--- _id: '10766' abstract: - lang: eng text: Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: PreCl acknowledgement: 'We thank Guillaume Salbreaux, Silvia Grigolon, Edouard Hannezo, and Vanessa Barone for discussions and comments on the manuscript and Shayan Shamipour and Daniel Capek for help with data analysis. We also thank the Imaging & Optics, Electron Microscopy, and Zebrafish Facility Scientific Service Units at the Institute of Science and Technology Austria (ISTA)Nasser Darwish-Miranda for continuous support. We acknowledge Hitoshi Morita for the gift of VinculinB-GFP plasmid. This research was supported by an ISTA Fellow Marie-Curie Co-funding of regional, national, and international programmes Grant P_IST_EU01 (to J.S.), European Molecular Biology Organization Long-Term Fellowship Grant, ALTF reference number: 187-2013 (to M.S.), Schroedinger Fellowship J4332-B28 (to M.S.), and European Research Council Advanced Grant (MECSPEC; to C.-P.H.).' article_number: e2122030119 article_processing_charge: No article_type: original author: - first_name: Jana full_name: Slovakova, Jana id: 30F3F2F0-F248-11E8-B48F-1D18A9856A87 last_name: Slovakova - first_name: Mateusz K full_name: Sikora, Mateusz K id: 2F74BCDE-F248-11E8-B48F-1D18A9856A87 last_name: Sikora - first_name: Feyza N full_name: Arslan, Feyza N id: 49DA7910-F248-11E8-B48F-1D18A9856A87 last_name: Arslan orcid: 0000-0001-5809-9566 - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Slovakova J, Sikora MK, Arslan FN, et al. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(8). doi:10.1073/pnas.2122030119 apa: Slovakova, J., Sikora, M. K., Arslan, F. N., Caballero Mancebo, S., Krens, G., Kaufmann, W., … Heisenberg, C.-P. J. (2022). Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2122030119 chicago: Slovakova, Jana, Mateusz K Sikora, Feyza N Arslan, Silvia Caballero Mancebo, Gabriel Krens, Walter Kaufmann, Jack Merrin, and Carl-Philipp J Heisenberg. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion in Zebrafish Germ-Layer Progenitor Cells.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2122030119. ieee: J. Slovakova et al., “Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 8. Proceedings of the National Academy of Sciences, 2022. ista: Slovakova J, Sikora MK, Arslan FN, Caballero Mancebo S, Krens G, Kaufmann W, Merrin J, Heisenberg C-PJ. 2022. Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proceedings of the National Academy of Sciences of the United States of America. 119(8), e2122030119. mla: Slovakova, Jana, et al. “Tension-Dependent Stabilization of E-Cadherin Limits Cell-Cell Contact Expansion in Zebrafish Germ-Layer Progenitor Cells.” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 8, e2122030119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2122030119. short: J. Slovakova, M.K. Sikora, F.N. Arslan, S. Caballero Mancebo, G. Krens, W. Kaufmann, J. Merrin, C.-P.J. Heisenberg, Proceedings of the National Academy of Sciences of the United States of America 119 (2022). date_created: 2022-02-20T23:01:31Z date_published: 2022-02-14T00:00:00Z date_updated: 2023-08-02T14:26:51Z day: '14' ddc: - '570' department: - _id: CaHe - _id: EM-Fac - _id: Bio doi: 10.1073/pnas.2122030119 ec_funded: 1 external_id: isi: - '000766926900009' file: - access_level: open_access checksum: d49f83c3580613966f71768ddb9a55a5 content_type: application/pdf creator: dernst date_created: 2022-02-21T08:45:11Z date_updated: 2022-02-21T08:45:11Z file_id: '10780' file_name: 2022_PNAS_Slovakova.pdf file_size: 1609678 relation: main_file success: 1 file_date_updated: 2022-02-21T08:45:11Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '8' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '02' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 2521E28E-B435-11E9-9278-68D0E5697425 grant_number: 187-2013 name: Modulation of adhesion function in cell-cell contact formation by cortical tension publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: record: - id: '9750' relation: earlier_version status: public scopus_import: '1' status: public title: Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '10841' abstract: - lang: eng text: In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'The authors would like to acknowledge the VIB Proteomics Core Facility (VIB-UGent Center for Medical Biotechnology in Ghent, Belgium) and the Research Technology Support Facility Proteomics Core (Michigan State University in East Lansing, Michigan) for sample analysis, as well as the University of Wisconsin Biotechnology Center Mass Spectrometry Core Facility (Madison, WI) for help with data processing. Additionally, we are grateful to Sue Weintraub (UT Health San Antonio) and Sydney Thomas (UW- Madison) for assistance with data analysis. This research was supported by grants to S.Y.B. from the National Science Foundation (Nos. 1121998 and 1614915) and a Vilas Associate Award (University of Wisconsin, Madison, Graduate School); to J.P. from the National Natural Science Foundation of China (Nos. 91754104, 31820103008, and 31670283); to I.H. from the National Research Foundation of Korea (No. 2019R1A2B5B03099982). This research was also supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Electron