TY - JOUR AB - The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders. AU - Venezia, Serena AU - Kaufmann, Walter AU - Wenning, Gregor K. AU - Stefanova, Nadia ID - 10607 JF - Parkinsonism & Related Disorders SN - 1353-8020 TI - Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson's disease VL - 91 ER - TY - JOUR AB - Electrodepositing insulating lithium peroxide (Li2O2) is the key process during discharge of aprotic Li–O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and dissolved lithium superoxide governs whether Li2O2 grows as a conformal surface film or larger particles, leading to low or high capacities, respectively. However, better understanding governing factors for Li2O2 packing density and capacity requires structural sensitive in situ metrologies. Here, we establish in situ small- and wide-angle X-ray scattering (SAXS/WAXS) as a suitable method to record the Li2O2 phase evolution with atomic to submicrometer resolution during cycling a custom-built in situ Li–O2 cell. Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative structural information from complex multiphase systems. Surprisingly, we find that features are absent that would point at a Li2O2 surface film formed via two consecutive electron transfers, even in poorly solvating electrolytes thought to be prototypical for surface growth. All scattering data can be modeled by stacks of thin Li2O2 platelets potentially forming large toroidal particles. Li2O2 solution growth is further justified by rotating ring-disk electrode measurements and electron microscopy. Higher discharge overpotentials lead to smaller Li2O2 particles, but there is no transition to an electronically passivating, conformal Li2O2 coating. Hence, mass transport of reactive species rather than electronic transport through a Li2O2 film limits the discharge capacity. Provided that species mobilities and carbon surface areas are high, this allows for high discharge capacities even in weakly solvating electrolytes. The currently accepted Li–O2 reaction mechanism ought to be reconsidered. AU - Prehal, Christian AU - Samojlov, Aleksej AU - Nachtnebel, Manfred AU - Lovicar, Ludek AU - Kriechbaum, Manfred AU - Amenitsch, Heinz AU - Freunberger, Stefan Alexander ID - 9301 IS - 14 JF - Proceedings of the National Academy of Sciences KW - small-angle X-ray scattering KW - oxygen reduction KW - disproportionation KW - Li-air battery SN - 0027-8424 TI - In situ small-angle X-ray scattering reveals solution phase discharge of Li–O2 batteries with weakly solvating electrolytes VL - 118 ER - TY - JOUR AU - Pranger, Christina L. AU - Fazekas-Singer, Judit AU - Köhler, Verena K. AU - Pali‐Schöll, Isabella AU - Fiocchi, Alessandro AU - Karagiannis, Sophia N. AU - Zenarruzabeitia, Olatz AU - Borrego, Francisco AU - Jensen‐Jarolim, Erika ID - 10836 IS - 5 JF - Allergy KW - Immunology KW - Immunology and Allergy SN - 0105-4538 TI - PIPE‐cloned human IgE and IgG4 antibodies: New tools for investigating cow's milk allergy and tolerance VL - 76 ER - TY - JOUR AB - There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits. AU - Peruzzo, Matilda AU - Hassani, Farid AU - Szep, Gregory AU - Trioni, Andrea AU - Redchenko, Elena AU - Zemlicka, Martin AU - Fink, Johannes M ID - 9928 IS - 4 JF - PRX Quantum KW - quantum physics KW - mesoscale and nanoscale physics TI - Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction VL - 2 ER - TY - JOUR AB - Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments. AU - Li, Lanxin AU - Verstraeten, Inge AU - Roosjen, Mark AU - Takahashi, Koji AU - Rodriguez Solovey, Lesia AU - Merrin, Jack AU - Chen, Jian AU - Shabala, Lana AU - Smet, Wouter AU - Ren, Hong AU - Vanneste, Steffen AU - Shabala, Sergey AU - De Rybel, Bert AU - Weijers, Dolf AU - Kinoshita, Toshinori AU - Gray, William M. AU - Friml, Jiří ID - 10223 IS - 7884 JF - Nature KW - Multidisciplinary SN - 00280836 TI - Cell surface and intracellular auxin signalling for H+ fluxes in root growth VL - 599 ER - TY - JOUR AB - Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. AU - Johnson, Alexander J AU - Dahhan, Dana A AU - Gnyliukh, Nataliia AU - Kaufmann, Walter AU - Zheden, Vanessa AU - Costanzo, Tommaso AU - Mahou, Pierre AU - Hrtyan, Mónika AU - Wang, Jie AU - Aguilera Servin, Juan L AU - van Damme, Daniël AU - Beaurepaire, Emmanuel AU - Loose, Martin AU - Bednarek, Sebastian Y AU - Friml, Jiří ID - 9887 IS - 51 JF - Proceedings of the National Academy of Sciences TI - The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis VL - 118 ER - TY - JOUR AB - A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity. AU - Valentini, Marco AU - Peñaranda, Fernando AU - Hofmann, Andrea C AU - Brauns, Matthias AU - Hauschild, Robert AU - Krogstrup, Peter AU - San-Jose, Pablo AU - Prada, Elsa AU - Aguado, Ramón AU - Katsaros, Georgios ID - 8910 IS - 6550 JF - Science SN - 00368075 TI - Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states VL - 373 ER - TY - COMP AB - Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks. AU - Guzmán, José AU - Schlögl, Alois AU - Espinoza Martinez, Claudia AU - Zhang, Xiaomin AU - Suter, Benjamin AU - Jonas, Peter M ID - 10110 TI - How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network ER - TY - JOUR AB - De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. AU - Morandell, Jasmin AU - Schwarz, Lena A AU - Basilico, Bernadette AU - Tasciyan, Saren AU - Dimchev, Georgi A AU - Nicolas, Armel AU - Sommer, Christoph M AU - Kreuzinger, Caroline AU - Dotter, Christoph AU - Knaus, Lisa AU - Dobler, Zoe AU - Cacci, Emanuele AU - Schur, Florian KM AU - Danzl, Johann G AU - Novarino, Gaia ID - 9429 IS - 1 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology TI - Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development VL - 12 ER - TY - JOUR AB - Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1μs which we extend beyond 15μs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and coherence, respectively. In addition, they are on par with Ge single spin qubits, but can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies. AU - Jirovec, Daniel AU - Hofmann, Andrea C AU - Ballabio, Andrea AU - Mutter, Philipp M. AU - Tavani, Giulio AU - Botifoll, Marc AU - Crippa, Alessandro AU - Kukucka, Josip AU - Sagi, Oliver AU - Martins, Frederico AU - Saez Mollejo, Jaime AU - Prieto Gonzalez, Ivan AU - Borovkov, Maksim AU - Arbiol, Jordi AU - Chrastina, Daniel AU - Isella, Giovanni AU - Katsaros, Georgios ID - 8909 IS - 8 JF - Nature Materials SN - 1476-1122 TI - A singlet triplet hole spin qubit in planar Ge VL - 20 ER -