--- _id: '9887' abstract: - lang: eng text: Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: 'We gratefully thank Julie Neveu and Dr. Amanda Barranco of the Grégory Vert laboratory for help preparing plants in France, Dr. Zuzana Gelova for help and advice with protoplast generation, Dr. Stéphane Vassilopoulos and Dr. Florian Schur for advice regarding EM tomography, Alejandro Marquiegui Alvaro for help with material generation, and Dr. Lukasz Kowalski for generously gifting us the mWasabi protein. This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (IST Austria) through resources provided by the Electron Microscopy Facility, Lab Support Facility (particularly Dorota Jaworska), and the Bioimaging Facility. We acknowledge the Advanced Microscopy Facility of the Vienna BioCenter Core Facilities for use of the 3D SIM. For the mass spectrometry analysis of proteins, we acknowledge the University of Natural Resources and Life Sciences (BOKU) Core Facility Mass Spectrometry. This work was supported by the following funds: A.J. is supported by funding from the Austrian Science Fund I3630B25 to J.F. P.M. and E.B. are supported by Agence Nationale de la Recherche ANR-11-EQPX-0029 Morphoscope2 and ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the NSF No. 1121998 and 1614915. J.W. and D.V.D. are supported by the European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant 201508440249 (to J.W.), and by a Ghent University Special Research Co-funding Grant ST01511051 (to J.W.).' article_number: e2113046118 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Dana A full_name: Dahhan, Dana A last_name: Dahhan - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Pierre full_name: Mahou, Pierre last_name: Mahou - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Jie full_name: Wang, Jie last_name: Wang - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Daniël full_name: van Damme, Daniël last_name: van Damme - first_name: Emmanuel full_name: Beaurepaire, Emmanuel last_name: Beaurepaire - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Sebastian Y full_name: Bednarek, Sebastian Y last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 2021;118(51). doi:10.1073/pnas.2113046118 apa: Johnson, A. J., Dahhan, D. A., Gnyliukh, N., Kaufmann, W., Zheden, V., Costanzo, T., … Friml, J. (2021). The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2113046118 chicago: Johnson, Alexander J, Dana A Dahhan, Nataliia Gnyliukh, Walter Kaufmann, Vanessa Zheden, Tommaso Costanzo, Pierre Mahou, et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2113046118. ieee: A. J. Johnson et al., “The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences, vol. 118, no. 51. National Academy of Sciences, 2021. ista: Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. mla: Johnson, Alexander J., et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences, vol. 118, no. 51, e2113046118, National Academy of Sciences, 2021, doi:10.1073/pnas.2113046118. short: A.J. Johnson, D.A. Dahhan, N. Gnyliukh, W. Kaufmann, V. Zheden, T. Costanzo, P. Mahou, M. Hrtyan, J. Wang, J.L. Aguilera Servin, D. van Damme, E. Beaurepaire, M. Loose, S.Y. Bednarek, J. Friml, Proceedings of the National Academy of Sciences 118 (2021). date_created: 2021-08-11T14:11:43Z date_published: 2021-12-14T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '14' ddc: - '580' department: - _id: JiFr - _id: MaLo - _id: EvBe - _id: EM-Fac - _id: NanoFab doi: 10.1073/pnas.2113046118 external_id: isi: - '000736417600043' pmid: - '34907016' file: - access_level: open_access checksum: 8d01e72e22c4fb1584e72d8601947069 content_type: application/pdf creator: cchlebak date_created: 2021-12-15T08:59:40Z date_updated: 2021-12-15T08:59:40Z file_id: '10546' file_name: 2021_PNAS_Johnson.pdf file_size: 2757340 relation: main_file success: 1 file_date_updated: 2021-12-15T08:59:40Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.04.26.441441 record: - id: '14510' relation: dissertation_contains status: public - id: '14988' relation: research_data status: public status: public title: The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '8910' abstract: - lang: eng text: A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank A. Higginbotham, E. J. H. Lee and F. R. Martins for helpful discussions. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility; the NOMIS Foundation and Microsoft; the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No 844511; the FETOPEN Grant Agreement No. 828948; the European Research Commission through the grant agreement HEMs-DAM No 716655; the Spanish Ministry of Science and Innovation through Grants PGC2018-097018-B-I00, PCI2018-093026, FIS2016-80434-P (AEI/FEDER, EU), RYC2011-09345 (Ram´on y Cajal Programme), and the Mar´ıa de Maeztu Programme for Units of Excellence in R&D (CEX2018-000805-M); the CSIC Research Platform on Quantum Technologies PTI-001. article_number: 82-88 article_processing_charge: No article_type: original author: - first_name: Marco full_name: Valentini, Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini - first_name: Fernando full_name: Peñaranda, Fernando last_name: Peñaranda - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Matthias full_name: Brauns, Matthias id: 33F94E3C-F248-11E8-B48F-1D18A9856A87 last_name: Brauns - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Peter full_name: Krogstrup, Peter last_name: Krogstrup - first_name: Pablo full_name: San-Jose, Pablo last_name: San-Jose - first_name: Elsa full_name: Prada, Elsa last_name: Prada - first_name: Ramón full_name: Aguado, Ramón last_name: Aguado - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Valentini M, Peñaranda F, Hofmann AC, et al. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. 2021;373(6550). doi:10.1126/science.abf1513 apa: Valentini, M., Peñaranda, F., Hofmann, A. C., Brauns, M., Hauschild, R., Krogstrup, P., … Katsaros, G. (2021). Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abf1513 chicago: Valentini, Marco, Fernando Peñaranda, Andrea C Hofmann, Matthias Brauns, Robert Hauschild, Peter Krogstrup, Pablo San-Jose, Elsa Prada, Ramón Aguado, and Georgios Katsaros. “Nontopological Zero-Bias Peaks in Full-Shell Nanowires Induced by Flux-Tunable Andreev States.” Science. American Association for the Advancement of Science, 2021. https://doi.org/10.1126/science.abf1513. ieee: M. Valentini et al., “Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states,” Science, vol. 373, no. 6550. American Association for the Advancement of Science, 2021. ista: Valentini M, Peñaranda F, Hofmann AC, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, Katsaros G. 2021. Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states. Science. 373(6550), 82–88. mla: Valentini, Marco, et al. “Nontopological Zero-Bias Peaks in Full-Shell Nanowires Induced by Flux-Tunable Andreev States.” Science, vol. 373, no. 6550, 82–88, American Association for the Advancement of Science, 2021, doi:10.1126/science.abf1513. short: M. Valentini, F. Peñaranda, A.C. Hofmann, M. Brauns, R. Hauschild, P. Krogstrup, P. San-Jose, E. Prada, R. Aguado, G. Katsaros, Science 373 (2021). date_created: 2020-12-02T10:51:52Z date_published: 2021-07-02T00:00:00Z date_updated: 2024-02-21T12:40:09Z day: '02' department: - _id: GeKa - _id: Bio doi: 10.1126/science.abf1513 ec_funded: 1 external_id: arxiv: - '2008.02348' isi: - '000677843100034' intvolume: ' 373' isi: 1 issue: '6550' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2008.02348 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 262116AA-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures publication: Science publication_identifier: eissn: - '10959203' issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/unfinding-a-split-electron/ record: - id: '13286' relation: dissertation_contains status: public - id: '9389' relation: research_data status: public scopus_import: '1' status: public title: Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 373 year: '2021' ... --- _id: '10110' abstract: - lang: eng text: Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks. author: - first_name: José full_name: Guzmán, José id: 30CC5506-F248-11E8-B48F-1D18A9856A87 last_name: Guzmán orcid: 0000-0003-2209-5242 - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: 'Claudia ' full_name: 'Espinoza Martinez, Claudia ' id: 31FFEE2E-F248-11E8-B48F-1D18A9856A87 last_name: Espinoza Martinez orcid: 0000-0003-4710-2082 - first_name: Xiaomin full_name: Zhang, Xiaomin id: 423EC9C2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang - first_name: Benjamin full_name: Suter, Benjamin id: 4952F31E-F248-11E8-B48F-1D18A9856A87 last_name: Suter orcid: 0000-0002-9885-6936 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. 2021. doi:10.15479/AT:ISTA:10110 apa: Guzmán, J., Schlögl, A., Espinoza Martinez, C., Zhang, X., Suter, B., & Jonas, P. M. (2021). How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. IST Austria. https://doi.org/10.15479/AT:ISTA:10110 chicago: Guzmán, José, Alois Schlögl, Claudia Espinoza Martinez, Xiaomin Zhang, Benjamin Suter, and Peter M Jonas. “How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network.” IST Austria, 2021. https://doi.org/10.15479/AT:ISTA:10110. ieee: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, and P. M. Jonas, “How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network.” IST Austria, 2021. ista: Guzmán J, Schlögl A, Espinoza Martinez C, Zhang X, Suter B, Jonas PM. 2021. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network, IST Austria, 10.15479/AT:ISTA:10110. mla: Guzmán, José, et al. How Connectivity Rules and Synaptic Properties Shape the Efficacy of Pattern Separation in the Entorhinal Cortex–Dentate Gyrus–CA3 Network. IST Austria, 2021, doi:10.15479/AT:ISTA:10110. short: J. Guzmán, A. Schlögl, C. Espinoza Martinez, X. Zhang, B. Suter, P.M. Jonas, (2021). date_created: 2021-10-08T06:44:22Z date_published: 2021-12-16T00:00:00Z date_updated: 2024-03-27T23:30:11Z day: '16' ddc: - '005' department: - _id: PeJo - _id: ScienComp doi: 10.15479/AT:ISTA:10110 file: - access_level: open_access checksum: f92f8931cad0aa7e411c1715337bf408 content_type: application/x-zip-compressed creator: cchlebak date_created: 2021-10-08T08:46:04Z date_updated: 2021-10-08T08:46:04Z file_id: '10114' file_name: patternseparation-main (1).zip file_size: 332990101 relation: main_file success: 1 file_date_updated: 2021-10-08T08:46:04Z has_accepted_license: '1' license: https://opensource.org/licenses/GPL-3.0 month: '12' oa: 1 publisher: IST Austria related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/spot-the-difference/ record: - id: '10816' relation: used_for_analysis_in status: public status: public title: How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network tmp: legal_code_url: https://www.gnu.org/licenses/gpl-3.0.en.html name: GNU General Public License 3.0 short: GPL 3.0 type: software user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '9429' abstract: - lang: eng text: De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. acknowledged_ssus: - _id: PreCl acknowledgement: We thank A. Coll Manzano, F. Freeman, M. Ladron de Guevara, and A. Ç. Yahya for technical assistance, S. Deixler, A. Lepold, and A. Schlerka for the management of our animal colony, as well as M. Schunn and the Preclinical Facility team for technical assistance. We thank K. Heesom and her team at the University of Bristol Proteomics Facility for the proteomics sample preparation, data generation, and analysis support. We thank Y. B. Simon for kindly providing the plasmid for lentiviral labeling. Further, we thank M. Sixt for his advice regarding cell migration and the fruitful discussions. This work was supported by the ISTPlus postdoctoral fellowship (Grant Agreement No. 754411) to B.B., by the European Union’s Horizon 2020 research and innovation program (ERC) grant 715508 (REVERSEAUTISM), and by the Austrian Science Fund (FWF) to G.N. (DK W1232-B24 and SFB F7807-B) and to J.G.D (I3600-B27). article_number: '3058' article_processing_charge: No article_type: original author: - first_name: Jasmin full_name: Morandell, Jasmin id: 4739D480-F248-11E8-B48F-1D18A9856A87 last_name: Morandell - first_name: Lena A full_name: Schwarz, Lena A id: 29A8453C-F248-11E8-B48F-1D18A9856A87 last_name: Schwarz - first_name: Bernadette full_name: Basilico, Bernadette id: 36035796-5ACA-11E9-A75E-7AF2E5697425 last_name: Basilico orcid: 0000-0003-1843-3173 - first_name: Saren full_name: Tasciyan, Saren id: 4323B49C-F248-11E8-B48F-1D18A9856A87 last_name: Tasciyan orcid: 0000-0003-1671-393X - first_name: Georgi A full_name: Dimchev, Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - first_name: Armel full_name: Nicolas, Armel id: 2A103192-F248-11E8-B48F-1D18A9856A87 last_name: Nicolas - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Caroline full_name: Kreuzinger, Caroline id: 382077BA-F248-11E8-B48F-1D18A9856A87 last_name: Kreuzinger - first_name: Christoph full_name: Dotter, Christoph id: 4C66542E-F248-11E8-B48F-1D18A9856A87 last_name: Dotter orcid: 0000-0002-9033-9096 - first_name: Lisa full_name: Knaus, Lisa id: 3B2ABCF4-F248-11E8-B48F-1D18A9856A87 last_name: Knaus - first_name: Zoe full_name: Dobler, Zoe id: D23090A2-9057-11EA-883A-A8396FC7A38F last_name: Dobler - first_name: Emanuele full_name: Cacci, Emanuele last_name: Cacci - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Morandell J, Schwarz LA, Basilico B, et al. Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-23123-x apa: Morandell, J., Schwarz, L. A., Basilico, B., Tasciyan, S., Dimchev, G. A., Nicolas, A., … Novarino, G. (2021). Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-23123-x chicago: Morandell, Jasmin, Lena A Schwarz, Bernadette Basilico, Saren Tasciyan, Georgi A Dimchev, Armel Nicolas, Christoph M Sommer, et al. “Cul3 Regulates Cytoskeleton Protein Homeostasis and Cell Migration during a Critical Window of Brain Development.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-23123-x. ieee: J. Morandell et al., “Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development,” Nature Communications, vol. 12, no. 1. Springer Nature, 2021. ista: Morandell J, Schwarz LA, Basilico B, Tasciyan S, Dimchev GA, Nicolas A, Sommer CM, Kreuzinger C, Dotter C, Knaus L, Dobler Z, Cacci E, Schur FK, Danzl JG, Novarino G. 2021. Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nature Communications. 