@inbook{9756, abstract = {High-resolution visualization and quantification of membrane proteins contribute to the understanding of their functions and the roles they play in physiological and pathological conditions. Sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) is a powerful electron microscopy method to study quantitatively the two-dimensional distribution of transmembrane proteins and their tightly associated proteins. During treatment with SDS, intracellular organelles and proteins not anchored to the replica are dissolved, whereas integral membrane proteins captured and stabilized by carbon/platinum deposition remain on the replica. Their intra- and extracellular domains become exposed on the surface of the replica, facilitating the accessibility of antibodies and, therefore, providing higher labeling efficiency than those obtained with other immunoelectron microscopy techniques. In this chapter, we describe the protocols of SDS-FRL adapted for mammalian brain samples, and optimization of the SDS treatment to increase the labeling efficiency for quantification of Cav2.1, the alpha subunit of P/Q-type voltage-dependent calcium channels utilizing deep learning algorithms.}, author = {Kaufmann, Walter and Kleindienst, David and Harada, Harumi and Shigemoto, Ryuichi}, booktitle = { Receptor and Ion Channel Detection in the Brain}, isbn = {9781071615218}, keywords = {Freeze-fracture replica: Deep learning, Immunogold labeling, Integral membrane protein, Electron microscopy}, pages = {267--283}, publisher = {Humana}, title = {{High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL)}}, doi = {10.1007/978-1-0716-1522-5_19}, volume = {169}, year = {2021}, } @article{8931, abstract = {Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.}, author = {Gelová, Zuzana and Gallei, Michelle C and Pernisová, Markéta and Brunoud, Géraldine and Zhang, Xixi and Glanc, Matous and Li, Lanxin and Michalko, Jaroslav and Pavlovicova, Zlata and Verstraeten, Inge and Han, Huibin and Hajny, Jakub and Hauschild, Robert and Čovanová, Milada and Zwiewka, Marta and Hörmayer, Lukas and Fendrych, Matyas and Xu, Tongda and Vernoux, Teva and Friml, Jiří}, issn = {0168-9452}, journal = {Plant Science}, keywords = {Agronomy and Crop Science, Plant Science, Genetics, General Medicine}, publisher = {Elsevier}, title = {{Developmental roles of auxin binding protein 1 in Arabidopsis thaliana}}, doi = {10.1016/j.plantsci.2020.110750}, volume = {303}, year = {2021}, } @unpublished{10095, abstract = {Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, booktitle = {Research Square}, issn = {2693-5015}, title = {{Cell surface and intracellular auxin signalling for H+-fluxes in root growth}}, doi = {10.21203/rs.3.rs-266395/v3}, year = {2021}, } @misc{8181, author = {Hauschild, Robert}, publisher = {IST Austria}, title = {{Amplified centrosomes in dendritic cells promote immune cell effector functions}}, doi = {10.15479/AT:ISTA:8181}, year = {2020}, } @misc{8294, abstract = {Automated root growth analysis and tracking of root tips. }, author = {Hauschild, Robert}, publisher = {IST Austria}, title = {{RGtracker}}, doi = {10.15479/AT:ISTA:8294}, year = {2020}, } @techreport{8695, abstract = {A look at international activities on Open Science reveals a broad spectrum from individual institutional policies to national action plans. The present Recommendations for a National Open Science Strategy in Austria are based on these international initiatives and present practical considerations for their coordinated implementation with regard to strategic developments in research, technology and innovation (RTI) in Austria until 2030. They are addressed to all relevant actors in the RTI system, in particular to Research Performing Organisations, Research Funding Organisations, Research Policy, memory institutions such as Libraries and Researchers. The recommendation paper was developed from 2018 to 2020 by the OANA working group "Open Science Strategy" and published for the first time in spring 2020 for a public consultation. The now available final version of the recommendation document, which contains feedback and comments from the consultation, is intended to provide an impetus for further discussion and implementation of Open Science in Austria and serves as a contribution and basis for a potential national Open Science Strategy in Austria. The document builds on the diverse expertise of the authors (academia, administration, library and archive, information technology, science policy, funding system, etc.) and reflects their personal experiences and opinions.}, author = {Mayer, Katja and Rieck, Katharina and Reichmann, Stefan and Danowski, Patrick and Graschopf, Anton and König, Thomas and Kraker, Peter and Lehner, Patrick and Reckling, Falk and Ross-Hellauer, Tony and Spichtinger, Daniel and Tzatzanis, Michalis and Schürz, Stefanie}, pages = {36}, publisher = {OANA}, title = {{Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria}}, doi = {10.5281/ZENODO.4109242}, year = {2020}, } @article{8706, abstract = {As part of the Austrian Transition to Open Access (AT2OA) project, subproject TP1-B is working on designing a monitoring solution for the output of Open Access publications in Austria. This report on a potential Open Access monitoring approach in Austria is one of the results of these efforts and can serve as a basis for discussion on an international level.}, author = {Danowski, Patrick and Ferus, Andreas and Hikl, Anna-Laetitia and McNeill, Gerda and Miniberger, Clemens and Reding, Steve and Zarka, Tobias and Zojer, Michael}, issn = {10222588}, journal = {Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, number = {2}, pages = {278--284}, publisher = {Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare}, title = {{„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B}}, doi = {10.31263/voebm.v73i2.3941}, volume = {73}, year = {2020}, } @book{7474, abstract = {This booklet is a collection of abstracts presented at the AHPC conference.}, editor = {Schlögl, Alois and Kiss, Janos and Elefante, Stefano}, isbn = {978-3-99078-004-6}, location = {Klosterneuburg, Austria}, pages = {72}, publisher = {IST Austria}, title = {{Austrian High-Performance-Computing meeting (AHPC2020)}}, doi = {10.15479/AT:ISTA:7474}, year = {2020}, } @article{7490, abstract = {In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.}, author = {Narasimhan, Madhumitha and Johnson, Alexander J and Prizak, Roshan and Kaufmann, Walter and Tan, Shutang and Casillas Perez, Barbara E and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants}}, doi = {10.7554/eLife.52067}, volume = {9}, year = {2020}, } @article{7792, abstract = {Phonon polaritons—light coupled to lattice vibrations—in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1,2,3,4,5. However, the lack of tunability of their narrow and material-specific spectral range—the Reststrahlen band—severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain.}, author = {Taboada-Gutiérrez, Javier and Álvarez-Pérez, Gonzalo and Duan, Jiahua and Ma, Weiliang and Crowley, Kyle and Prieto Gonzalez, Ivan and Bylinkin, Andrei and Autore, Marta and Volkova, Halyna and Kimura, Kenta and Kimura, Tsuyoshi and Berger, M. H. and Li, Shaojuan and Bao, Qiaoliang and Gao, Xuan P.A. and Errea, Ion and Nikitin, Alexey Y. and Hillenbrand, Rainer and Martín-Sánchez, Javier and Alonso-González, Pablo}, issn = {14764660}, journal = {Nature Materials}, pages = {964–968}, publisher = {Springer Nature}, title = {{Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation}}, doi = {10.1038/s41563-020-0665-0}, volume = {19}, year = {2020}, }