@article{12106, abstract = {Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells.}, author = {Yeung, Jake and Florescu, Maria and Zeller, Peter and De Barbanson, Buys Anton and Wellenstein, Max D. and Van Oudenaarden, Alexander}, issn = {1546-1696}, journal = {Nature Biotechnology}, pages = {813–823}, publisher = {Springer Nature}, title = {{scChIX-seq infers dynamic relationships between histone modifications in single cells}}, doi = {10.1038/s41587-022-01560-3}, volume = {41}, year = {2023}, } @article{12543, abstract = {Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.}, author = {Stock, Miriam and Milutinovic, Barbara and Hönigsberger, Michaela and Grasse, Anna V and Wiesenhofer, Florian and Kampleitner, Niklas and Narasimhan, Madhumitha and Schmitt, Thomas and Cremer, Sylvia}, issn = {2397-334X}, journal = {Nature Ecology and Evolution}, pages = {450--460}, publisher = {Springer Nature}, title = {{Pathogen evasion of social immunity}}, doi = {10.1038/s41559-023-01981-6}, volume = {7}, year = {2023}, } @article{12863, abstract = {In the present study, essential and nonessential metal content and biomarker responses were investigated in the intestine of fish collected from the areas polluted by mining. Our objective was to determine metal and biomarker levels in tissue responsible for dietary intake, which is rarely studied in water pollution research. The study was conducted in the Bregalnica River, reference location, and in the Zletovska and Kriva Rivers (the Republic of North Macedonia), which are directly influenced by the active mines Zletovo and Toranica, respectively. Biological responses were analyzed in Vardar chub (Squalius vardarensis; Karaman, 1928), using for the first time intestinal cytosol as a potentially toxic cell fraction, since metal sensitivity is mostly associated with cytosol. Cytosolic metal levels were higher in fish under the influence of mining (Tl, Li, Cs, Mo, Sr, Cd, Rb, and Cu in the Zletovska River and Cr, Pb, and Se in the Kriva River compared to the Bregalnica River in both seasons). The same trend was evident for total proteins, biomarkers of general stress, and metallothioneins, biomarkers of metal exposure, indicating cellular disturbances in the intestine, the primary site of dietary metal uptake. The association of cytosolic Cu and Cd at all locations pointed to similar pathways and homeostasis of these metallothionein-binding metals. Comparison with other indicator tissues showed that metal concentrations were higher in the intestine of fish from mining-affected areas than in the liver and gills. In general, these results indicated the importance of dietary metal pathways, and cytosolic metal fraction in assessing pollution impacts in freshwater ecosystems.}, author = {Filipović Marijić, Vlatka and Krasnici, Nesrete and Valić, Damir and Kapetanović, Damir and Vardić Smrzlić, Irena and Jordanova, Maja and Rebok, Katerina and Ramani, Sheriban and Kostov, Vasil and Nastova, Rodne and Dragun, Zrinka}, issn = {1614-7499}, journal = {Environmental Science and Pollution Research}, pages = {63510--63521}, publisher = {Springer Nature}, title = {{Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish}}, doi = {10.1007/s11356-023-26844-2}, volume = {30}, year = {2023}, } @article{14404, abstract = {A light-triggered fabrication method extends the functionality of printable nanomaterials}, author = {Balazs, Daniel and Ibáñez, Maria}, issn = {1095-9203}, journal = {Science}, number = {6665}, pages = {1413--1414}, publisher = {AAAS}, title = {{Widening the use of 3D printing}}, doi = {10.1126/science.adk3070}, volume = {381}, year = {2023}, } @inbook{13052, abstract = {Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS.}, author = {Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {The Immune Synapse}, editor = {Baldari, Cosima and Dustin, Michael}, isbn = {9781071631348}, issn = {1940-6029}, pages = {137--147}, publisher = {Springer Nature}, title = {{En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses}}, doi = {10.1007/978-1-0716-3135-5_9}, volume = {2654}, year = {2023}, }