12(1), 3058. mla: Morandell, Jasmin, et al. “Cul3 Regulates Cytoskeleton Protein Homeostasis and Cell Migration during a Critical Window of Brain Development.” Nature Communications, vol. 12, no. 1, 3058, Springer Nature, 2021, doi:10.1038/s41467-021-23123-x. short: J. Morandell, L.A. Schwarz, B. Basilico, S. Tasciyan, G.A. Dimchev, A. Nicolas, C.M. Sommer, C. Kreuzinger, C. Dotter, L. Knaus, Z. Dobler, E. Cacci, F.K. Schur, J.G. Danzl, G. Novarino, Nature Communications 12 (2021). date_created: 2021-05-28T11:49:46Z date_published: 2021-05-24T00:00:00Z date_updated: 2024-03-27T23:30:23Z day: '24' ddc: - '572' department: - _id: GaNo - _id: JoDa - _id: FlSc - _id: MiSi - _id: LifeSc - _id: Bio doi: 10.1038/s41467-021-23123-x ec_funded: 1 external_id: isi: - '000658769900010' file: - access_level: open_access checksum: 337e0f7959c35ec959984cacdcb472ba content_type: application/pdf creator: kschuh date_created: 2021-05-28T12:39:43Z date_updated: 2021-05-28T12:39:43Z file_id: '9430' file_name: 2021_NatureCommunications_Morandell.pdf file_size: 9358599 relation: main_file success: 1 file_date_updated: 2021-05-28T12:39:43Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets - _id: 05A0D778-7A3F-11EA-A408-12923DDC885E grant_number: F07807 name: Neural stem cells in autism and epilepsy - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: press_release url: https://ist.ac.at/en/news/defective-gene-slows-down-brain-cells/ record: - id: '7800' relation: earlier_version status: public - id: '12401' relation: dissertation_contains status: public status: public title: Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '8909' abstract: - lang: eng text: Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1μs which we extend beyond 15μs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and coherence, respectively. In addition, they are on par with Ge single spin qubits, but can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: This research was supported by the Scientific Service Units of Institute of Science and Technology (IST) Austria through resources provided by the Miba Machine Shop and the nanofabrication facility, and was made possible with the support of the NOMIS Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreements no. 844511 and no. 75441, and by the Austrian Science Fund FWF-P 30207 project. A.B. acknowledges support from the European Union Horizon 2020 FET project microSPIRE, no. 766955. M. Botifoll and J.A. acknowledge funding from Generalitat de Catalunya 2017 SGR 327. The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is supported by the Severo Ochoa programme from the Spanish Ministery of Economy (MINECO) (grant no. SEV-2017-0706) and is funded by the Catalonian Research Centre (CERCA) Programme, Generalitat de Catalunya. Part of the present work has been performed within the framework of the Universitat Autónoma de Barcelona Materials Science PhD programme. Part of the HAADF scanning transmission electron microscopy was conducted in the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon, Universidad de Zaragoza. ICN2 acknowledge support from the Spanish Superior Council of Scientific Research (CSIC) Research Platform on Quantum Technologies PTI-001. M.B. acknowledges funding from the Catalan Agency for Management of University and Research Grants (AGAUR) Generalitat de Catalunya formation of investigators (FI) PhD grant. article_processing_charge: No article_type: original author: - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 - first_name: Andrea C full_name: Hofmann, Andrea C id: 340F461A-F248-11E8-B48F-1D18A9856A87 last_name: Hofmann - first_name: Andrea full_name: Ballabio, Andrea last_name: Ballabio - first_name: Philipp M. full_name: Mutter, Philipp M. last_name: Mutter - first_name: Giulio full_name: Tavani, Giulio last_name: Tavani - first_name: Marc full_name: Botifoll, Marc last_name: Botifoll - first_name: Alessandro full_name: Crippa, Alessandro id: 1F2B21A2-F6E7-11E9-9B82-F7DBE5697425 last_name: Crippa orcid: 0000-0002-2968-611X - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka - first_name: Oliver full_name: Sagi, Oliver id: 71616374-A8E9-11E9-A7CA-09ECE5697425 last_name: Sagi - first_name: Frederico full_name: Martins, Frederico id: 38F80F9A-1CB8-11EA-BC76-B49B3DDC885E last_name: Martins orcid: 0000-0003-2668-2401 - first_name: Jaime full_name: Saez Mollejo, Jaime id: e0390f72-f6e0-11ea-865d-862393336714 last_name: Saez Mollejo - first_name: Ivan full_name: Prieto Gonzalez, Ivan id: 2A307FE2-F248-11E8-B48F-1D18A9856A87 last_name: Prieto Gonzalez orcid: 0000-0002-7370-5357 - first_name: Maksim full_name: Borovkov, Maksim id: 2ac7a0a2-3562-11eb-9256-fbd18ea55087 last_name: Borovkov - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Daniel full_name: Chrastina, Daniel last_name: Chrastina - first_name: Giovanni full_name: Isella, Giovanni last_name: Isella - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Jirovec D, Hofmann AC, Ballabio A, et al. A singlet triplet hole spin qubit in planar Ge. Nature Materials. 