@misc{9784, abstract = {Additional file 1: Table S1. Kinetics of MDA-MB-231 cell growth in either the presence or absence of 100Â mg/L glyphosate. Cell counts are given at day-1 of seeding flasks and following 6-days of continuous culture. Note: no differences in cell numbers were observed between negative control and glyphosate treated cultures.}, author = {Antoniou, Michael N. and Nicolas, Armel and Mesnage, Robin and Biserni, Martina and Rao, Francesco V. and Martin, Cristina Vazquez}, publisher = {Springer Nature}, title = {{MOESM1 of Glyphosate does not substitute for glycine in proteins of actively dividing mammalian cells}}, doi = {10.6084/m9.figshare.9411761.v1}, year = {2019}, } @inproceedings{12901, author = {Schlögl, Alois and Kiss, Janos and Elefante, Stefano}, booktitle = {AHPC19 - Austrian HPC Meeting 2019 }, location = {Grundlsee, Austria}, pages = {25}, publisher = {Institut für Mathematik und wissenschaftliches Rechnen der Universität Graz}, title = {{Is Debian suitable for running an HPC Cluster?}}, year = {2019}, } @article{6052, abstract = {Expansion microscopy is a relatively new approach to super-resolution imaging that uses expandable hydrogels to isotropically increase the physical distance between fluorophores in biological samples such as cell cultures or tissue slices. The classic gel recipe results in an expansion factor of ~4×, with a resolution of 60–80 nm. We have recently developed X10 microscopy, which uses a gel that achieves an expansion factor of ~10×, with a resolution of ~25 nm. Here, we provide a step-by-step protocol for X10 expansion microscopy. A typical experiment consists of seven sequential stages: (i) immunostaining, (ii) anchoring, (iii) polymerization, (iv) homogenization, (v) expansion, (vi) imaging, and (vii) validation. The protocol presented here includes recommendations for optimization, pitfalls and their solutions, and detailed guidelines that should increase reproducibility. Although our protocol focuses on X10 expansion microscopy, we detail which of these suggestions are also applicable to classic fourfold expansion microscopy. We exemplify our protocol using primary hippocampal neurons from rats, but our approach can be used with other primary cells or cultured cell lines of interest. This protocol will enable any researcher with basic experience in immunostainings and access to an epifluorescence microscope to perform super-resolution microscopy with X10. The procedure takes 3 d and requires ~5 h of actively handling the sample for labeling and expansion, and another ~3 h for imaging and analysis.}, author = {Truckenbrodt, Sven M and Sommer, Christoph M and Rizzoli, Silvio O and Danzl, Johann G}, journal = {Nature Protocols}, number = {3}, pages = {832–863}, publisher = {Nature Publishing Group}, title = {{A practical guide to optimization in X10 expansion microscopy}}, doi = {10.1038/s41596-018-0117-3}, volume = {14}, year = {2019}, } @article{6087, abstract = {Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz−/− follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.}, author = {Xia, Peng and Gütl, Daniel J and Zheden, Vanessa and Heisenberg, Carl-Philipp J}, journal = {Cell}, number = {6}, pages = {1379--1392.e14}, publisher = {Elsevier}, title = {{Lateral inhibition in cell specification mediated by mechanical signals modulating TAZ activity}}, doi = {10.1016/j.cell.2019.01.019}, volume = {176}, year = {2019}, } @article{6607, abstract = {Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically.}, author = {Nguyen, Chi Huu and Glüxam, Tobias and Schlerka, Angela and Bauer, Katharina and Grandits, Alexander M. and Hackl, Hubert and Dovey, Oliver and Zöchbauer-Müller, Sabine and Cooper, Jonathan L. and Vassiliou, George S. and Stoiber, Dagmar and Wieser, Rotraud and Heller, Gerwin}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness}}, doi = {10.1038/s41598-019-45579-0}, volume = {9}, year = {2019}, } @article{6867, abstract = {A novel magnetic scratch method achieves repeatability, reproducibility and geometric control greater than pipette scratch assays and closely approximating the precision of cell exclusion assays while inducing the cell injury inherently necessary for wound healing assays. The magnetic scratch is affordable, easily implemented and standardisable and thus may contribute toward better comparability of data generated in different studies and laboratories.}, author = {Fenu, M. and Bettermann, T. and Vogl, C. and Darwish-Miranda, Nasser and Schramel, J. and Jenner, F. and Ribitsch, I.