microscopy Facility (EMF). A.J. is supported by funding from the Austrian Science Fund (FWF): I3630B25 to J.F. A.H. is supported by funding from the National Science Foundation (NSF IOS Nos. 1025837 and 1147032).' article_processing_charge: No article_type: original author: - first_name: DA full_name: Dahhan, DA last_name: Dahhan - first_name: GD full_name: Reynolds, GD last_name: Reynolds - first_name: JJ full_name: Cárdenas, JJ last_name: Cárdenas - first_name: D full_name: Eeckhout, D last_name: Eeckhout - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: K full_name: Yperman, K last_name: Yperman - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: N full_name: Vang, N last_name: Vang - first_name: X full_name: Yan, X last_name: Yan - first_name: I full_name: Hwang, I last_name: Hwang - first_name: A full_name: Heese, A last_name: Heese - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: J full_name: Pan, J last_name: Pan - first_name: SY full_name: Bednarek, SY last_name: Bednarek citation: ama: Dahhan D, Reynolds G, Cárdenas J, et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 2022;34(6):2150-2173. doi:10.1093/plcell/koac071 apa: Dahhan, D., Reynolds, G., Cárdenas, J., Eeckhout, D., Johnson, A. J., Yperman, K., … Bednarek, S. (2022). Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. Oxford Academic. https://doi.org/10.1093/plcell/koac071 chicago: Dahhan, DA, GD Reynolds, JJ Cárdenas, D Eeckhout, Alexander J Johnson, K Yperman, Walter Kaufmann, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell. Oxford Academic, 2022. https://doi.org/10.1093/plcell/koac071. ieee: D. Dahhan et al., “Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components,” Plant Cell, vol. 34, no. 6. Oxford Academic, pp. 2150–2173, 2022. ista: Dahhan D, Reynolds G, Cárdenas J, Eeckhout D, Johnson AJ, Yperman K, Kaufmann W, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek S. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 34(6), 2150–2173. mla: Dahhan, DA, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell, vol. 34, no. 6, Oxford Academic, 2022, pp. 2150–73, doi:10.1093/plcell/koac071. short: D. Dahhan, G. Reynolds, J. Cárdenas, D. Eeckhout, A.J. Johnson, K. Yperman, W. Kaufmann, N. Vang, X. Yan, I. Hwang, A. Heese, G. De Jaeger, J. Friml, D. Van Damme, J. Pan, S. Bednarek, Plant Cell 34 (2022) 2150–2173. date_created: 2022-03-08T13:47:51Z date_published: 2022-06-01T00:00:00Z date_updated: 2023-08-02T14:46:48Z day: '01' department: - _id: JiFr - _id: EM-Fac doi: 10.1093/plcell/koac071 external_id: isi: - '000767438800001' pmid: - '35218346' intvolume: ' 34' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2021.09.16.460678 month: '06' oa: 1 oa_version: Preprint page: 2150-2173 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '11705' abstract: - lang: eng text: 'The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing “naked” particles’ surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles’ surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300–873 K, which is among the highest reported for solution-processed SnTe.' acknowledged_ssus: - _id: EM-Fac - _id: NanoFab acknowledgement: This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Electron Microscopy Facility (EMF) and the Nanofabrication Facility (NNF). This work was financially supported by IST Austria and the Werner Siemens Foundation. C.C. acknowledges funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N. Lise Meitner Project (M2889-N). Y.L. acknowledges funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 754411. R.L.B. thanks the National Science Foundation for support under DMR-1904719. MCS acknowledge MINECO Juan de la Cierva Incorporation fellowship (JdlCI 2019) and Severo Ochoa. M.C.S. and J.A. acknowledge funding from Generalitat de Catalunya 2017 SGR 327. ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. article_number: e202207002 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Maria full_name: Spadaro, Maria last_name: Spadaro - first_name: Kristopher M. full_name: Koskela, Kristopher M. last_name: Koskela - first_name: Tobias full_name: Kleinhanns, Tobias id: 8BD9DE16-AB3C-11E9-9C8C-2A03E6697425 last_name: Kleinhanns - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Richard L. full_name: Brutchey, Richard L. last_name: Brutchey - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: 'Chang C, Liu Y, Lee S, et al. Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance. Angewandte Chemie - International Edition. 2022;61(35). doi:10.1002/anie.202207002' apa: 'Chang, C., Liu, Y., Lee, S., Spadaro, M., Koskela, K. M., Kleinhanns, T., … Ibáñez, M. (2022). Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance. Angewandte Chemie - International Edition. Wiley. https://doi.org/10.1002/anie.202207002' chicago: 'Chang, Cheng, Yu Liu, Seungho Lee, Maria Spadaro, Kristopher M. Koskela, Tobias Kleinhanns, Tommaso Costanzo, Jordi Arbiol, Richard L. Brutchey, and Maria Ibáñez. “Surface Functionalization of Surfactant-Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance.” Angewandte Chemie - International Edition. Wiley, 2022. https://doi.org/10.1002/anie.202207002.' ieee: 'C. Chang et al., “Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance,” Angewandte Chemie - International Edition, vol. 61, no. 35. Wiley, 2022.' ista: 'Chang C, Liu Y, Lee S, Spadaro M, Koskela KM, Kleinhanns T, Costanzo T, Arbiol J, Brutchey RL, Ibáñez M. 2022. Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance. Angewandte Chemie - International Edition. 61(35), e202207002.' mla: 'Chang, Cheng, et al. “Surface Functionalization of Surfactant-Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance.” Angewandte Chemie - International Edition, vol. 61, no. 35, e202207002, Wiley, 2022, doi:10.1002/anie.202207002.' short: C. Chang, Y. Liu, S. Lee, M. Spadaro, K.M. Koskela, T. Kleinhanns, T. Costanzo, J. Arbiol, R.L. Brutchey, M. Ibáñez, Angewandte Chemie - International Edition 61 (2022). date_created: 2022-07-31T22:01:48Z date_published: 2022-08-26T00:00:00Z date_updated: 2023-08-03T12:23:52Z day: '26' ddc: - '540' department: - _id: MaIb - _id: EM-Fac doi: 10.1002/anie.202207002 ec_funded: 1 external_id: isi: - '000828274200001' file: - access_level: open_access checksum: ad601f2b9e26e46ab4785162be58b5ed content_type: application/pdf creator: dernst date_created: 2023-02-02T08:01:00Z date_updated: 2023-02-02T08:01:00Z file_id: '12476' file_name: 2022_AngewandteChemieInternat_Chang.pdf file_size: 4072650 relation: main_file success: 1 file_date_updated: 2023-02-02T08:01:00Z has_accepted_license: '1' intvolume: ' 61' isi: 1 issue: '35' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Angewandte Chemie - International Edition publication_identifier: eissn: - 1521-3773 issn: - 1433-7851 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Surface functionalization of surfactant-free particles: A strategy to tailor the properties of nanocomposites for enhanced thermoelectric performance' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 61 year: '2022' ... --- _id: '12065' abstract: - lang: eng text: Capacity, rate performance, and cycle life of aprotic Li–O2 batteries critically depend on reversible electrodeposition of Li2O2. Current understanding states surface-adsorbed versus solvated LiO2 controls Li2O2 growth as surface film or as large particles. Herein, we show that Li2O2 forms across a wide range of electrolytes, carbons, and current densities as particles via solution-mediated LiO2 disproportionation, bringing into question the prevalence of any surface growth under practical conditions. We describe a unified O2 reduction mechanism, which can explain all found capacity relations and Li2O2 morphologies with exclusive solution discharge. Determining particle morphology and achievable capacities are species mobilities, true areal rate, and the degree of LiO2 association in solution. Capacity is conclusively limited by mass transport through the tortuous Li2O2 rather than electron transport through a passivating Li2O2 film. Provided that species mobilities and surface growth are high, high capacities are also achieved with weakly solvating electrolytes, which were previously considered prototypical for low capacity via surface growth. acknowledged_ssus: - _id: EM-Fac - _id: M-Shop acknowledgement: S.A.F. and C.P. are indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 636069). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant NanoEvolution, Grant Agreement No. 894042. S.A.F. and S.M. are indebted to Institute of Science and Technology Austria (ISTA) for support. This research was supported by the Scientific Service Units of ISTA through resources provided by the Electron Microscopy Facility and the Miba Machine Shop. C.P. thanks Vanessa Wood (ETH Zürich) for her continuing support. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Christian full_name: Prehal, Christian last_name: Prehal - first_name: Soumyadip full_name: Mondal, Soumyadip id: d25d21ef-dc8d-11ea-abe3-ec4576307f48 last_name: Mondal - first_name: Ludek full_name: Lovicar, Ludek id: 36DB3A20-F248-11E8-B48F-1D18A9856A87 last_name: Lovicar - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 citation: ama: Prehal C, Mondal S, Lovicar L, Freunberger SA. Exclusive solution discharge in Li-O₂ batteries? ACS Energy Letters. 2022;7(9):3112-3119. doi:10.1021/acsenergylett.2c01711 apa: Prehal, C., Mondal, S., Lovicar, L., & Freunberger, S. A. (2022). Exclusive solution discharge in Li-O₂ batteries? ACS Energy Letters. American Chemical Society. https://doi.org/10.1021/acsenergylett.2c01711 chicago: Prehal, Christian, Soumyadip Mondal, Ludek Lovicar, and Stefan Alexander Freunberger. “Exclusive Solution Discharge in Li-O₂ Batteries?” ACS Energy Letters. American Chemical Society, 2022. https://doi.org/10.1021/acsenergylett.2c01711. ieee: C. Prehal, S. Mondal, L. Lovicar, and S. A. Freunberger, “Exclusive solution discharge in Li-O₂ batteries?,” ACS Energy Letters, vol. 7, no. 9. American Chemical Society, pp. 3112–3119, 2022. ista: Prehal C, Mondal S, Lovicar L, Freunberger SA. 2022. Exclusive solution discharge in Li-O₂ batteries? ACS Energy Letters. 