2021;20(8):1106–1112. doi:10.1038/s41563-021-01022-2 apa: Jirovec, D., Hofmann, A. C., Ballabio, A., Mutter, P. M., Tavani, G., Botifoll, M., … Katsaros, G. (2021). A singlet triplet hole spin qubit in planar Ge. Nature Materials. Springer Nature. https://doi.org/10.1038/s41563-021-01022-2 chicago: Jirovec, Daniel, Andrea C Hofmann, Andrea Ballabio, Philipp M. Mutter, Giulio Tavani, Marc Botifoll, Alessandro Crippa, et al. “A Singlet Triplet Hole Spin Qubit in Planar Ge.” Nature Materials. Springer Nature, 2021. https://doi.org/10.1038/s41563-021-01022-2. ieee: D. Jirovec et al., “A singlet triplet hole spin qubit in planar Ge,” Nature Materials, vol. 20, no. 8. Springer Nature, pp. 1106–1112, 2021. ista: Jirovec D, Hofmann AC, Ballabio A, Mutter PM, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F, Saez Mollejo J, Prieto Gonzalez I, Borovkov M, Arbiol J, Chrastina D, Isella G, Katsaros G. 2021. A singlet triplet hole spin qubit in planar Ge. Nature Materials. 20(8), 1106–1112. mla: Jirovec, Daniel, et al. “A Singlet Triplet Hole Spin Qubit in Planar Ge.” Nature Materials, vol. 20, no. 8, Springer Nature, 2021, pp. 1106–1112, doi:10.1038/s41563-021-01022-2. short: D. Jirovec, A.C. Hofmann, A. Ballabio, P.M. Mutter, G. Tavani, M. Botifoll, A. Crippa, J. Kukucka, O. Sagi, F. Martins, J. Saez Mollejo, I. Prieto Gonzalez, M. Borovkov, J. Arbiol, D. Chrastina, G. Isella, G. Katsaros, Nature Materials 20 (2021) 1106–1112. date_created: 2020-12-02T10:50:47Z date_published: 2021-08-01T00:00:00Z date_updated: 2024-03-27T23:30:26Z day: '01' department: - _id: GeKa - _id: NanoFab - _id: GradSch doi: 10.1038/s41563-021-01022-2 ec_funded: 1 external_id: arxiv: - '2011.13755' isi: - '000657596400001' intvolume: ' 20' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.13755 month: '08' oa: 1 oa_version: Preprint page: 1106–1112 project: - _id: 26A151DA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '844511' name: Majorana bound states in Ge/SiGe heterostructures - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 2641CE5E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P30207 name: Hole spin orbit qubits in Ge quantum wells - _id: 262116AA-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Nature Materials publication_identifier: eissn: - 1476-4660 issn: - 1476-1122 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/quantum-computing-with-holes/ record: - id: '9323' relation: research_data status: public - id: '10058' relation: dissertation_contains status: public scopus_import: '1' status: public title: A singlet triplet hole spin qubit in planar Ge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2021' ... --- _id: '9756' abstract: - lang: eng text: High-resolution visualization and quantification of membrane proteins contribute to the understanding of their functions and the roles they play in physiological and pathological conditions. Sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) is a powerful electron microscopy method to study quantitatively the two-dimensional distribution of transmembrane proteins and their tightly associated proteins. During treatment with SDS, intracellular organelles and proteins not anchored to the replica are dissolved, whereas integral membrane proteins captured and stabilized by carbon/platinum deposition remain on the replica. Their intra- and extracellular domains become exposed on the surface of the replica, facilitating the accessibility of antibodies and, therefore, providing higher labeling efficiency than those obtained with other immunoelectron microscopy techniques. In this chapter, we describe the protocols of SDS-FRL adapted for mammalian brain samples, and optimization of the SDS treatment to increase the labeling efficiency for quantification of Cav2.1, the alpha subunit of P/Q-type voltage-dependent calcium channels utilizing deep learning algorithms. acknowledgement: This work was supported by the European Union (European Research Council Advanced grant no. 694539 and Human Brain Project Ref. 720270 to R. S.) and the Austrian Academy of Sciences (DOC fellowship to D.K.). alternative_title: - Neuromethods article_processing_charge: No author: - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: David full_name: Kleindienst, David id: 42E121A4-F248-11E8-B48F-1D18A9856A87 last_name: Kleindienst - first_name: Harumi full_name: Harada, Harumi id: 2E55CDF2-F248-11E8-B48F-1D18A9856A87 last_name: Harada orcid: 0000-0001-7429-7896 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: 'Kaufmann W, Kleindienst D, Harada H, Shigemoto R. High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In: Receptor and Ion Channel Detection in the Brain. Vol 169. Neuromethods. New