TY - JOUR AB - Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding. AU - Schulte, Linda AU - Mao, Jiafei AU - Reitz, Julian AU - Sreeramulu, Sridhar AU - Kudlinzki, Denis AU - Hodirnau, Victor-Valentin AU - Meier-Credo, Jakob AU - Saxena, Krishna AU - Buhr, Florian AU - Langer, Julian D. AU - Blackledge, Martin AU - Frangakis, Achilleas S. AU - Glaubitz, Clemens AU - Schwalbe, Harald ID - 8744 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Physics and Astronomy KW - General Chemistry SN - 2041-1723 TI - Cysteine oxidation and disulfide formation in the ribosomal exit tunnel VL - 11 ER - TY - JOUR AB - Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. AU - Nicolai, Leo AU - Schiefelbein, Karin AU - Lipsky, Silvia AU - Leunig, Alexander AU - Hoffknecht, Marie AU - Pekayvaz, Kami AU - Raude, Ben AU - Marx, Charlotte AU - Ehrlich, Andreas AU - Pircher, Joachim AU - Zhang, Zhe AU - Saleh, Inas AU - Marel, Anna-Kristina AU - Löf, Achim AU - Petzold, Tobias AU - Lorenz, Michael AU - Stark, Konstantin AU - Pick, Robert AU - Rosenberger, Gerhild AU - Weckbach, Ludwig AU - Uhl, Bernd AU - Xia, Sheng AU - Reichel, Christoph Andreas AU - Walzog, Barbara AU - Schulz, Christian AU - Zheden, Vanessa AU - Bender, Markus AU - Li, Rong AU - Massberg, Steffen AU - Gärtner, Florian R ID - 8787 JF - Nature Communications TI - Vascular surveillance by haptotactic blood platelets in inflammation and infection VL - 11 ER - TY - JOUR AB - The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation. AU - Fäßler, Florian AU - Dimchev, Georgi A AU - Hodirnau, Victor-Valentin AU - Wan, William AU - Schur, Florian KM ID - 8971 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Physics and Astronomy KW - General Chemistry SN - 2041-1723 TI - Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction VL - 11 ER - TY - JOUR AB - Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons–hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management. AU - Duan, Jiahua AU - Capote-Robayna, Nathaniel AU - Taboada-Gutiérrez, Javier AU - Álvarez-Pérez, Gonzalo AU - Prieto Gonzalez, Ivan AU - Martín-Sánchez, Javier AU - Nikitin, Alexey Y. AU - Alonso-González, Pablo ID - 10866 IS - 7 JF - Nano Letters KW - Mechanical Engineering KW - Condensed Matter Physics KW - General Materials Science KW - General Chemistry KW - Bioengineering SN - 1530-6984 TI - Twisted nano-optics: Manipulating light at the nanoscale with twisted phonon polaritonic slabs VL - 20 ER - TY - JOUR AB - A working group, which was established within the Network of Repository Managers (RepManNet), has dealt with common certifications for repositories. In addition, current requirements of the research funding agencies FWF and EU were also taken into account. The Core Trust Seal was examined in more detail. For this purpose, a questionnaire was sent to those organizations that are already certified with CTS in Austria. The answers were summarized and evaluated anonymously. It is recommended to go for a repository certification. Moreover, the development of a DINI certificate in Austria is strongly suggested. AU - Ernst, Doris AU - Novotny, Gertraud AU - Schönher, Eva Maria ID - 7687 IS - 1 JF - Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare SN - 1022-2588 TI - (Core Trust) Seal your repository! VL - 73 ER - TY - GEN AB - De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). Here, we used Cul3 mouse models to evaluate the consequences of Cul3 mutations in vivo. Our results show that Cul3 haploinsufficient mice exhibit deficits in motor coordination as well as ASD-relevant social and cognitive impairments. Cul3 mutant brain displays cortical lamination abnormalities due to defective neuronal migration and reduced numbers of excitatory and inhibitory neurons. In line with the observed abnormal columnar organization, Cul3 haploinsufficiency is associated with decreased spontaneous excitatory and inhibitory activity in the cortex. At the molecular level, employing a quantitative proteomic approach, we show that Cul3 regulates cytoskeletal and adhesion protein abundance in mouse embryos. Abnormal regulation of cytoskeletal proteins in Cul3 mutant neuronal cells results in atypical