7(9), 3112–3119. mla: Prehal, Christian, et al. “Exclusive Solution Discharge in Li-O₂ Batteries?” ACS Energy Letters, vol. 7, no. 9, American Chemical Society, 2022, pp. 3112–19, doi:10.1021/acsenergylett.2c01711. short: C. Prehal, S. Mondal, L. Lovicar, S.A. Freunberger, ACS Energy Letters 7 (2022) 3112–3119. date_created: 2022-09-08T09:51:09Z date_published: 2022-08-29T00:00:00Z date_updated: 2023-08-03T13:47:56Z day: '29' ddc: - '540' department: - _id: StFr - _id: EM-Fac doi: 10.1021/acsenergylett.2c01711 external_id: isi: - '000860787000001' file: - access_level: open_access checksum: cf0bed3a2535c11d27244cd029dbc1d0 content_type: application/pdf creator: dernst date_created: 2023-01-20T08:43:51Z date_updated: 2023-01-20T08:43:51Z file_id: '12319' file_name: 2022_ACSEnergyLetters_Prehal.pdf file_size: 3827583 relation: main_file success: 1 file_date_updated: 2023-01-20T08:43:51Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '9' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3112-3119 publication: ACS Energy Letters publication_identifier: eissn: - 2380-8195 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Exclusive solution discharge in Li-O₂ batteries? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2022' ... --- _id: '12109' abstract: - lang: eng text: Kelvin probe force microscopy (KPFM) is a powerful tool for studying contact electrification (CE) at the nanoscale, but converting KPFM voltage maps to charge density maps is nontrivial due to long-range forces and complex system geometry. Here we present a strategy using finite-element method (FEM) simulations to determine the Green's function of the KPFM probe/insulator/ground system, which allows us to quantitatively extract surface charge. Testing our approach with synthetic data, we find that accounting for the atomic force microscope (AFM) tip, cone, and cantilever is necessary to recover a known input and that existing methods lead to gross miscalculation or even the incorrect sign of the underlying charge. Applying it to experimental data, we demonstrate its capacity to extract realistic surface charge densities and fine details from contact-charged surfaces. Our method gives a straightforward recipe to convert qualitative KPFM voltage data into quantitative charge data over a range of experimental conditions, enabling quantitative CE at the nanoscale. acknowledged_ssus: - _id: M-Shop - _id: NanoFab - _id: ScienComp acknowledgement: "This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement\r\nNo. 949120). This research was supported by the Scientific Service Units of the Institute of Science and Technology Austria (ISTA) through resources provided by the Miba Machine\r\nShop, the Nanofabrication Facility, and the Scientific Computing Facility. We thank F. Stumpf from Park Systems for useful discussions and support with scanning probe microscopy.\r\nF.P. and J.C.S. contributed equally to this work." article_number: '125605' article_processing_charge: No article_type: original author: - first_name: Felix full_name: Pertl, Felix id: 6313aec0-15b2-11ec-abd3-ed67d16139af last_name: Pertl - first_name: Juan Carlos A full_name: Sobarzo Ponce, Juan Carlos A id: 4B807D68-AE37-11E9-AC72-31CAE5697425 last_name: Sobarzo Ponce - first_name: Lubuna B full_name: Shafeek, Lubuna B id: 3CD37A82-F248-11E8-B48F-1D18A9856A87 last_name: Shafeek orcid: 0000-0001-7180-6050 - first_name: Tobias full_name: Cramer, Tobias last_name: Cramer - first_name: Scott R full_name: Waitukaitis, Scott R id: 3A1FFC16-F248-11E8-B48F-1D18A9856A87 last_name: Waitukaitis orcid: 0000-0002-2299-3176 citation: ama: Pertl F, Sobarzo Ponce JCA, Shafeek LB, Cramer T, Waitukaitis SR. Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach. Physical Review Materials. 2022;6(12). doi:10.1103/PhysRevMaterials.6.125605 apa: Pertl, F., Sobarzo Ponce, J. C. A., Shafeek, L. B., Cramer, T., & Waitukaitis, S. R. (2022). Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach. Physical Review Materials. American Physical Society. https://doi.org/10.1103/PhysRevMaterials.6.125605 chicago: Pertl, Felix, Juan Carlos A Sobarzo Ponce, Lubuna B Shafeek, Tobias Cramer, and Scott R Waitukaitis. “Quantifying Nanoscale Charge Density Features of Contact-Charged Surfaces with an FEM/KPFM-Hybrid Approach.” Physical Review Materials. American Physical Society, 2022. https://doi.org/10.1103/PhysRevMaterials.6.125605. ieee: F. Pertl, J. C. A. Sobarzo Ponce, L. B. Shafeek, T. Cramer, and S. R. Waitukaitis, “Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach,” Physical Review Materials, vol. 6, no. 12. American Physical Society, 2022. ista: Pertl F, Sobarzo Ponce JCA, Shafeek LB, Cramer T, Waitukaitis SR. 2022. Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach. Physical Review Materials. 