}, issn = {20452322}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, title = {{A novel magnet-based scratch method for standardisation of wound-healing assays}}, doi = {10.1038/s41598-019-48930-7}, volume = {9}, year = {2019}, } @article{7225, abstract = {This is a literature teaching resource review for biologically inspired microfluidics courses or exploring the diverse applications of microfluidics. The structure is around key papers and model organisms. While courses gradually change over time, a focus remains on understanding how microfluidics has developed as well as what it can and cannot do for researchers. As a primary starting point, we cover micro-fluid mechanics principles and microfabrication of devices. A variety of applications are discussed using model prokaryotic and eukaryotic organisms from the set of bacteria (Escherichia coli), trypanosomes (Trypanosoma brucei), yeast (Saccharomyces cerevisiae), slime molds (Physarum polycephalum), worms (Caenorhabditis elegans), flies (Drosophila melangoster), plants (Arabidopsis thaliana), and mouse immune cells (Mus musculus). Other engineering and biochemical methods discussed include biomimetics, organ on a chip, inkjet, droplet microfluidics, biotic games, and diagnostics. While we have not yet reached the end-all lab on a chip, microfluidics can still be used effectively for specific applications.}, author = {Merrin, Jack}, issn = {23065354}, journal = {Bioengineering}, number = {4}, publisher = {MDPI}, title = {{Frontiers in microfluidics, a teaching resource review}}, doi = {10.3390/bioengineering6040109}, volume = {6}, year = {2019}, } @article{7406, abstract = {Background Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. New method Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. Results We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Comparison with existing methods Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. Conclusions These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.}, author = {Mckenzie, Catherine and Spanova, Miroslava and Johnson, Alexander J and Kainrath, Stephanie and Zheden, Vanessa and Sitte, Harald H. and Janovjak, Harald L}, issn = {0165-0270}, journal = {Journal of Neuroscience Methods}, pages = {114--121}, publisher = {Elsevier}, title = {{Isolation of synaptic vesicles from genetically engineered cultured neurons}}, doi = {10.1016/j.jneumeth.2018.11.018}, volume = {312}, year = {2019}, } @article{7415, author = {Morandell, Jasmin and Nicolas, Armel and Schwarz, Lena A and Novarino, Gaia}, issn = {0924-977X}, journal = {European Neuropsychopharmacology}, number = {Supplement 6}, pages = {S11--S12}, publisher = {Elsevier}, title = {{S.16.05 Illuminating the role of the e3 ubiquitin ligase cullin3 in brain development and autism}}, doi = {10.1016/j.euroneuro.2019.09.040}, volume = {29}, year = {2019}, } @article{6093, abstract = {Blebs are cellular protrusions observed in migrating cells and in cells undergoing spreading, cytokinesis, and apoptosis. Here we investigate the flow of cytoplasm during bleb formation and the concurrent changes in cell volume using zebrafish primordial germ cells (PGCs) as an in vivo model. We show that bleb inflation occurs concomitantly with cytoplasmic inflow into it and that during this process the total cell volume does not change. We thus show that bleb formation in primordial germ cells results primarily from redistribution of material within the cell rather than being driven by flow of water from an external source.}, author = {Goudarzi, Mohammad and Boquet-Pujadas, Aleix and Olivo-Marin, Jean Christophe and Raz, Erez}, journal = {PLOS ONE}, number = {2}, publisher = {Public Library of Science}, title = {{Fluid dynamics during bleb formation in migrating cells in vivo}}, doi = {10.1371/journal.pone.0212699}, volume = {14}, year = {2019}, } @article{6657, abstract = {In this article a model is described how Open Access definitions can be formed on the basis of objective criteria. The common Open Access definitions such as "gold" and "green" are not exactly defined. This becomes a problem as soon as one begins to measure Open Access, for example if the development of the Open Access share should be monitored. This was discussed in the working group on Open Access Monitoring of the AT2OA project and the present model was developed, which is based on 5 critics with 4 characteristics: location, licence, version, embargo and conditions of the Open Access publication are taken into account. In the meantime, the model has also been tested in practice using R scripts, and the initial results are quite promising.}, author = {Danowski, Patrick}, issn = {1022-2588}, journal = {Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, number = {1}, pages = {59--65}, publisher = {Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, title = {{An Austrian proposal for the classification of Open Access Tuples (COAT) - distinguish different open access types beyond colors}}, doi = {10.31263/voebm.v72i1.2276}, volume = {72}, year = {2019}, } @article{6328, abstract = {During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1,2,3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some—but not all—cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.}, author = {Renkawitz, Jörg and Kopf, Aglaja and Stopp, Julian A and de Vries, Ingrid and Driscoll, Meghan K. and Merrin, Jack and Hauschild, Robert and Welf, Erik S. and Danuser, Gaudenz and Fiolka, Reto and Sixt, Michael K}, journal = {Nature}, pages = {546--550}, publisher = {Springer Nature}, title = {{Nuclear positioning facilitates amoeboid migration along the path of least resistance}}, doi = {10.1038/s41586-019-1087-5}, volume = {568}, year = {2019}, } @article{53, abstract = {In 2013, a publication repository was implemented at IST Austria and 2015 after a thorough preparation phase a data repository was implemented - both based on the Open Source Software EPrints. In this text, designed as field report, we will reflect on our experiences with Open Source Software in general and specifically with EPrints regarding technical aspects but also regarding their characteristics of the user community. The second part is a pleading for including the end users in the process of implementation, adaption and evaluation.