York: Humana; 2021:267-283. doi:10.1007/978-1-0716-1522-5_19' apa: 'Kaufmann, W., Kleindienst, D., Harada, H., & Shigemoto, R. (2021). High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In Receptor and Ion Channel Detection in the Brain (Vol. 169, pp. 267–283). New York: Humana. https://doi.org/10.1007/978-1-0716-1522-5_19' chicago: 'Kaufmann, Walter, David Kleindienst, Harumi Harada, and Ryuichi Shigemoto. “High-Resolution Localization and Quantitation of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL).” In Receptor and Ion Channel Detection in the Brain, 169:267–83. Neuromethods. New York: Humana, 2021. https://doi.org/10.1007/978-1-0716-1522-5_19.' ieee: 'W. Kaufmann, D. Kleindienst, H. Harada, and R. Shigemoto, “High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL),” in Receptor and Ion Channel Detection in the Brain, vol. 169, New York: Humana, 2021, pp. 267–283.' ista: 'Kaufmann W, Kleindienst D, Harada H, Shigemoto R. 2021.High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL). In: Receptor and Ion Channel Detection in the Brain. Neuromethods, vol. 169, 267–283.' mla: Kaufmann, Walter, et al. “High-Resolution Localization and Quantitation of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL).” Receptor and Ion Channel Detection in the Brain, vol. 169, Humana, 2021, pp. 267–83, doi:10.1007/978-1-0716-1522-5_19. short: W. Kaufmann, D. Kleindienst, H. Harada, R. Shigemoto, in:, Receptor and Ion Channel Detection in the Brain, Humana, New York, 2021, pp. 267–283. date_created: 2021-07-30T09:34:56Z date_published: 2021-07-27T00:00:00Z date_updated: 2024-03-27T23:30:30Z day: '27' ddc: - '573' department: - _id: RySh - _id: EM-Fac doi: 10.1007/978-1-0716-1522-5_19 ec_funded: 1 has_accepted_license: '1' intvolume: ' 169' keyword: - 'Freeze-fracture replica: Deep learning' - Immunogold labeling - Integral membrane protein - Electron microscopy language: - iso: eng month: '07' oa_version: None page: 267-283 place: New York project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 25CBA828-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '720270' name: Human Brain Project Specific Grant Agreement 1 (HBP SGA 1) publication: ' Receptor and Ion Channel Detection in the Brain' publication_identifier: eisbn: - '9781071615225' isbn: - '9781071615218' publication_status: published publisher: Humana quality_controlled: '1' related_material: record: - id: '9562' relation: dissertation_contains status: public series_title: Neuromethods status: public title: High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL) type: book_chapter user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 169 year: '2021' ... --- _id: '8931' abstract: - lang: eng text: "Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear.\r\nHere we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation.\r\nThe gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy." acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: We would like to acknowledge Bioimaging and Life Science Facilities at IST Austria for continuous support and also the Plant Sciences Core Facility of CEITEC Masaryk University for their support with obtaining a part of the scientific data. We gratefully acknowledge Lindy Abas for help with ABP1::GFP-ABP1 construct design. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [grant agreement no. 742985] and Austrian Science Fund (FWF) [I 3630-B25] to J.F.; DOC Fellowship of the Austrian Academy of Sciences to L.L.; the European Structural and Investment Funds, Operational Programme Research, Development and Education - Project „MSCAfellow@MUNI“ [CZ.02.2.69/0.0/0.0/17_050/0008496] to M.P.. This project was also supported by the Czech Science Foundation [GA 20-20860Y] to M.Z and MEYS CR [project no.CZ.02.1.01/0.0/0.0/16_019/0000738] to M. Č. article_number: '110750' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Markéta full_name: Pernisová, Markéta last_name: Pernisová - first_name: Géraldine full_name: Brunoud, Géraldine last_name: Brunoud - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Jaroslav full_name: Michalko, Jaroslav id: 483727CA-F248-11E8-B48F-1D18A9856A87 last_name: Michalko - first_name: Zlata full_name: Pavlovicova, Zlata last_name: Pavlovicova - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Milada full_name: Čovanová, Milada last_name: Čovanová - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Tongda full_name: Xu, Tongda last_name: Xu - first_name: Teva full_name: Vernoux, Teva last_name: Vernoux - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gelová Z, Gallei MC, Pernisová M, et al. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. 2021;303. doi:10.1016/j.plantsci.2020.110750 apa: Gelová, Z., Gallei, M. C., Pernisová, M., Brunoud, G., Zhang, X., Glanc, M., … Friml, J. (2021). Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. Elsevier. https://doi.org/10.1016/j.plantsci.2020.110750 chicago: Gelová, Zuzana, Michelle C Gallei, Markéta Pernisová, Géraldine Brunoud, Xixi Zhang, Matous Glanc, Lanxin Li, et al. “Developmental Roles of Auxin Binding Protein 1 in Arabidopsis Thaliana.” Plant Science. Elsevier, 2021. https://doi.org/10.1016/j.plantsci.2020.110750. ieee: Z. Gelová et al., “Developmental roles of auxin binding protein 1 in Arabidopsis thaliana,” Plant Science, vol. 303. Elsevier, 2021. ista: Gelová Z, Gallei MC, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovicova Z, Verstraeten I, Han H, Hajny J, Hauschild R, Čovanová M, Zwiewka M, Hörmayer L, Fendrych M, Xu T, Vernoux T, Friml J. 2021. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. 303, 110750. mla: Gelová, Zuzana, et al. “Developmental Roles of Auxin Binding Protein 1 in Arabidopsis Thaliana.” Plant Science, vol. 303, 110750, Elsevier, 2021, doi:10.1016/j.plantsci.2020.110750. short: Z. Gelová, M.C. Gallei, M. Pernisová, G. Brunoud, X. Zhang, M. Glanc, L. Li, J. Michalko, Z. Pavlovicova, I. Verstraeten, H. Han, J. Hajny, R. Hauschild, M. Čovanová, M. Zwiewka, L. Hörmayer, M. Fendrych, T. Xu, T. Vernoux, J. Friml, Plant Science 303 (2021). date_created: 2020-12-09T14:48:28Z date_published: 2021-02-01T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '01' ddc: - '580' department: - _id: JiFr - _id: Bio doi: 10.1016/j.plantsci.2020.110750 ec_funded: 1 external_id: isi: - '000614154500001' pmid: - '33487339' file: - access_level: open_access checksum: a7f2562bdca62d67dfa88e271b62a629 content_type: application/pdf creator: dernst date_created: 2021-02-04T07:49:25Z date_updated: 2021-02-04T07:49:25Z file_id: '9083' file_name: 2021_PlantScience_Gelova.pdf file_size: 12563728 relation: main_file success: 1 file_date_updated: 2021-02-04T07:49:25Z has_accepted_license: '1' intvolume: ' 303' isi: 1 keyword: - Agronomy and Crop Science - Plant Science - Genetics - General Medicine language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Plant Science publication_identifier: issn: - 0168-9452 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public - id: '10083' relation: dissertation_contains status: public scopus_import: '1' status: public title: Developmental roles of auxin binding protein 1 in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 303 year: '2021' ... --- _id: '10095' abstract: - lang: eng text: Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment. acknowledged_ssus: - _id: LifeSc - _id: M-Shop - _id: Bio acknowledgement: We thank Nataliia Gnyliukh and Lukas Hörmayer for technical assistance and Nadine Paris for sharing PM-Cyto seeds. We gratefully acknowledge Life Science, Machine Shop and Bioimaging Facilities of IST Austria. This project has received funding from the European Research Council Advanced Grant (ETAP-742985) and the Austrian Science Fund (FWF) I 3630-B25 to J.F., the National Institutes of Health (GM067203) to W.M.G., the Netherlands Organization for Scientific Research (NWO; VIDI-864.13.001.), the Research Foundation-Flanders (FWO; Odysseus II G0D0515N) and a European Research Council Starting Grant (TORPEDO-714055) to W.S. and B.D.R., the VICI grant (865.14.001) from the Netherlands Organization for Scientific Research to M.R and D.W., the Australian Research Council and China National Distinguished Expert Project (WQ20174400441) to S.S., the MEXT/JSPS KAKENHI to K.T. (20K06685) and T.K. (20H05687 and 20H05910), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385 and the DOC Fellowship of the Austrian Academy of Sciences to L.L., the China Scholarship Council to J.C. article_number: '266395' article_processing_charge: No author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Jian full_name: Chen, Jian last_name: Chen - first_name: Lana full_name: Shabala, Lana last_name: Shabala - first_name: Wouter full_name: Smet, Wouter last_name: Smet - first_name: Hong full_name: Ren, Hong last_name: Ren - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Sergey full_name: Shabala, Sergey last_name: Shabala - first_name: Bert full_name: De Rybel, Bert last_name: De Rybel - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Toshinori full_name: Kinoshita, Toshinori last_name: Kinoshita - first_name: William M. full_name: Gray, William M. last_name: Gray - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square. doi:10.21203/rs.3.rs-266395/v3 apa: Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez Solovey, L., Merrin, J., … Friml, J. (n.d.). Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square. https://doi.org/10.21203/rs.3.rs-266395/v3 chicago: Li, Lanxin, Inge Verstraeten, Mark Roosjen, Koji Takahashi, Lesia Rodriguez Solovey, Jack Merrin, Jian Chen, et al. “Cell Surface and Intracellular Auxin Signalling for H+-Fluxes in Root Growth.” Research Square, n.d. https://doi.org/10.21203/rs.3.rs-266395/v3. ieee: L. Li et al., “Cell surface and intracellular auxin signalling for H+-fluxes in root growth,” Research Square. . ista: Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez Solovey L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square, 266395. mla: Li, Lanxin, et al. “Cell Surface and Intracellular Auxin Signalling for H+-Fluxes in Root Growth.” Research Square, 266395, doi:10.21203/rs.3.rs-266395/v3. short: L. Li, I. Verstraeten, M. Roosjen, K. Takahashi, L. Rodriguez Solovey, J. Merrin, J. Chen, L. Shabala, W. Smet, H. Ren, S. Vanneste, S. Shabala, B. De Rybel, D. Weijers, T. Kinoshita, W.M. Gray, J. Friml, Research Square (n.d.). date_created: 2021-10-06T08:56:22Z date_published: 2021-09-09T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '09' department: - _id: JiFr - _id: NanoFab doi: 10.21203/rs.3.rs-266395/v3 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.21203/rs.3.rs-266395/v3 month: '09' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Research Square publication_identifier: issn: - 2693-5015 publication_status: accepted related_material: record: - id: '10223' relation: later_version status: public - id: '10083' relation: dissertation_contains status: public status: public title: Cell surface and intracellular auxin signalling for H+-fluxes in root growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '8181' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. Amplified centrosomes in dendritic cells promote immune cell effector functions. 2020. doi:10.15479/AT:ISTA:8181 apa: Hauschild, R. (2020). Amplified centrosomes in dendritic cells promote immune cell effector functions. IST Austria. https://doi.org/10.15479/AT:ISTA:8181 chicago: Hauschild, Robert. “Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8181. ieee: R. Hauschild, “Amplified centrosomes in dendritic cells promote immune cell effector functions.” IST Austria, 2020. ista: Hauschild R. 2020. Amplified centrosomes in dendritic cells promote immune cell effector functions, IST Austria, 10.15479/AT:ISTA:8181. mla: Hauschild, Robert. Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions. IST Austria, 2020, doi:10.15479/AT:ISTA:8181. short: R. Hauschild, (2020). date_created: 2020-07-28T16:24:37Z date_published: 2020-08-24T00:00:00Z date_updated: 2021-01-11T15:29:08Z day: '24' department: - _id: Bio doi: 10.15479/AT:ISTA:8181 file: - access_level: open_access checksum: 878c60885ce30afb59a884dd5eef451c content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:49Z date_updated: 2020-08-24T15:43:49Z file_id: '8290' file_name: centriolesDistance.m file_size: 6577 relation: main_file success: 1 - access_level: open_access checksum: 5a93ac7be2b66b28e4bd8b113ee6aade content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:52Z date_updated: 2020-08-24T15:43:52Z file_id: '8291' file_name: goTracking.m file_size: 2680 relation: main_file success: 1 file_date_updated: 2020-08-24T15:43:52Z has_accepted_license: '1' license: https://opensource.org/licenses/BSD-3-Clause month: '08' oa: 1 publisher: IST Austria status: public title: Amplified centrosomes in dendritic cells promote immune cell effector functions tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8294' abstract: - lang: eng text: 'Automated root growth analysis and tracking of root tips. ' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. RGtracker. 2020. doi:10.15479/AT:ISTA:8294 apa: Hauschild, R. (2020). RGtracker. IST Austria. https://doi.org/10.15479/AT:ISTA:8294 chicago: Hauschild, Robert. “RGtracker.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8294. ieee: R. Hauschild, “RGtracker.” IST Austria, 2020. ista: Hauschild R. 2020. RGtracker, IST Austria, 10.15479/AT:ISTA:8294. mla: Hauschild, Robert. RGtracker. IST Austria, 2020, doi:10.15479/AT:ISTA:8294. short: R. Hauschild, (2020). date_created: 2020-08-25T12:52:48Z date_published: 2020-09-10T00:00:00Z date_updated: 2021-01-12T08:17:56Z day: '10' ddc: - '570' department: - _id: Bio doi: 10.15479/AT:ISTA:8294 file: - access_level: open_access checksum: 108352149987ac6f066e4925bd56e35e content_type: text/plain creator: rhauschild date_created: 2020-09-08T14:26:31Z date_updated: 2020-09-08T14:26:31Z file_id: '8346' file_name: readme.txt file_size: 882 relation: main_file success: 1 - access_level: open_access checksum: ffd6c643b28e0cc7c6d0060a18a7e8ea content_type: application/octet-stream creator: rhauschild date_created: 2020-09-08T14:26:33Z date_updated: 2020-09-08T14:26:33Z file_id: '8347' file_name: RGtracker.mlappinstall file_size: 246121 relation: main_file success: 1 file_date_updated: 2020-09-08T14:26:33Z has_accepted_license: '1' month: '09' oa: 1 publisher: IST Austria status: public title: RGtracker tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ...