@article{10123, abstract = {Solution synthesis of particles emerged as an alternative to prepare thermoelectric materials with less demanding processing conditions than conventional solid-state synthetic methods. However, solution synthesis generally involves the presence of additional molecules or ions belonging to the precursors or added to enable solubility and/or regulate nucleation and growth. These molecules or ions can end up in the particles as surface adsorbates and interfere in the material properties. This work demonstrates that ionic adsorbates, in particular Na⁺ ions, are electrostatically adsorbed in SnSe particles synthesized in water and play a crucial role not only in directing the material nano/microstructure but also in determining the transport properties of the consolidated material. In dense pellets prepared by sintering SnSe particles, Na remains within the crystal lattice as dopant, in dislocations, precipitates, and forming grain boundary complexions. These results highlight the importance of considering all the possible unintentional impurities to establish proper structure-property relationships and control material properties in solution-processed thermoelectric materials.}, author = {Liu, Yu and Calcabrini, Mariano and Yu, Yuan and Genç, Aziz and Chang, Cheng and Costanzo, Tommaso and Kleinhanns, Tobias and Lee, Seungho and Llorca, Jordi and Cojocaru‐Mirédin, Oana and Ibáñez, Maria}, issn = {1521-4095}, journal = {Advanced Materials}, keywords = {mechanical engineering, mechanics of materials, general materials science}, number = {52}, publisher = {Wiley}, title = {{The importance of surface adsorbates in solution‐processed thermoelectric materials: The case of SnSe}}, doi = {10.1002/adma.202106858}, volume = {33}, year = {2021}, } @article{10117, abstract = {Proximity labeling provides a powerful in vivo tool to characterize the proteome of subcellular structures and the interactome of specific proteins. The nematode Caenorhabditis elegans is one of the most intensely studied organisms in biology, offering many advantages for biochemistry. Using the highly active biotin ligase TurboID, we optimize here a proximity labeling protocol for C. elegans. An advantage of TurboID is that biotin's high affinity for streptavidin means biotin-labeled proteins can be affinity-purified under harsh denaturing conditions. By combining extensive sonication with aggressive denaturation using SDS and urea, we achieved near-complete solubilization of worm proteins. We then used this protocol to characterize the proteomes of the worm gut, muscle, skin, and nervous system. Neurons are among the smallest C. elegans cells. To probe the method's sensitivity, we expressed TurboID exclusively in the two AFD neurons and showed that the protocol could identify known and previously unknown proteins expressed selectively in AFD. The active zones of synapses are composed of a protein matrix that is difficult to solubilize and purify. To test if our protocol could solubilize active zone proteins, we knocked TurboID into the endogenous elks-1 gene, which encodes a presynaptic active zone protein. We identified many known ELKS-1-interacting active zone proteins, as well as previously uncharacterized synaptic proteins. Versatile vectors and the inherent advantages of using C. elegans, including fast growth and the ability to rapidly make and functionally test knock-ins, make proximity labeling a valuable addition to the armory of this model organism.}, author = {Artan, Murat and Barratt, Stephen and Flynn, Sean M. and Begum, Farida and Skehel, Mark and Nicolas, Armel and De Bono, Mario}, issn = {1083-351X}, journal = {Journal of Biological Chemistry}, number = {3}, publisher = {Elsevier}, title = {{Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling}}, doi = {10.1016/J.JBC.2021.101094}, volume = {297}, year = {2021}, } @article{10177, abstract = {Phonon polaritons (PhPs)—light coupled to lattice vibrations—with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.}, author = {Martín-Sánchez, Javier and Duan, Jiahua and Taboada-Gutiérrez, Javier and Álvarez-Pérez, Gonzalo and Voronin, Kirill V. and Prieto Gonzalez, Ivan and Ma, Weiliang and Bao, Qiaoliang and Volkov, Valentyn S. and Hillenbrand, Rainer and Nikitin, Alexey Y. and Alonso-González, Pablo}, issn = {23752548}, journal = {Science Advances}, number = {41}, publisher = {American Association for the Advancement of Science}, title = {{Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas}}, doi = {10.1126/sciadv.abj0127}, volume = {7}, year = {2021}, } @article{10179, abstract = {Inhibitory GABAergic interneurons migrate over long distances from their extracortical origin into the developing cortex. In humans, this process is uniquely slow and prolonged, and it is unclear whether guidance cues unique to humans govern the various phases of this complex developmental process. Here, we use fused cerebral organoids to identify key roles of neurotransmitter signaling pathways in guiding the migratory behavior of human cortical interneurons. We use scRNAseq to reveal expression of GABA, glutamate, glycine, and serotonin receptors along distinct maturation trajectories across interneuron migration. We develop an image analysis software package, TrackPal, to simultaneously assess 48 parameters for entire migration tracks of individual cells. By chemical screening, we show that different modes of interneuron migration depend on distinct neurotransmitter signaling pathways, linking transcriptional maturation of interneurons with their migratory behavior. Altogether, our study provides a comprehensive quantitative analysis of human interneuron migration and its functional modulation by neurotransmitter signaling.}, author = {Bajaj, Sunanjay and Bagley, Joshua A. and Sommer, Christoph M and Vertesy, Abel and Nagumo Wong, Sakurako and Krenn, Veronica and Lévi-Strauss, Julie and Knoblich, Juergen A.}, issn = {1460-2075}, journal = {EMBO Journal}, number = {23}, publisher = {Embo Press}, title = {{Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration}}, doi = {10.15252/embj.2021108714}, volume = {40}, year = {2021}, } @article{10283, abstract = {During the past decade, the scientific community and outside observers have noted a concerning lack of rigor and transparency in preclinical research that led to talk of a “reproducibility crisis” in the life sciences (Baker, 2016; Bespalov & Steckler, 2018; Heddleston et al, 2021). Various measures have been proposed to address the problem: from better training of scientists to more oversight to expanded publishing practices such as preregistration of studies. The recently published EQIPD (Enhancing Quality in Preclinical Data) System is, to date, the largest initiative that aims to establish a systematic approach for increasing the robustness and reliability of biomedical research (Bespalov et al, 2021). However, promoting a cultural change in research practices warrants a broad adoption of the Quality System and its underlying philosophy. It is here that academic Core Facilities (CF), research service providers at universities and research institutions, can make a difference. It is fair to assume that a significant fraction of published data originated from experiments that were designed, run, or analyzed in CFs. These academic services play an important role in the research ecosystem by offering access to cutting-edge equipment and by developing and testing novel techniques and methods that impact research in the academic and private sectors alike (Bikovski et al, 2020). Equipment and infrastructure are not the only value: CFs employ competent personnel with profound knowledge and practical experience of the specific field of interest: animal behavior, imaging, crystallography, genomics, and so on. Thus, CFs are optimally positioned to address concerns about the quality and robustness of preclinical research.}, author = {Restivo, Leonardo and Gerlach, Björn and Tsoory, Michael and Bikovski, Lior and Badurek, Sylvia and Pitzer, Claudia and Kos-Braun, Isabelle C. and Mausset-Bonnefont, Anne Laure Mj and Ward, Jonathan and Schunn, Michael and Noldus, Lucas P.J.J. and Bespalov, Anton and Voikar, Vootele}, issn = {1469-3178}, journal = {EMBO Reports}, publisher = {EMBO Press}, title = {{Towards best practices in research: Role of academic core facilities}}, doi = {10.15252/embr.202153824}, volume = {22}, year = {2021}, }