}, author = {Petritsch, Barbara and Porsche, Jana}, journal = {VÖB Mitteilungen}, number = {1}, pages = {199 -- 206}, publisher = {Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, title = {{IST PubRep and IST DataRep: the institutional repositories at IST Austria}}, doi = {10.31263/voebm.v71i1.1993}, volume = {71}, year = {2018}, } @misc{6459, author = {Petritsch, Barbara}, keywords = {Open Access, Publication Analysis}, location = {Graz, Austria}, publisher = {IST Austria}, title = {{Open Access at IST Austria 2009-2017}}, doi = {10.5281/zenodo.1410279}, year = {2018}, } @article{308, abstract = {Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.}, author = {Ratheesh, Aparna and Biebl, Julia and Smutny, Michael and Veselá, Jana and Papusheva, Ekaterina and Krens, Gabriel and Kaufmann, Walter and György, Attila and Casano, Alessandra M and Siekhaus, Daria E}, journal = {Developmental Cell}, number = {3}, pages = {331 -- 346}, publisher = {Elsevier}, title = {{Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration}}, doi = {10.1016/j.devcel.2018.04.002}, volume = {45}, year = {2018}, } @article{437, abstract = {Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity.}, author = {Leithner, Alexander F and Renkawitz, Jörg and De Vries, Ingrid and Hauschild, Robert and Haecker, Hans and Sixt, Michael K}, journal = {European Journal of Immunology}, number = {6}, pages = {1074 -- 1077}, publisher = {Wiley-Blackwell}, title = {{Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration}}, doi = {10.1002/eji.201747358}, volume = {48}, year = {2018}, } @article{275, abstract = {Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified > 1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments.}, author = {Brown, Markus and Johnson, Louise and Leone, Dario and Májek, Peter and Vaahtomeri, Kari and Senfter, Daniel and Bukosza, Nora and Schachner, Helga and Asfour, Gabriele and Langer, Brigitte and Hauschild, Robert and Parapatics, Katja and Hong, Young and Bennett, Keiryn and Kain, Renate and Detmar, Michael and Sixt, Michael K and Jackson, David and Kerjaschki, Dontscho}, journal = {Journal of Cell Biology}, number = {6}, pages = {2205 -- 2221}, publisher = {Rockefeller University Press}, title = {{Lymphatic exosomes promote dendritic cell migration along guidance cues}}, doi = {10.1083/jcb.201612051}, volume = {217}, year = {2018}, } @inbook{153, abstract = {Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters.}, author = {Renkawitz, Jörg and Reversat, Anne and Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {Methods in Cell Biology}, issn = {0091679X}, pages = {79 -- 91}, publisher = {Academic Press}, title = {{Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments}}, doi = {10.1016/bs.mcb.2018.07.004}, volume = {147}, year = {2018}, } @article{192, abstract = {The phytohormone auxin is the information carrier in a plethora of developmental and physiological processes in plants(1). It has been firmly established that canonical, nuclear auxin signalling acts through regulation of gene transcription(2). Here, we combined microfluidics, live imaging, genetic engineering and computational modelling to reanalyse the classical case of root growth inhibition(3) by auxin. We show that Arabidopsis roots react to addition and removal of auxin by extremely rapid adaptation of growth rate. This process requires intracellular auxin perception but not transcriptional reprogramming. The formation of the canonical TIR1/AFB-Aux/IAA co-receptor complex is required for the growth regulation, hinting to a novel, non-transcriptional branch of this signalling pathway. Our results challenge the current understanding of root growth regulation by auxin and suggest another, presumably non-transcriptional, signalling output of the canonical auxin pathway.}, author = {Fendrych, Matyas and Akhmanova, Maria and Merrin, Jack and Glanc, Matous and Hagihara, Shinya and Takahashi, Koji and Uchida, Naoyuki and Torii, Keiko U and Friml, Jirí}, journal = {Nature Plants}, number = {7}, pages = {453 -- 459}, publisher = {Springer Nature}, title = {{Rapid and reversible root growth inhibition by TIR1 auxin signalling}}, doi = {10.1038/s41477-018-0190-1}, volume = {4}, year = {2018}, } @article{163, abstract = {For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.}, author = {Reipert, Siegfried and Goldammer, Helmuth and Richardson, Christine and Goldberg, Martin and Hawkins, Timothy and Hollergschwandtner, Elena and Kaufmann, Walter and Antreich, Sebastian and Stierhof, York}, issn = {0022-1554}, journal = {Journal of Histochemistry and Cytochemistry}, number = {12}, pages = {903--921}, publisher = {SAGE Publications}, title = {{Agitation modules: Flexible means to accelerate automated freeze substitution}}, doi = {10.1369/0022155418786698}, volume = {66}, year = {2018}, }