organization of the actin mesh at the cell leading edge, likely causing the observed migration deficits. In contrast to these important functions early in development, Cul3 deficiency appears less relevant at adult stages. In fact, induction of Cul3 haploinsufficiency in adult mice does not result in the behavioral defects observed in constitutive Cul3 haploinsufficient animals. Taken together, our data indicate that Cul3 has a critical role in the regulation of cytoskeletal proteins and neuronal migration and that ASD-associated defects and behavioral abnormalities are primarily due to Cul3 functions at early developmental stages. AU - Morandell, Jasmin AU - Schwarz, Lena A AU - Basilico, Bernadette AU - Tasciyan, Saren AU - Nicolas, Armel AU - Sommer, Christoph M AU - Kreuzinger, Caroline AU - Knaus, Lisa AU - Dobler, Zoe AU - Cacci, Emanuele AU - Danzl, Johann G AU - Novarino, Gaia ID - 7800 T2 - bioRxiv TI - Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development ER - TY - GEN AB - Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow1,2. Here we show in zebrafish primary germ layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase, and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. Once tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension stabilizing E-cadherin-actin complexes at the contact. AU - Slovakova, Jana AU - Sikora, Mateusz K AU - Caballero Mancebo, Silvia AU - Krens, Gabriel AU - Kaufmann, Walter AU - Huljev, Karla AU - Heisenberg, Carl-Philipp J ID - 9750 T2 - bioRxiv TI - Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion ER - TY - JOUR AB - Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour. AU - Reversat, Anne AU - Gärtner, Florian R AU - Merrin, Jack AU - Stopp, Julian A AU - Tasciyan, Saren AU - Aguilera Servin, Juan L AU - De Vries, Ingrid AU - Hauschild, Robert AU - Hons, Miroslav AU - Piel, Matthieu AU - Callan-Jones, Andrew AU - Voituriez, Raphael AU - Sixt, Michael K ID - 7885 JF - Nature SN - 00280836 TI - Cellular locomotion using environmental topography VL - 582 ER - TY - JOUR AB - Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and inter-cellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how it functions in planta. In order to facilitate the direct quantitative study of plant CME, here we review current routinely used methods and present refined, standardized quantitative imaging protocols which allow the detailed characterization of CME at multiple scales in plant tissues. These include: (i) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultra-structure of clathrin-coated vesicles; (ii) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (iii) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (iv) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples. AU - Johnson, Alexander J AU - Gnyliukh, Nataliia AU - Kaufmann, Walter AU - Narasimhan, Madhumitha AU - Vert, G AU - Bednarek, SY AU - Friml, Jiří ID - 8139 IS - 15 JF - Journal of Cell Science SN - 0021-9533 TI - Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis VL - 133 ER - TY - JOUR AB - Glyphosate (N-phosphonomethyl glycine) and its commercial herbicide formulations have been shown to exert toxicity via various mechanisms. It has been asserted that glyphosate substitutes for glycine in polypeptide chains leading to protein misfolding and toxicity. However, as no direct evidence exists for glycine to glyphosate substitution in proteins, including in mammalian organisms, we tested this claim by conducting a proteomics analysis of MDA-MB-231 human breast cancer cells grown in the presence of 100 mg/L glyphosate for 6 days. Protein extracts from three treated and three untreated cell cultures were analysed as one TMT-6plex labelled sample, to highlight a specific pattern (+/+/+/−/−/−) of reporter intensities for peptides bearing true glyphosate treatment induced-post translational modifications as well as allowing an investigation of the total proteome. AU - Antoniou, Michael N. AU - Nicolas, Armel AU - Mesnage, Robin AU - Biserni, Martina AU - Rao, Francesco V. AU - Martin, Cristina Vazquez ID - 6819 JF - BMC Research Notes TI - Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells VL - 12 ER -