6(12), 125605. mla: Pertl, Felix, et al. “Quantifying Nanoscale Charge Density Features of Contact-Charged Surfaces with an FEM/KPFM-Hybrid Approach.” Physical Review Materials, vol. 6, no. 12, 125605, American Physical Society, 2022, doi:10.1103/PhysRevMaterials.6.125605. short: F. Pertl, J.C.A. Sobarzo Ponce, L.B. Shafeek, T. Cramer, S.R. Waitukaitis, Physical Review Materials 6 (2022). date_created: 2023-01-08T23:00:53Z date_published: 2022-12-29T00:00:00Z date_updated: 2023-08-03T14:11:29Z day: '29' department: - _id: ScWa - _id: NanoFab doi: 10.1103/PhysRevMaterials.6.125605 ec_funded: 1 external_id: arxiv: - '2209.01889' isi: - '000908384800001' intvolume: ' 6' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2209.01889' month: '12' oa: 1 oa_version: Preprint project: - _id: 0aa60e99-070f-11eb-9043-a6de6bdc3afa call_identifier: H2020 grant_number: '949120' name: 'Tribocharge: a multi-scale approach to an enduring problem in physics' publication: Physical Review Materials publication_identifier: eissn: - 2475-9953 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantifying nanoscale charge density features of contact-charged surfaces with an FEM/KPFM-hybrid approach type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2022' ... --- _id: '12224' abstract: - lang: eng text: Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine Mkln1 knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that Mkln1 deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from Mkln1 ablation. acknowledgement: "The authors are grateful to the UKE Animal Facilities (Hamburg) for animal husbandry and Dr. Bastian Tiemann for his veterinary expertise and supervision of animal care. We thank Dr. Franco Lombino for critically reading the manuscript and for helpful discussion. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (FOR2419-KN556/11-1, FOR2419-KN556/11-2, KN556/12-1) and the Landesforschungsförderung Hamburg (LFF-FV76) to M.K.\r\nOpen Access funding enabled and organized by Projekt DEAL." article_number: '589' article_processing_charge: No article_type: original author: - first_name: Mary W full_name: Muhia, Mary W id: ab7ed20f-09f7-11eb-909c-d5d0b443ee9d last_name: Muhia - first_name: PingAn full_name: YuanXiang, PingAn last_name: YuanXiang - first_name: Jan full_name: Sedlacik, Jan last_name: Sedlacik - first_name: Jürgen R. full_name: Schwarz, Jürgen R. last_name: Schwarz - first_name: Frank F. full_name: Heisler, Frank F. last_name: Heisler - first_name: Kira V. full_name: Gromova, Kira V. last_name: Gromova - first_name: Edda full_name: Thies, Edda last_name: Thies - first_name: Petra full_name: Breiden, Petra last_name: Breiden - first_name: Yvonne full_name: Pechmann, Yvonne last_name: Pechmann - first_name: Michael R. full_name: Kreutz, Michael R. last_name: Kreutz - first_name: Matthias full_name: Kneussel, Matthias last_name: Kneussel citation: ama: Muhia MW, YuanXiang P, Sedlacik J, et al. Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. 2022;5. doi:10.1038/s42003-022-03446-1 apa: Muhia, M. W., YuanXiang, P., Sedlacik, J., Schwarz, J. R., Heisler, F. F., Gromova, K. V., … Kneussel, M. (2022). Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-022-03446-1 chicago: Muhia, Mary W, PingAn YuanXiang, Jan Sedlacik, Jürgen R. Schwarz, Frank F. Heisler, Kira V. Gromova, Edda Thies, et al. “Muskelin Regulates Actin-Dependent Synaptic Changes and Intrinsic Brain Activity Relevant to Behavioral and Cognitive Processes.” Communications Biology. Springer Nature, 2022. https://doi.org/10.1038/s42003-022-03446-1. ieee: M. W. Muhia et al., “Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes,” Communications Biology, vol. 5. Springer Nature, 2022. ista: Muhia MW, YuanXiang P, Sedlacik J, Schwarz JR, Heisler FF, Gromova KV, Thies E, Breiden P, Pechmann Y, Kreutz MR, Kneussel M. 2022. Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. 5, 589. mla: Muhia, Mary W., et al. “Muskelin Regulates Actin-Dependent Synaptic Changes and Intrinsic Brain Activity Relevant to Behavioral and Cognitive Processes.” Communications Biology, vol. 5, 589, Springer Nature, 2022, doi:10.1038/s42003-022-03446-1. short: M.W. Muhia, P. YuanXiang, J. Sedlacik, J.R. Schwarz, F.F. Heisler, K.V. Gromova, E. Thies, P. Breiden, Y. Pechmann, M.R. Kreutz, M. Kneussel, Communications Biology 5 (2022). date_created: 2023-01-16T09:48:19Z date_published: 2022-06-15T00:00:00Z date_updated: 2023-08-04T09:25:59Z day: '15' ddc: - '570' department: - _id: PreCl doi: 10.1038/s42003-022-03446-1 external_id: isi: - '000811777900003' file: - access_level: open_access checksum: bd95be1e77090208b79bc45ea8785d0b content_type: application/pdf creator: dernst date_created: 2023-01-27T08:23:46Z date_updated: 2023-01-27T08:23:46Z file_id: '12417' file_name: 2022_CommBiology_Muhia.pdf file_size: 3968356 relation: main_file success: 1 file_date_updated: 2023-01-27T08:23:46Z has_accepted_license: '1' intvolume: ' 5' isi: 1 keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology - Medicine (miscellaneous) language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Communications Biology publication_identifier: issn: - 2399-3642 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2022' ... --- _id: '12228' abstract: - lang: eng text: The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation. acknowledgement: We thank Stefan Wiedemann for the synthesis of reference compounds and Pia Heinrichs for assistance in the NMR measurements of the oligonucleotides. We also thank Dr. Luis Escobar and Jonas Feldmann for valued discussions. This work was supported by the German Research Foundation (DFG) for financial support via CRC1309 (Project ID 325871075, A04), CRC1361 (Project ID 893547839, P02) and CRC1032 (Project ID 201269156, A5). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement No 741912 (EpiR). We are grateful for additional funding from the Volkswagen Foundation (EvoRib). Open Access funding enabled and organized by Projekt DEAL. article_number: e202211945 article_processing_charge: No article_type: original author: - first_name: Felix full_name: Xu, Felix last_name: Xu - first_name: Antony full_name: Crisp, Antony last_name: Crisp - first_name: Thea full_name: Schinkel, Thea last_name: Schinkel - first_name: Romeo C. A. full_name: Dubini, Romeo C. A. last_name: Dubini - first_name: Sarah full_name: Hübner, Sarah last_name: Hübner - first_name: Sidney full_name: Becker, Sidney last_name: Becker - first_name: Florian full_name: Schelter, Florian last_name: Schelter - first_name: Petra full_name: Rovo, Petra id: c316e53f-b965-11eb-b128-bb26acc59c00 last_name: Rovo orcid: 0000-0001-8729-7326 - first_name: Thomas full_name: Carell, Thomas last_name: Carell citation: ama: Xu F, Crisp A, Schinkel T, et al. Isoxazole nucleosides as building blocks for a plausible proto‐RNA. Angewandte Chemie International Edition. 2022;61(45). doi:10.1002/anie.202211945 apa: Xu, F., Crisp, A., Schinkel, T., Dubini, R. C. A., Hübner, S., Becker, S., … Carell, T. (2022). Isoxazole nucleosides as building blocks for a plausible proto‐RNA. Angewandte Chemie International Edition. Wiley. https://doi.org/10.1002/anie.202211945 chicago: Xu, Felix, Antony Crisp, Thea Schinkel, Romeo C. A. Dubini, Sarah Hübner, Sidney Becker, Florian Schelter, Petra Rovo, and Thomas Carell. “Isoxazole Nucleosides as Building Blocks for a Plausible Proto‐RNA.” Angewandte Chemie International Edition. Wiley, 2022. https://doi.org/10.1002/anie.202211945. ieee: F. Xu et al., “Isoxazole nucleosides as building blocks for a plausible proto‐RNA,” Angewandte Chemie International Edition, vol. 61, no. 45. Wiley, 2022. ista: Xu F, Crisp A, Schinkel T, Dubini RCA, Hübner S, Becker S, Schelter F, Rovo P, Carell T. 2022. Isoxazole nucleosides as building blocks for a plausible proto‐RNA. Angewandte Chemie International Edition. 61(45), e202211945. mla: Xu, Felix, et al. “Isoxazole Nucleosides as Building Blocks for a Plausible Proto‐RNA.” Angewandte Chemie International Edition, vol. 61, no. 45, e202211945, Wiley, 2022, doi:10.1002/anie.202211945. short: F. Xu, A. Crisp, T. Schinkel, R.C.A. Dubini, S. Hübner, S. Becker, F. Schelter, P. Rovo, T. Carell, Angewandte Chemie International Edition 61 (2022). date_created: 2023-01-16T09:49:05Z date_published: 2022-11-07T00:00:00Z date_updated: 2023-08-04T09:32:42Z day: '07' ddc: - '540' department: - _id: NMR doi: 10.1002/anie.202211945 external_id: isi: - '000866428500001' file: - access_level: open_access checksum: 4e8152454d12025d13f6e6e9ca06b5d0 content_type: application/pdf creator: dernst date_created: 2023-01-27T10:28:45Z date_updated: 2023-01-27T10:28:45Z file_id: '12422' file_name: 2022_AngewandteChemieInternat_Xu.pdf file_size: 1076715 relation: main_file success: 1 file_date_updated: 2023-01-27T10:28:45Z has_accepted_license: '1' intvolume: ' 61' isi: 1 issue: '45' keyword: - General Chemistry - Catalysis language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Angewandte Chemie International Edition publication_identifier: eissn: - 1521-3773 issn: - 1433-7851 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Isoxazole nucleosides as building blocks for a plausible proto‐RNA tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 61 year: '2022' ... --- _id: '12239' abstract: - lang: eng text: Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the “pseudo 3D” morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: A.J. is supported by funding from the Austrian Science Fund I3630B25 (to J.F.). This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (ISTA) through resources provided by the Electron Microscopy Facility, Lab Support Facility, and the Imaging and Optics Facility. We acknowledge Prof. David Robinson (Heidelberg) and Prof. Jan Traas (Lyon) for making us aware of previously published classical on-grid preparation methods. No conflict of interest declared. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Dana A. full_name: Dahhan, Dana A. last_name: Dahhan - first_name: Sebastian Y. full_name: Bednarek, Sebastian Y. last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Kaufmann W, Sommer CM, et al. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 2022;15(10):1533-1542. doi:10.1016/j.molp.2022.09.003 apa: Johnson, A. J., Kaufmann, W., Sommer, C. M., Costanzo, T., Dahhan, D. A., Bednarek, S. Y., & Friml, J. (2022). Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2022.09.003 chicago: Johnson, Alexander J, Walter Kaufmann, Christoph M Sommer, Tommaso Costanzo, Dana A. Dahhan, Sebastian Y. Bednarek, and Jiří Friml. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant. Elsevier, 2022. https://doi.org/10.1016/j.molp.2022.09.003. ieee: A. J. Johnson et al., “Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution,” Molecular Plant, vol. 15, no. 10. Elsevier, pp. 1533–1542, 2022. ista: Johnson AJ, Kaufmann W, Sommer CM, Costanzo T, Dahhan DA, Bednarek SY, Friml J. 2022. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 15(10), 1533–1542. mla: Johnson, Alexander J., et al. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant, vol. 15, no. 10, Elsevier, 2022, pp. 1533–42, doi:10.1016/j.molp.2022.09.003. short: A.J. Johnson, W. Kaufmann, C.M. Sommer, T. Costanzo, D.A. Dahhan, S.Y. Bednarek, J. Friml, Molecular Plant 15 (2022) 1533–1542. date_created: 2023-01-16T09:51:49Z date_published: 2022-10-03T00:00:00Z date_updated: 2023-08-04T09:39:24Z day: '03' ddc: - '580' department: - _id: JiFr - _id: EM-Fac - _id: Bio doi: 10.1016/j.molp.2022.09.003 external_id: isi: - '000882769800009' pmid: - '36081349' file: - access_level: open_access checksum: 04d5c12490052d03e4dc4412338a43dd content_type: application/pdf creator: dernst date_created: 2023-01-30T07:46:51Z date_updated: 2023-01-30T07:46:51Z file_id: '12435' file_name: 2022_MolecularPlant_Johnson.pdf file_size: 2307251 relation: main_file success: 1 file_date_updated: 2023-01-30T07:46:51Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '10' keyword: - Plant Science - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1533-1542 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Molecular Plant publication_identifier: issn: - 1674-2052 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2022' ... --- _id: '12259' abstract: - lang: eng text: 'Theoretical foundations of chaos have been predominantly laid out for finite-dimensional dynamical systems, such as the three-body problem in classical mechanics and the Lorenz model in dissipative systems. In contrast, many real-world chaotic phenomena, e.g., weather, arise in systems with many (formally infinite) degrees of freedom, which limits direct quantitative analysis of such systems using chaos theory. In the present work, we demonstrate that the hydrodynamic pilot-wave systems offer a bridge between low- and high-dimensional chaotic phenomena by allowing for a systematic study of how the former connects to the latter. Specifically, we present experimental results, which show the formation of low-dimensional chaotic attractors upon destabilization of regular dynamics and a final transition to high-dimensional chaos via the merging of distinct chaotic regions through a crisis bifurcation. Moreover, we show that the post-crisis dynamics of the system can be rationalized as consecutive scatterings from the nonattracting chaotic sets with lifetimes following exponential distributions. ' acknowledgement: 'This work was partially funded by the Institute of Science and Technology Austria Interdisciplinary Project Committee Grant “Pilot-Wave Hydrodynamics: Chaos and Quantum Analogies.”' article_number: '093138' article_processing_charge: No article_type: original author: - first_name: George H full_name: Choueiri, George H id: 448BD5BC-F248-11E8-B48F-1D18A9856A87 last_name: Choueiri - first_name: Balachandra full_name: Suri, Balachandra id: 47A5E706-F248-11E8-B48F-1D18A9856A87 last_name: Suri - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 citation: ama: 'Choueiri GH, Suri B, Merrin J, Serbyn M, Hof B, Budanur NB. Crises and chaotic scattering in hydrodynamic pilot-wave experiments. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2022;32(9). doi:10.1063/5.0102904' apa: 'Choueiri, G. H., Suri, B., Merrin, J., Serbyn, M., Hof, B., & Budanur, N. B. (2022). Crises and chaotic scattering in hydrodynamic pilot-wave experiments. Chaos: An Interdisciplinary Journal of Nonlinear Science. AIP Publishing. https://doi.org/10.1063/5.0102904' chicago: 'Choueiri, George H, Balachandra Suri, Jack Merrin, Maksym Serbyn, Björn Hof, and Nazmi B Budanur. “Crises and Chaotic Scattering in Hydrodynamic Pilot-Wave Experiments.” Chaos: An Interdisciplinary Journal of Nonlinear Science. AIP Publishing, 2022. https://doi.org/10.1063/5.0102904.' ieee: 'G. H. Choueiri, B. Suri, J. Merrin, M. Serbyn, B. Hof, and N. B. Budanur, “Crises and chaotic scattering in hydrodynamic pilot-wave experiments,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 32, no. 9. AIP Publishing, 2022.' ista: 'Choueiri GH, Suri B, Merrin J, Serbyn M, Hof B, Budanur NB. 2022. Crises and chaotic scattering in hydrodynamic pilot-wave experiments. Chaos: An Interdisciplinary Journal of Nonlinear Science. 32(9), 093138.' mla: 'Choueiri, George H., et al. “Crises and Chaotic Scattering in Hydrodynamic Pilot-Wave Experiments.” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 32, no. 9, 093138, AIP Publishing, 2022, doi:10.1063/5.0102904.' short: 'G.H. Choueiri, B. Suri, J. Merrin, M. Serbyn, B. Hof, N.B. Budanur, Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (2022).' date_created: 2023-01-16T09:58:16Z date_published: 2022-09-26T00:00:00Z date_updated: 2023-08-04T09:51:17Z day: '26' ddc: - '530' department: - _id: MaSe - _id: BjHo - _id: NanoFab doi: 10.1063/5.0102904 external_id: arxiv: - '2206.01531' isi: - '000861009600005' file: - access_level: open_access checksum: 17881eff8b21969359a2dd64620120ba content_type: application/pdf creator: dernst date_created: 2023-01-30T09:41:12Z date_updated: 2023-01-30T09:41:12Z file_id: '12445' file_name: 2022_Chaos_Choueiri.pdf file_size: 3209644 relation: main_file success: 1 file_date_updated: 2023-01-30T09:41:12Z has_accepted_license: '1' intvolume: ' 32' isi: 1 issue: '9' keyword: - Applied Mathematics - General Physics and Astronomy - Mathematical Physics - Statistical and Nonlinear Physics language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: 'Chaos: An Interdisciplinary