TY - JOUR AB - Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. AU - Zeller, Peter AU - Yeung, Jake AU - Viñas Gaza, Helena AU - de Barbanson, Buys Anton AU - Bhardwaj, Vivek AU - Florescu, Maria AU - van der Linden, Reinier AU - van Oudenaarden, Alexander ID - 12158 JF - Nature Genetics KW - Genetics SN - 1061-4036 TI - Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis VL - 55 ER - TY - GEN AU - Elefante, Stefano AU - Stadlbauer, Stephan AU - Alexander, Michael F AU - Schlögl, Alois ID - 13162 T2 - ASHPC23 - Austrian-Slovenian HPC Meeting 2023 TI - Cryo-EM software packages: A sys-admins point of view ER - TY - GEN AU - Schlögl, Alois AU - Elefante, Stefano AU - Hodirnau, Victor-Valentin ID - 13161 T2 - ASHPC23 - Austrian-Slovenian HPC Meeting 2023 TI - Running Windows-applications on a Linux HPC cluster using WINE ER - TY - JOUR AB - Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization. AU - Huljev, Karla AU - Shamipour, Shayan AU - Nunes Pinheiro, Diana C AU - Preusser, Friedrich AU - Steccari, Irene AU - Sommer, Christoph M AU - Naik, Suyash AU - Heisenberg, Carl-Philipp J ID - 12830 IS - 7 JF - Developmental Cell SN - 1534-5807 TI - A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish VL - 58 ER - TY - JOUR AB - Current methods for assessing cell proliferation in 3D scaffolds rely on changes in metabolic activity or total DNA, however, direct quantification of cell number in 3D scaffolds remains a challenge. To address this issue, we developed an unbiased stereology approach that uses systematic-random sampling and thin focal-plane optical sectioning of the scaffolds followed by estimation of total cell number (StereoCount). This approach was validated against an indirect method for measuring the total DNA (DNA content); and the Bürker counting chamber, the current reference method for quantifying cell number. We assessed the total cell number for cell seeding density (cells per unit volume) across four values and compared the methods in terms of accuracy, ease-of-use and time demands. The accuracy of StereoCount markedly outperformed the DNA content for cases with ~ 10,000 and ~ 125,000 cells/scaffold. For cases with ~ 250,000 and ~ 375,000 cells/scaffold both StereoCount and DNA content showed lower accuracy than the Bürker but did not differ from each other. In terms of ease-of-use, there was a strong advantage for the StereoCount due to output in terms of absolute cell numbers along with the possibility for an overview of cell distribution and future use of automation for high throughput analysis. Taking together, the StereoCount method is an efficient approach for direct cell quantification in 3D collagen scaffolds. Its major benefit is that automated StereoCount could accelerate research using 3D scaffolds focused on drug discovery for a wide variety of human diseases. AU - Zavadakova, Anna AU - Vistejnova, Lucie AU - Belinova, Tereza AU - Tichanek, Filip AU - Bilikova, Dagmar AU - Mouton, Peter R. ID - 13033 IS - 1 JF - Scientific Reports KW - Multidisciplinary SN - 2045-2322 TI - Novel stereological method for estimation of cell counts in 3D collagen scaffolds VL - 13 ER - TY - JOUR AB - Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells. AU - Yeung, Jake AU - Florescu, Maria AU - Zeller, Peter AU - De Barbanson, Buys Anton AU - Wellenstein, Max D. AU - Van Oudenaarden, Alexander ID - 12106 JF - Nature Biotechnology SN - 1087-0156 TI - scChIX-seq infers dynamic relationships between histone modifications in single cells VL - 41 ER - TY - JOUR AB - Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. AU - Stock, Miriam AU - Milutinovic, Barbara AU - Hönigsberger, Michaela AU - Grasse, Anna V AU - Wiesenhofer, Florian AU - Kampleitner, Niklas AU - Narasimhan, Madhumitha AU - Schmitt, Thomas AU - Cremer, Sylvia ID - 12543 JF - Nature Ecology and Evolution TI - Pathogen evasion of social immunity VL - 7 ER - TY - JOUR AB - In the present study, essential and nonessential metal content and biomarker responses were investigated in the intestine of fish collected from the areas polluted by mining. Our objective was to determine metal and biomarker levels in tissue responsible for dietary intake, which is rarely studied in water pollution research. The study was conducted in the Bregalnica River, reference location, and in the