@article{10607, abstract = {The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders.}, author = {Venezia, Serena and Kaufmann, Walter and Wenning, Gregor K. and Stefanova, Nadia}, issn = {1873-5126}, journal = {Parkinsonism & Related Disorders}, pages = {59--65}, publisher = {Elsevier}, title = {{Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson's disease}}, doi = {10.1016/j.parkreldis.2021.09.007}, volume = {91}, year = {2021}, } @article{9301, abstract = {Electrodepositing insulating lithium peroxide (Li2O2) is the key process during discharge of aprotic Li–O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and dissolved lithium superoxide governs whether Li2O2 grows as a conformal surface film or larger particles, leading to low or high capacities, respectively. However, better understanding governing factors for Li2O2 packing density and capacity requires structural sensitive in situ metrologies. Here, we establish in situ small- and wide-angle X-ray scattering (SAXS/WAXS) as a suitable method to record the Li2O2 phase evolution with atomic to submicrometer resolution during cycling a custom-built in situ Li–O2 cell. Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative structural information from complex multiphase systems. Surprisingly, we find that features are absent that would point at a Li2O2 surface film formed via two consecutive electron transfers, even in poorly solvating electrolytes thought to be prototypical for surface growth. All scattering data can be modeled by stacks of thin Li2O2 platelets potentially forming large toroidal particles. Li2O2 solution growth is further justified by rotating ring-disk electrode measurements and electron microscopy. Higher discharge overpotentials lead to smaller Li2O2 particles, but there is no transition to an electronically passivating, conformal Li2O2 coating. Hence, mass transport of reactive species rather than electronic transport through a Li2O2 film limits the discharge capacity. Provided that species mobilities and carbon surface areas are high, this allows for high discharge capacities even in weakly solvating electrolytes. The currently accepted Li–O2 reaction mechanism ought to be reconsidered.}, author = {Prehal, Christian and Samojlov, Aleksej and Nachtnebel, Manfred and Lovicar, Ludek and Kriechbaum, Manfred and Amenitsch, Heinz and Freunberger, Stefan Alexander}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, keywords = {small-angle X-ray scattering, oxygen reduction, disproportionation, Li-air battery}, number = {14}, publisher = {National Academy of Sciences}, title = {{In situ small-angle X-ray scattering reveals solution phase discharge of Li–O2 batteries with weakly solvating electrolytes}}, doi = {10.1073/pnas.2021893118}, volume = {118}, year = {2021}, } @article{10836, author = {Pranger, Christina L. and Fazekas-Singer, Judit and Köhler, Verena K. and Pali‐Schöll, Isabella and Fiocchi, Alessandro and Karagiannis, Sophia N. and Zenarruzabeitia, Olatz and Borrego, Francisco and Jensen‐Jarolim, Erika}, issn = {1398-9995}, journal = {Allergy}, keywords = {Immunology, Immunology and Allergy}, number = {5}, pages = {1553--1556}, publisher = {Wiley}, title = {{PIPE‐cloned human IgE and IgG4 antibodies: New tools for investigating cow's milk allergy and tolerance}}, doi = {10.1111/all.14604}, volume = {76}, year = {2021}, } @article{9928, abstract = {There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits.}, author = {Peruzzo, Matilda and Hassani, Farid and Szep, Gregory and Trioni, Andrea and Redchenko, Elena and Zemlicka, Martin and Fink, Johannes M}, issn = {2691-3399}, journal = {PRX Quantum}, keywords = {quantum physics, mesoscale and nanoscale physics}, number = {4}, pages = {040341}, publisher = {American Physical Society}, title = {{Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction}}, doi = {10.1103/PRXQuantum.2.040341}, volume = {2}, year = {2021}, } @article{10223, abstract = {Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, issn = {14764687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7884}, pages = {273--277}, publisher = {Springer Nature}, title = {{Cell surface and intracellular auxin signalling for H+ fluxes in root growth}}, doi = {10.1038/s41586-021-04037-6}, volume = {599}, year = {2021}, }