Journal of Nonlinear Science' publication_identifier: eissn: - 1089-7682 issn: - 1054-1500 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Crises and chaotic scattering in hydrodynamic pilot-wave experiments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2022' ... --- _id: '12262' abstract: - lang: eng text: The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases. acknowledged_ssus: - _id: EM-Fac acknowledgement: "We thank M. Fromont-Racine, A. Johnson, J. Woolford, S. Rospert, J. P. G. Ballesta and\r\nE. Hurt for supplying antibodies. The work was supported by Boehringer Ingelheim (to\r\nD. H.), the Austrian Science Foundation FWF (grants 32536 and 32977 to H. B.), the\r\nUK Medical Research Council (MR/T012412/1 to A. J. W.) and the German Research\r\nFoundation (Emmy Noether Programme STE 2517/1-1 and STE 2517/5-1 to F.S.). We\r\nthank Norberto Escudero-Urquijo, Pablo Castro-Hartmann and K. Dent, Cambridge\r\nInstitute for Medical Research, for their help in cryo-EM during early phases of this\r\nproject. This research was supported by the Scientific Service Units of IST Austria through\r\nresources provided by the Electron Microscopy Facility. We thank S. Keller, Institute of\r\nMolecular Biosciences (Biophysics), University Graz for support with the quantification of\r\nthe SPR particle release assay. We thank I. Schaffner, University of Natural Resources and\r\nLife Sciences, Vienna for her help in early stages of the SPR experiments." article_processing_charge: No article_type: original author: - first_name: Michael full_name: Prattes, Michael last_name: Prattes - first_name: Irina full_name: Grishkovskaya, Irina last_name: Grishkovskaya - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Christina full_name: Hetzmannseder, Christina last_name: Hetzmannseder - first_name: Gertrude full_name: Zisser, Gertrude last_name: Zisser - first_name: Carolin full_name: Sailer, Carolin last_name: Sailer - first_name: Vasileios full_name: Kargas, Vasileios last_name: Kargas - first_name: Mathias full_name: Loibl, Mathias last_name: Loibl - first_name: Magdalena full_name: Gerhalter, Magdalena last_name: Gerhalter - first_name: Lisa full_name: Kofler, Lisa last_name: Kofler - first_name: Alan J. full_name: Warren, Alan J. last_name: Warren - first_name: Florian full_name: Stengel, Florian last_name: Stengel - first_name: David full_name: Haselbach, David last_name: Haselbach - first_name: Helmut full_name: Bergler, Helmut last_name: Bergler citation: ama: Prattes M, Grishkovskaya I, Hodirnau V-V, et al. Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. Nature Structural & Molecular Biology. 2022;29(9):942-953. doi:10.1038/s41594-022-00832-5 apa: Prattes, M., Grishkovskaya, I., Hodirnau, V.-V., Hetzmannseder, C., Zisser, G., Sailer, C., … Bergler, H. (2022). Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. Nature Structural & Molecular Biology. Springer Nature. https://doi.org/10.1038/s41594-022-00832-5 chicago: Prattes, Michael, Irina Grishkovskaya, Victor-Valentin Hodirnau, Christina Hetzmannseder, Gertrude Zisser, Carolin Sailer, Vasileios Kargas, et al. “Visualizing Maturation Factor Extraction from the Nascent Ribosome by the AAA-ATPase Drg1.” Nature Structural & Molecular Biology. Springer Nature, 2022. https://doi.org/10.1038/s41594-022-00832-5. ieee: M. Prattes et al., “Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1,” Nature Structural & Molecular Biology, vol. 29, no. 9. Springer Nature, pp. 942–953, 2022. ista: Prattes M, Grishkovskaya I, Hodirnau V-V, Hetzmannseder C, Zisser G, Sailer C, Kargas V, Loibl M, Gerhalter M, Kofler L, Warren AJ, Stengel F, Haselbach D, Bergler H. 2022. Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. Nature Structural & Molecular Biology. 29(9), 942–953. mla: Prattes, Michael, et al. “Visualizing Maturation Factor Extraction from the Nascent Ribosome by the AAA-ATPase Drg1.” Nature Structural & Molecular Biology, vol. 29, no. 9, Springer Nature, 2022, pp. 942–53, doi:10.1038/s41594-022-00832-5. short: M. Prattes, I. Grishkovskaya, V.-V. Hodirnau, C. Hetzmannseder, G. Zisser, C. Sailer, V. Kargas, M. Loibl, M. Gerhalter, L. Kofler, A.J. Warren, F. Stengel, D. Haselbach, H. Bergler, Nature Structural & Molecular Biology 29 (2022) 942–953. date_created: 2023-01-16T09:59:06Z date_published: 2022-09-12T00:00:00Z date_updated: 2023-08-04T09:52:20Z day: '12' ddc: - '570' department: - _id: EM-Fac doi: 10.1038/s41594-022-00832-5 external_id: isi: - '000852942100004' pmid: - '36097293' file: - access_level: open_access checksum: 2d5c3ec01718fefd7553052b0b8a0793 content_type: application/pdf creator: dernst date_created: 2023-01-30T10:00:04Z date_updated: 2023-01-30T10:00:04Z file_id: '12447' file_name: 2022_NatureStrucMolecBio_Prattes.pdf file_size: 9935057 relation: main_file success: 1 file_date_updated: 2023-01-30T10:00:04Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '9' keyword: - Molecular Biology - Structural Biology language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 942-953 pmid: 1 publication: Nature Structural & Molecular Biology publication_identifier: eissn: - 1545-9985 issn: - 1545-9993 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 29 year: '2022' ...