Zletovska and Kriva Rivers (the Republic of North Macedonia), which are directly influenced by the active mines Zletovo and Toranica, respectively. Biological responses were analyzed in Vardar chub (Squalius vardarensis; Karaman, 1928), using for the first time intestinal cytosol as a potentially toxic cell fraction, since metal sensitivity is mostly associated with cytosol. Cytosolic metal levels were higher in fish under the influence of mining (Tl, Li, Cs, Mo, Sr, Cd, Rb, and Cu in the Zletovska River and Cr, Pb, and Se in the Kriva River compared to the Bregalnica River in both seasons). The same trend was evident for total proteins, biomarkers of general stress, and metallothioneins, biomarkers of metal exposure, indicating cellular disturbances in the intestine, the primary site of dietary metal uptake. The association of cytosolic Cu and Cd at all locations pointed to similar pathways and homeostasis of these metallothionein-binding metals. Comparison with other indicator tissues showed that metal concentrations were higher in the intestine of fish from mining-affected areas than in the liver and gills. In general, these results indicated the importance of dietary metal pathways, and cytosolic metal fraction in assessing pollution impacts in freshwater ecosystems. AU - Filipović Marijić, Vlatka AU - Krasnici, Nesrete AU - Valić, Damir AU - Kapetanović, Damir AU - Vardić Smrzlić, Irena AU - Jordanova, Maja AU - Rebok, Katerina AU - Ramani, Sheriban AU - Kostov, Vasil AU - Nastova, Rodne AU - Dragun, Zrinka ID - 12863 JF - Environmental Science and Pollution Research SN - 0944-1344 TI - Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish VL - 30 ER - TY - JOUR AB - A light-triggered fabrication method extends the functionality of printable nanomaterials AU - Balazs, Daniel AU - Ibáñez, Maria ID - 14404 IS - 6665 JF - Science TI - Widening the use of 3D printing VL - 381 ER - TY - CHAP AB - Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS. AU - Leithner, Alexander F AU - Merrin, Jack AU - Sixt, Michael K ED - Baldari, Cosima ED - Dustin, Michael ID - 13052 SN - 1064-3745 T2 - The Immune Synapse TI - En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses VL - 2654 ER - TY - JOUR AB - Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. AU - Fäßler, Florian AU - Javoor, Manjunath AU - Datler, Julia AU - Döring, Hermann AU - Hofer, Florian AU - Dimchev, Georgi A AU - Hodirnau, Victor-Valentin AU - Faix, Jan AU - Rottner, Klemens AU - Schur, Florian KM ID - 12334 IS - 3 JF - Science Advances KW - Multidisciplinary SN - 2375-2548 TI - ArpC5 isoforms regulate Arp2/3 complex–dependent protrusion through differential Ena/VASP positioning VL - 9 ER - TY - JOUR AB - Motile cells moving in multicellular organisms encounter microenvironments of locally heterogeneous mechanochemical composition. Individual compositional parameters like chemotactic signals, adhesiveness, and pore sizes are well known to be sensed by motile cells, providing individual guidance cues for cellular pathfinding. However, motile cells encounter diverse mechanochemical signals at the same time, raising the question of how cells respond to locally diverse and potentially competing signals on their migration routes. Here, we reveal that motile amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical microenvironments. Using mammalian immune cells and the amoebaDictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step cell polarity switch and is driven by myosin II-forces, sliding the nucleus from a ‘losing’ to the ‘winning’ leading edge to re-adjust the nuclear to the cellular path. Impaired nucleokinesis distorts fast path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that motile single-cell amoebae, many immune cells, and some cancer cells utilize an amoeboid migration strategy, these results suggest that amoeboid nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease. AU - Kroll, Janina AU - Hauschild, Robert AU - Kuznetcov, Arthur AU - Stefanowski, Kasia AU - Hermann, Monika D. AU - Merrin, Jack AU - Shafeek, Lubuna B AU - Müller-Taubenberger, Annette AU - Renkawitz, Jörg ID - 13342 JF - EMBO Journal SN - 0261-4189 TI - Adaptive pathfinding by nucleokinesis during amoeboid migration ER - TY - JOUR AB - Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing. AU - Cikes, Domagoj AU - Elsayad, Kareem AU - Sezgin, Erdinc AU - Koitai, Erika AU - Ferenc, Torma AU - Orthofer, Michael AU - Yarwood, Rebecca AU - Heinz, Leonhard X. AU - Sedlyarov, Vitaly AU - Darwish-Miranda, Nasser AU - Taylor, Adrian AU - Grapentine, Sophie AU - al-Murshedi, Fathiya AU - Abot, Anne AU - Weidinger, Adelheid AU - Kutchukian, Candice AU - Sanchez, Colline AU - Cronin, Shane J. F. AU - Novatchkova, Maria AU - Kavirayani, Anoop AU - Schuetz, Thomas AU - Haubner, Bernhard AU - Haas, Lisa AU - Hagelkruys, Astrid AU - Jackowski, Suzanne AU - Kozlov, Andrey AU - Jacquemond, Vincent AU - Knauf, Claude AU - Superti-Furga, Giulio AU - Rullman, Eric AU - Gustafsson, Thomas AU - McDermot, John AU - Lowe, Martin AU - Radak, Zsolt AU - Chamberlain, Jeffrey S. AU - Bakovic, Marica AU - Banka, Siddharth AU - Penninger, Josef M. ID - 12747 JF - Nature Metabolism KW - Cell Biology KW - Physiology (medical) KW - Endocrinology KW - Diabetes and Metabolism KW - Internal Medicine SN - 2522-5812 TI - PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing VL - 5 ER - TY - JOUR AB - Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering. AU - Méhes, Elod AU - Mones, Enys AU - Varga, Máté AU - Zsigmond, Áron AU - Biri-Kovács, Beáta AU - Nyitray, László AU - Barone, Vanessa AU - Krens, Gabriel AU - Heisenberg, Carl-Philipp J AU - Vicsek, Tamás ID - 14041 JF - Communications Biology TI - 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation VL - 6 ER - TY - JOUR AB - Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals’ internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical ‘toy’ experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives. AU - Riedl, Michael AU - Mayer, Isabelle D AU - Merrin, Jack AU - Sixt, Michael K AU - Hof, Björn ID - 14361 JF - Nature Communications TI - Synchronization in collectively moving inanimate and living active matter VL - 14 ER - TY - JOUR AB - The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish “gold standard” protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory ‘omics’ features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices. AU - D’Elia, Domenica AU - Truu, Jaak AU - Lahti, Leo AU - Berland, Magali AU - Papoutsoglou, Georgios AU - Ceci, Michelangelo AU - Zomer, Aldert AU - Lopes, Marta B. AU - Ibrahimi, Eliana AU - Gruca, Aleksandra AU - Nechyporenko, Alina AU - Frohme, Marcus AU - Klammsteiner, Thomas AU - Pau, Enrique Carrillo De Santa AU - Marcos-Zambrano, Laura Judith AU - Hron, Karel AU - Pio, Gianvito AU - Simeon, Andrea AU - Suharoschi, Ramona AU - Moreno-Indias, Isabel AU - Temko, Andriy AU - Nedyalkova, Miroslava AU - Apostol, Elena Simona AU - Truică, Ciprian Octavian AU - Shigdel, Rajesh AU - Telalović, Jasminka Hasić AU - Bongcam-Rudloff, Erik AU - Przymus, Piotr AU - Jordamović, Naida Babić AU - Falquet, Laurent AU - Tarazona, Sonia AU - Sampri, Alexia AU - Isola, Gaetano AU - Pérez-Serrano, David AU - Trajkovik, Vladimir AU - Klucar, Lubos AU - Loncar-Turukalo, Tatjana AU - Havulinna, Aki S. AU - Jansen, Christian AU - Bertelsen, Randi J. AU - Claesson, Marcus Joakim ID - 14449 JF - Frontiers in Microbiology TI - Advancing microbiome research with machine learning: Key findings from the ML4Microbiome COST action VL - 14 ER - TY - JOUR AB - Immune responses rely on the rapid and coordinated migration of leukocytes. Whereas it is well established that single-cell migration is often guided by gradients of chemokines and other chemoattractants, it remains poorly understood how these gradients are generated, maintained, and modulated. By combining experimental data with theory on leukocyte chemotaxis guided by the G protein–coupled receptor (GPCR) CCR7, we demonstrate that in addition to its role as the sensory receptor that steers migration, CCR7 also acts as a generator and a modulator of chemotactic gradients. Upon exposure to the CCR7 ligand CCL19, dendritic cells (DCs) effectively internalize the receptor and ligand as part of the canonical GPCR desensitization response. We show that CCR7 internalization also acts as an effective sink for the chemoattractant, dynamically shaping the spatiotemporal distribution of the chemokine. This mechanism drives complex collective migration patterns, enabling DCs to create or sharpen chemotactic gradients. We further show that these