas, A. Hagelkruys, S. Jackowski, A. Kozlov, V. Jacquemond, C. Knauf, G. Superti-Furga, E. Rullman, T. Gustafsson, J. McDermot, M. Lowe, Z. Radak, J.S. Chamberlain, M. Bakovic, S. Banka, J.M. Penninger, Nature Metabolism 5 (2023) 495–515. date_created: 2023-03-23T12:58:43Z date_published: 2023-03-20T00:00:00Z date_updated: 2023-11-28T07:31:33Z day: '20' department: - _id: Bio doi: 10.1038/s42255-023-00766-2 external_id: isi: - '000992064000002' pmid: - '36941451' intvolume: ' 5' isi: 1 keyword: - Cell Biology - Physiology (medical) - Endocrinology - Diabetes and Metabolism - Internal Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2022.03.02.482658 month: '03' oa: 1 oa_version: Preprint page: 495-515 pmid: 1 publication: Nature Metabolism publication_identifier: issn: - 2522-5812 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s42255-023-00791-1 scopus_import: '1' status: public title: PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14041' abstract: - lang: eng text: Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering. acknowledgement: "We thank Marton Gulyas (ELTE Eötvös University) for development of videomicroscopy experiment manager and image analysis software. Authors are grateful to Gabor Forgacs (University of Missouri) for critical reading of earlier versions of this manuscript as well as to Zsuzsa Akos and Andras Czirok (ELTE Eötvös University) for fruitful discussions. This work was supported by EU FP7, ERC COLLMOT Project No 227878 to TV, the National Research Development and Innovation Fund of Hungary, K119359 and also Project No 2018-1.2.1-NKP-2018-00005 to LN. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955576. MV was supported by the Ja´nos Bolyai Fellowship of the Hungarian Academy of Sciences.\r\nOpen access funding provided by Eötvös Loránd University." article_number: '817' article_processing_charge: Yes article_type: original author: - first_name: Elod full_name: Méhes, Elod last_name: Méhes - first_name: Enys full_name: Mones, Enys last_name: Mones - first_name: Máté full_name: Varga, Máté last_name: Varga - first_name: Áron full_name: Zsigmond, Áron last_name: Zsigmond - first_name: Beáta full_name: Biri-Kovács, Beáta last_name: Biri-Kovács - first_name: László full_name: Nyitray, László last_name: Nyitray - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Tamás full_name: Vicsek, Tamás last_name: Vicsek citation: ama: Méhes E, Mones E, Varga M, et al. 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. 2023;6. doi:10.1038/s42003-023-05181-7 apa: Méhes, E., Mones, E., Varga, M., Zsigmond, Á., Biri-Kovács, B., Nyitray, L., … Vicsek, T. (2023). 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-023-05181-7 chicago: Méhes, Elod, Enys Mones, Máté Varga, Áron Zsigmond, Beáta Biri-Kovács, László Nyitray, Vanessa Barone, Gabriel Krens, Carl-Philipp J Heisenberg, and Tamás Vicsek. “3D Cell Segregation Geometry and Dynamics Are Governed by Tissue Surface Tension Regulation.” Communications Biology. Springer Nature, 2023. https://doi.org/10.1038/s42003-023-05181-7. ieee: E. Méhes et al., “3D cell segregation geometry and dynamics are governed by tissue surface tension regulation,” Communications Biology, vol. 6. Springer Nature, 2023. ista: Méhes E, Mones E, Varga M, Zsigmond Á, Biri-Kovács B, Nyitray L, Barone V, Krens G, Heisenberg C-PJ, Vicsek T. 2023. 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation. Communications Biology. 6, 817. mla: Méhes, Elod, et al. “3D Cell Segregation Geometry and Dynamics Are Governed by Tissue Surface Tension Regulation.” Communications Biology, vol. 6, 817, Springer Nature, 2023, doi:10.1038/s42003-023-05181-7. short: E. Méhes, E. Mones, M. Varga, Á. Zsigmond, B. Biri-Kovács, L. Nyitray, V. Barone, G. Krens, C.