@article{10758, abstract = {5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10–20 kJ mol–1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC’s subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.}, author = {Dubini, Romeo C. A. and Korytiaková, Eva and Schinkel, Thea and Heinrichs, Pia and Carell, Thomas and Rovo, Petra}, issn = {2694-2445}, journal = {ACS Physical Chemistry Au}, number = {3}, pages = {237--246}, publisher = {American Chemical Society}, title = {{1H NMR chemical exchange techniques reveal local and global effects of oxidized cytosine derivatives}}, doi = {10.1021/acsphyschemau.1c00050}, volume = {2}, year = {2022}, } @article{11182, abstract = {Immune cells are constantly on the move through multicellular organisms to explore and respond to pathogens and other harmful insults. While moving, immune cells efficiently traverse microenvironments composed of tissue cells and extracellular fibers, which together form complex environments of various porosity, stiffness, topography, and chemical composition. In this protocol we describe experimental procedures to investigate immune cell migration through microenvironments of heterogeneous porosity. In particular, we describe micro-channels, micro-pillars, and collagen networks as cell migration paths with alternative pore size choices. Employing micro-channels or micro-pillars that divide at junctions into alternative paths with initially differentially sized pores allows us to precisely (1) measure the cellular translocation time through these porous path junctions, (2) quantify the cellular preference for individual pore sizes, and (3) image cellular components like the nucleus and the cytoskeleton. This reductionistic experimental setup thus can elucidate how immune cells perform decisions in complex microenvironments of various porosity like the interstitium. The setup further allows investigation of the underlying forces of cellular squeezing and the consequences of cellular deformation on the integrity of the cell and its organelles. As a complementary approach that does not require any micro-engineering expertise, we describe the usage of three-dimensional collagen networks with different pore sizes. Whereas we here focus on dendritic cells as a model for motile immune cells, the described protocols are versatile as they are also applicable for other immune cell types like neutrophils and non-immune cell types such as mesenchymal and cancer cells. In summary, we here describe protocols to identify the mechanisms and principles of cellular probing, decision making, and squeezing during cellular movement through microenvironments of heterogeneous porosity.}, author = {Kroll, Janina and Ruiz-Fernandez, Mauricio J.A. and Braun, Malte B. and Merrin, Jack and Renkawitz, Jörg}, issn = {2691-1299}, journal = {Current Protocols}, number = {4}, publisher = {Wiley}, title = {{Quantifying the probing and selection of microenvironmental pores by motile immune cells}}, doi = {10.1002/cpz1.407}, volume = {2}, year = {2022}, } @article{11444, abstract = {This article investigates library-related documents written by Gerard van Swieten (1700–72) during his tenure as Library Prefect in the Imperial Library of Vienna (1745–72). Van Swieten’s time as Library Prefect is considered through a textual analysis. Handwritten letters were deconstructed in terms of their appearance, layout, and tone in order to mine them for meaning. Furthermore, the contents were examined for library matters such as censorship, catalogues, and collection development. The Imperial Court Library held a prominent role as a repository for rare and valuable works, later becoming the National Library of Austria. Gerard van Swieten’s work as a librarian tends to be overlooked, perhaps because he is better known as the private physician of Maria Theresia, as well as a medical reformer. Nevertheless, he was a hard-working chief librarian deeply involved in all aspects of librarianship. Van Swieten endorsed modern scientific works, which were otherwise banned officially by the censorship commission, for the use of scholars in the library, expanded the collection by acquiring books through his network of scholars and publishers, and reissued library catalogues. He also provided for the comfort of users in the library reading room, at a time when such considerations were unusual. In conclusion, a proposal is made that van Swieten viewed his role as librarian with some importance and pride.}, author = {Chlebak, Clara A and Reid, Peter H.}, issn = {1758-3497}, journal = {Library and Information History}, number = {1}, pages = {23--41}, publisher = {Edinburgh University Press}, title = {{From the prefect’s desk: Gerard van Swieten’s library correspondence}}, doi = {10.3366/lih.2022.0097}, volume = {38}, year = {2022}, } @inproceedings{12894, author = {Schlögl, Alois and Hornoiu, Andrei and Elefante, Stefano and Stadlbauer, Stephan}, booktitle = {ASHPC22 - Austrian-Slovenian HPC Meeting 2022}, isbn = {978-3-200-08499-5}, location = {Grundlsee, Austria}, pages = {7}, publisher = {EuroCC Austria c/o Universität Wien}, title = {{Where is the sweet spot? A procurement story of general purpose compute nodes}}, doi = {10.25365/phaidra.337}, year = {2022}, } @article{9794, abstract = {Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.}, author = {Assen, Frank P and Abe, Jun and Hons, Miroslav and Hauschild, Robert and Shamipour, Shayan and Kaufmann, Walter and Costanzo, Tommaso and Krens, Gabriel and Brown, Markus and Ludewig, Burkhard and Hippenmeyer, Simon and Heisenberg, Carl-Philipp J and Weninger, Wolfgang and Hannezo, Edouard B and Luther, Sanjiv A. and Stein, Jens V. and Sixt, Michael K}, issn = {1529-2916}, journal = {Nature Immunology}, pages = {1246--1255}, publisher = {Springer Nature}, title = {{Multitier mechanics control stromal adaptations in swelling lymph nodes}}, doi = {10.1038/s41590-022-01257-4}, volume = {23}, year = {2022}, }