self-generated gradients can sustain the long-range guidance of DCs, adapt collective migration patterns to the size and geometry of the environment, and provide a guidance cue for other comigrating cells. Such a dual role of CCR7 as a GPCR that both senses and consumes its ligand can thus provide a novel mode of cellular self-organization. AU - Alanko, Jonna H AU - Ucar, Mehmet C AU - Canigova, Nikola AU - Stopp, Julian A AU - Schwarz, Jan AU - Merrin, Jack AU - Hannezo, Edouard B AU - Sixt, Michael K ID - 14274 IS - 87 JF - Science Immunology KW - General Medicine KW - Immunology SN - 2470-9468 TI - CCR7 acts as both a sensor and a sink for CCL19 to coordinate collective leukocyte migration VL - 8 ER - TY - JOUR AB - Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue. AU - Velicky, Philipp AU - Miguel Villalba, Eder AU - Michalska, Julia M AU - Lyudchik, Julia AU - Wei, Donglai AU - Lin, Zudi AU - Watson, Jake AU - Troidl, Jakob AU - Beyer, Johanna AU - Ben Simon, Yoav AU - Sommer, Christoph M AU - Jahr, Wiebke AU - Cenameri, Alban AU - Broichhagen, Johannes AU - Grant, Seth G.N. AU - Jonas, Peter M AU - Novarino, Gaia AU - Pfister, Hanspeter AU - Bickel, Bernd AU - Danzl, Johann G ID - 13267 JF - Nature Methods SN - 1548-7091 TI - Dense 4D nanoscale reconstruction of living brain tissue VL - 20 ER - TY - JOUR AB - Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates’ periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency. AU - Westerich, Kim Joana AU - Tarbashevich, Katsiaryna AU - Schick, Jan AU - Gupta, Antra AU - Zhu, Mingzhao AU - Hull, Kenneth AU - Romo, Daniel AU - Zeuschner, Dagmar AU - Goudarzi, Mohammad AU - Gross-Thebing, Theresa AU - Raz, Erez ID - 14781 IS - 17 JF - Developmental Cell KW - Developmental Biology KW - Cell Biology KW - General Biochemistry KW - Genetics and Molecular Biology KW - Molecular Biology SN - 1534-5807 TI - Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1 VL - 58 ER - TY - JOUR AB - Acanthocephalans, intestinal parasites of vertebrates, are characterised by orders of magnitude higher metal accumulation than free-living organisms, but the mechanism of such effective metal accumulation is still unknown. The aim of our study was to gain new insights into the high-resolution localization of elements in the bodies of acanthocephalans, thus taking an initial step towards elucidating metal uptake and accumulation in organisms under real environmental conditions. For the first time, nanoscale secondary ion mass spectrometry (NanoSIMS) was used for high-resolution mapping of 12 elements (C, Ca, Cu, Fe, N, Na, O, P, Pb, S, Se, and Tl) in three selected body parts (trunk spines, inner part of the proboscis receptacle and inner surface of the tegument) of Dentitruncus truttae, a parasite of brown trout (Salmo trutta) from the Krka River in Croatia. In addition, the same body parts were examined using transmission electron microscopy (TEM) and correlated with NanoSIMS images. Metal concentrations determined using HR ICP-MS confirmed higher accumulation in D. truttae than in the fish intestine. The chemical composition of the acanthocephalan body showed the highest density of C, Ca, N, Na, O, S, as important and constitutive elements in living cells in all studied structures, while Fe was predominant among trace elements. In general, higher element density was found in trunk spines and tegument, as body structures responsible for substance absorption in parasites. The results obtained with NanoSIMS and TEM-NanoSIMS correlative imaging represent pilot data for mapping of elements at nanoscale resolution in the ultrastructure of various body parts of acanthocephalans and generally provide a contribution for further application of this technique in all parasite species. AU - Filipović Marijić, Vlatka AU - Subirana, Maria Angels AU - Schaumlöffel, Dirk AU - Barišić, Josip AU - Gontier, Etienne AU - Krasnici, Nesrete AU - Mijošek, Tatjana AU - Hernández-Orts, Jesús S. AU - Scholz, Tomáš AU - Erk, Marijana ID - 14786 JF - Science of The Total Environment KW - Pollution KW - Waste Management and Disposal KW - Environmental Chemistry KW - Environmental Engineering SN - 0048-9697 TI - First insight in element localisation in different body parts of the acanthocephalan Dentitruncus truttae using TEM and NanoSIMS VL - 887 ER -