-P.J. Heisenberg, T. Vicsek, Communications Biology 6 (2023). date_created: 2023-08-13T22:01:13Z date_published: 2023-08-04T00:00:00Z date_updated: 2023-12-13T12:07:33Z day: '04' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1038/s42003-023-05181-7 external_id: isi: - '001042544100001' pmid: - '37542157' file: - access_level: open_access checksum: 1f9324f736bdbb76426b07736651c4cd content_type: application/pdf creator: dernst date_created: 2023-08-14T07:17:36Z date_updated: 2023-08-14T07:17:36Z file_id: '14045' file_name: 2023_CommBiology_Mehes.pdf file_size: 10181997 relation: main_file success: 1 file_date_updated: 2023-08-14T07:17:36Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: Communications Biology publication_identifier: eissn: - 2399-3642 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2023' ... --- _id: '14361' abstract: - lang: eng text: Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals’ internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical ‘toy’ experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: M-Shop acknowledgement: We thank K. O’Keeffe, E. Hannezo, P. Devreotes, C. Dessalles, and E. Martens for discussion and/or critical reading of the manuscript; the Bioimaging Facility of ISTA for excellent support, as well as the Life Science Facility and the Miba Machine Shop of ISTA. This work was supported by the European Research Council (ERC StG 281556 and CoG 724373) to M.S. article_number: '5633' article_processing_charge: Yes article_type: original author: - first_name: Michael full_name: Riedl, Michael id: 3BE60946-F248-11E8-B48F-1D18A9856A87 last_name: Riedl orcid: 0000-0003-4844-6311 - first_name: Isabelle D full_name: Mayer, Isabelle D id: 61763940-15b2-11ec-abd3-cfaddfbc66b4 last_name: Mayer - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Riedl M, Mayer ID, Merrin J, Sixt MK, Hof B. Synchronization in collectively moving inanimate and living active matter. Nature Communications. 2023;14. doi:10.1038/s41467-023-41432-1 apa: Riedl, M., Mayer, I. D., Merrin, J., Sixt, M. K., & Hof, B. (2023). Synchronization in collectively moving inanimate and living active matter. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-41432-1 chicago: Riedl, Michael, Isabelle D Mayer, Jack Merrin, Michael K Sixt, and Björn Hof. “Synchronization in Collectively Moving Inanimate and Living Active Matter.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-41432-1. ieee: M. Riedl, I. D. Mayer, J. Merrin, M. K. Sixt, and B. Hof, “Synchronization in collectively moving inanimate and living active matter,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Riedl M, Mayer ID, Merrin J, Sixt MK, Hof B. 2023. Synchronization in collectively moving inanimate and living active matter. Nature Communications. 14, 5633. mla: Riedl, Michael, et al. “Synchronization in Collectively Moving Inanimate and Living Active Matter.” Nature Communications, vol. 14, 5633, Springer Nature, 2023, doi:10.1038/s41467-023-41432-1. short: M. Riedl, I.D. Mayer, J. Merrin, M.K. Sixt, B. Hof, Nature Communications 14 (2023). date_created: 2023-09-24T22:01:10Z date_published: 2023-09-13T00:00:00Z date_updated: 2023-12-13T12:29:41Z day: '13' ddc: - '530' - '570' department: - _id: MiSi - _id: NanoFab - _id: BjHo doi: 10.1038/s41467-023-41432-1 ec_funded: 1 external_id: isi: - '001087583700030' pmid: - '37704595' file: - access_level: open_access checksum: 82d2d4ad736cc8493db8ce45cd313f7b content_type: application/pdf creator: dernst date_created: 2023-09-25T08:32:37Z date_updated: 2023-09-25T08:32:37Z file_id: '14366' file_name: 2023_NatureComm_Riedl.pdf file_size: 2317272 relation: main_file success: 1 file_date_updated: 2023-09-25T08:32:37Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Synchronization in collectively moving inanimate and living active matter tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ...