--- _id: '13202' abstract: - lang: eng text: Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of ∼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons. acknowledged_ssus: - _id: EM-Fac acknowledgement: This work was supported by The Institute of Science and Technology (IST) Austria, the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 793482 (to K.E.) and by the European Research Council (ERC) Grant Agreement No. 694539 (to R.S.). We thank Nicoleta Condruz (IST Austria, Klosterneuburg, Austria) for technical assistance with sample preparation, the Electron Microscopy Facility of IST Austria (Klosterneuburg, Austria) for technical support with EM works, Natalia Baranova (University of Vienna, Vienna, Austria) and Martin Loose (IST Austria, Klosterneuburg, Austria) for advice on liposome preparation, and Yugo Fukazawa (University of Fukui, Fukui, Japan) for comments. article_processing_charge: No article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Le Monnier E, Shigemoto R. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 2023;43(23):4197-4216. doi:10.1523/JNEUROSCI.1514-22.2023 apa: Eguchi, K., Le Monnier, E., & Shigemoto, R. (2023). Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1514-22.2023 chicago: Eguchi, Kohgaku, Elodie Le Monnier, and Ryuichi Shigemoto. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience. Society for Neuroscience, 2023. https://doi.org/10.1523/JNEUROSCI.1514-22.2023. ieee: K. Eguchi, E. Le Monnier, and R. Shigemoto, “Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons,” The Journal of Neuroscience, vol. 43, no. 23. Society for Neuroscience, pp. 4197–4216, 2023. ista: Eguchi K, Le Monnier E, Shigemoto R. 2023. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. The Journal of Neuroscience. 43(23), 4197–4216. mla: Eguchi, Kohgaku, et al. “Nanoscale Phosphoinositide Distribution on Cell Membranes of Mouse Cerebellar Neurons.” The Journal of Neuroscience, vol. 43, no. 23, Society for Neuroscience, 2023, pp. 4197–216, doi:10.1523/JNEUROSCI.1514-22.2023. short: K. Eguchi, E. Le Monnier, R. Shigemoto, The Journal of Neuroscience 43 (2023) 4197–4216. date_created: 2023-07-09T22:01:12Z date_published: 2023-06-07T00:00:00Z date_updated: 2023-10-18T07:12:47Z day: '07' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.1514-22.2023 ec_funded: 1 external_id: isi: - '001020132100005' pmid: - '37160366' file: - access_level: open_access checksum: 70b2141870e0bf1c94fd343e18fdbc32 content_type: application/pdf creator: alisjak date_created: 2023-07-10T09:04:58Z date_updated: 2023-07-10T09:04:58Z file_id: '13205' file_name: 2023_JN_Eguchi.pdf file_size: 7794425 relation: main_file success: 1 file_date_updated: 2023-07-10T09:04:58Z has_accepted_license: '1' intvolume: ' 43' isi: 1 issue: '23' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 4197-4216 pmid: 1 project: - _id: 2659CC84-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '793482' name: 'Ultrastructural analysis of phosphoinositides in nerve terminals: distribution, dynamics and physiological roles in synaptic transmission' - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 issn: - 0270-6474 publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2023' ... --- _id: '14257' abstract: - lang: eng text: Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease. acknowledged_ssus: - _id: ScienComp - _id: Bio - _id: PreCl - _id: LifeSc - _id: M-Shop - _id: E-Lib acknowledgement: 'We thank J. Vorlaufer, N. Agudelo-Dueñas, W. Jahr and A. Wartak for microscope maintenance and troubleshooting; C. Kreuzinger, A. Freeman and I. Erber for technical assistance; and M. Tomschik for support with obtaining human samples. We gratefully acknowledge E. Miguel for setting up webKnossos and M. Šuplata for computational support and hardware control. We are grateful to R. Shigemoto and B. Bickel for generous support and M. Sixt and S. Boyd (Stanford University) for discussions and critical reading of the paper. PSD95-HaloTag mice were kindly provided by S. Grant (University of Edinburgh). We acknowledge expert support by Institute of Science and Technology Austria’s scientific computing, imaging and optics, preclinical and lab support facilities and by the Miba machine shop and library. We gratefully acknowledge funding by the following sources: Austrian Science Fund (FWF) grant I3600-B27 (J.G.D.); Austrian Science Fund (FWF) grant DK W1232 (J.G.D. and J.M.M.); Austrian Science Fund (FWF) grant Z 312-B27, Wittgenstein award (P.J.); Austrian Science Fund (FWF) projects I4685-B, I6565-B (SYNABS) and DOC 33-B27 (R.H.); Gesellschaft für Forschungsförderung NÖ (NFB) grant LSC18-022 (J.G.D.); European Union’s Horizon 2020 research and innovation programme, European Research Council (ERC) grant 715508 – REVERSEAUTISM (G.N.); European Union’s Horizon 2020 research and innovation programme, European Research Council (ERC) grant 692692 – GIANTSYN (P.J.); Marie Skłodowska-Curie Actions Fellowship GA no. 665385 under the EU Horizon 2020 program (J.M.M. and J.L.); and Marie Skłodowska-Curie Actions Individual Fellowship no. 101026635 under the EU Horizon 2020 program (J.F.W.).' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Julia M full_name: Michalska, Julia M id: 443DB6DE-F248-11E8-B48F-1D18A9856A87 last_name: Michalska orcid: 0000-0003-3862-1235 - first_name: Julia full_name: Lyudchik, Julia id: 46E28B80-F248-11E8-B48F-1D18A9856A87 last_name: Lyudchik - first_name: Philipp full_name: Velicky, Philipp id: 39BDC62C-F248-11E8-B48F-1D18A9856A87 last_name: Velicky orcid: 0000-0002-2340-7431 - first_name: Hana full_name: Korinkova, Hana id: ee3cb6ca-ec98-11ea-ae11-ff703e2254ed last_name: Korinkova - first_name: Jake full_name: Watson, Jake id: 63836096-4690-11EA-BD4E-32803DDC885E last_name: Watson orcid: 0000-0002-8698-3823 - first_name: Alban full_name: Cenameri, Alban id: 9ac8f577-2357-11eb-997a-e566c5550886 last_name: Cenameri - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Alessandro full_name: Venturino, Alessandro id: 41CB84B2-F248-11E8-B48F-1D18A9856A87 last_name: Venturino orcid: 0000-0003-2356-9403 - first_name: Karl full_name: Roessler, Karl last_name: Roessler - first_name: Thomas full_name: Czech, Thomas last_name: Czech - first_name: Romana full_name: Höftberger, Romana last_name: Höftberger - first_name: Sandra full_name: Siegert, Sandra id: 36ACD32E-F248-11E8-B48F-1D18A9856A87 last_name: Siegert orcid: 0000-0001-8635-0877 - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 citation: ama: Michalska JM, Lyudchik J, Velicky P, et al. Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. 2023. doi:10.1038/s41587-023-01911-8 apa: Michalska, J. M., Lyudchik, J., Velicky, P., Korinkova, H., Watson, J., Cenameri, A., … Danzl, J. G. (2023). Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. Springer Nature. https://doi.org/10.1038/s41587-023-01911-8 chicago: Michalska, Julia M, Julia Lyudchik, Philipp Velicky, Hana Korinkova, Jake Watson, Alban Cenameri, Christoph M Sommer, et al. “Imaging Brain Tissue Architecture across Millimeter to Nanometer Scales.” Nature Biotechnology. Springer Nature, 2023. https://doi.org/10.1038/s41587-023-01911-8. ieee: J. M. Michalska et al., “Imaging brain tissue architecture across millimeter to nanometer scales,” Nature Biotechnology. Springer Nature, 2023. ista: Michalska JM, Lyudchik J, Velicky P, Korinkova H, Watson J, Cenameri A, Sommer CM, Amberg N, Venturino A, Roessler K, Czech T, Höftberger R, Siegert S, Novarino G, Jonas PM, Danzl JG. 2023. Imaging brain tissue architecture across millimeter to nanometer scales. Nature Biotechnology. mla: Michalska, Julia M., et al. “Imaging Brain Tissue Architecture across Millimeter to Nanometer Scales.” Nature Biotechnology, Springer Nature, 2023, doi:10.1038/s41587-023-01911-8. short: J.M. Michalska, J. Lyudchik, P. Velicky, H. Korinkova, J. Watson, A. Cenameri, C.M. Sommer, N. Amberg, A. Venturino, K. Roessler, T. Czech, R. Höftberger, S. Siegert, G. Novarino, P.M. Jonas, J.G. Danzl, Nature Biotechnology (2023). date_created: 2023-09-03T22:01:15Z date_published: 2023-08-31T00:00:00Z date_updated: 2024-02-21T12:18:18Z day: '31' department: - _id: SaSi - _id: GaNo - _id: PeJo - _id: JoDa - _id: Bio - _id: RySh doi: 10.1038/s41587-023-01911-8 ec_funded: 1 external_id: isi: - '001065254200001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41587-023-01911-8 month: '08' oa: 1 oa_version: Published Version project: - _id: 265CB4D0-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03600 name: Optical control of synaptic function via adhesion molecules - _id: 2548AE96-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 23889792-32DE-11EA-91FC-C7463DDC885E name: High content imaging to decode human immune cell interactions in health and allergic disease - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: fc2be41b-9c52-11eb-aca3-faa90aa144e9 call_identifier: H2020 grant_number: '101026635' name: Synaptic computations of the hippocampal CA3 circuitry publication: Nature Biotechnology publication_identifier: eissn: - 1546-1696 issn: - 1087-0156 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: software url: https://github.com/danzllab/CATS record: - id: '13126' relation: research_data status: public scopus_import: '1' status: public title: Imaging brain tissue architecture across millimeter to nanometer scales type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '10890' abstract: - lang: eng text: Upon the arrival of action potentials at nerve terminals, neurotransmitters are released from synaptic vesicles (SVs) by exocytosis. CaV2.1, 2.2, and 2.3 are the major subunits of the voltage-gated calcium channel (VGCC) responsible for increasing intraterminal calcium levels and triggering SV exocytosis in the central nervous system (CNS) synapses. The two-dimensional analysis of CaV2 distributions using sodium dodecyl sulfate (SDS)-digested freeze-fracture replica labeling (SDS-FRL) has revealed their numbers, densities, and nanoscale clustering patterns in individual presynaptic active zones. The variation in these properties affects the coupling of VGCCs with calcium sensors on SVs, synaptic efficacy, and temporal precision of transmission. In this study, we summarize how the morphological parameters of CaV2 distribution obtained using SDS-FRL differ depending on the different types of synapses and could correspond to functional properties in synaptic transmission. acknowledgement: "This work was supported by the European Research Council advanced grant No. 694539 and the joint German-Austrian DFG and FWF project SYNABS (FWF: I-4638-B) to RS.\r\nThe authors thank Walter Kaufmann for his critical comments on the manuscript." article_number: '846615' article_processing_charge: No article_type: original author: - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Jacqueline-Claire full_name: Montanaro-Punzengruber, Jacqueline-Claire id: 3786AB44-F248-11E8-B48F-1D18A9856A87 last_name: Montanaro-Punzengruber - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Eguchi K, Montanaro-Punzengruber J-C, Le Monnier E, Shigemoto R. The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. 2022;16. doi:10.3389/fnana.2022.846615 apa: Eguchi, K., Montanaro-Punzengruber, J.-C., Le Monnier, E., & Shigemoto, R. (2022). The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. Frontiers. https://doi.org/10.3389/fnana.2022.846615 chicago: Eguchi, Kohgaku, Jacqueline-Claire Montanaro-Punzengruber, Elodie Le Monnier, and Ryuichi Shigemoto. “The Number and Distinct Clustering Patterns of Voltage-Gated Calcium Channels in Nerve Terminals.” Frontiers in Neuroanatomy. Frontiers, 2022. https://doi.org/10.3389/fnana.2022.846615. ieee: K. Eguchi, J.-C. Montanaro-Punzengruber, E. Le Monnier, and R. Shigemoto, “The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals,” Frontiers in Neuroanatomy, vol. 16. Frontiers, 2022. ista: Eguchi K, Montanaro-Punzengruber J-C, Le Monnier E, Shigemoto R. 2022. The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals. Frontiers in Neuroanatomy. 16, 846615. mla: Eguchi, Kohgaku, et al. “The Number and Distinct Clustering Patterns of Voltage-Gated Calcium Channels in Nerve Terminals.” Frontiers in Neuroanatomy, vol. 16, 846615, Frontiers, 2022, doi:10.3389/fnana.2022.846615. short: K. Eguchi, J.-C. Montanaro-Punzengruber, E. Le Monnier, R. Shigemoto, Frontiers in Neuroanatomy 16 (2022). date_created: 2022-03-20T23:01:39Z date_published: 2022-02-24T00:00:00Z date_updated: 2023-08-03T06:07:18Z day: '24' ddc: - '570' department: - _id: RySh doi: 10.3389/fnana.2022.846615 ec_funded: 1 external_id: isi: - '000766662700001' pmid: - '35280978' file: - access_level: open_access checksum: 51ec9b90e7da919e22c01a15489eaacd content_type: application/pdf creator: dernst date_created: 2022-03-21T09:41:19Z date_updated: 2022-03-21T09:41:19Z file_id: '10911' file_name: 2022_FrontiersNeuroanatomy_Eguchi.pdf file_size: 2416395 relation: main_file success: 1 file_date_updated: 2022-03-21T09:41:19Z has_accepted_license: '1' intvolume: ' 16' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 05970B30-7A3F-11EA-A408-12923DDC885E grant_number: I04638 name: LGI1 antibody-induced pathophysiology in synapses publication: Frontiers in Neuroanatomy publication_identifier: eissn: - '16625129' publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: The number and distinct clustering patterns of voltage-gated Calcium channels in nerve terminals tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2022' ... --- _id: '10889' abstract: - lang: eng text: Genetically encoded tags have introduced extensive lines of application from purification of tagged proteins to their visualization at the single molecular, cellular, histological and whole-body levels. Combined with other rapidly developing technologies such as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, proteomics, super-resolution microscopy and proximity labeling, a large variety of genetically encoded tags have been developed in the last two decades. In this review, I focus on the current status of tag development for electron microscopic (EM) visualization of proteins with metal particle labeling. Compared with conventional immunoelectron microscopy using gold particles, tag-mediated metal particle labeling has several advantages that could potentially improve the sensitivity, spatial and temporal resolution, and applicability to a wide range of proteins of interest (POIs). It may enable researchers to detect single molecules in situ, allowing the quantitative measurement of absolute numbers and exact localization patterns of POI in the ultrastructural context. Thus, genetically encoded tags for EM could revolutionize the field as green fluorescence protein did for light microscopy, although we still have many challenges to overcome before reaching this goal. acknowledgement: European Research Council Advanced Grant (694539 to R.S.). article_processing_charge: No article_type: original author: - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Shigemoto R. Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. 2022;71(Supplement_1):i72-i80. doi:10.1093/jmicro/dfab048 apa: Shigemoto, R. (2022). Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. Oxford Academic. https://doi.org/10.1093/jmicro/dfab048 chicago: Shigemoto, Ryuichi. “Electron Microscopic Visualization of Single Molecules by Tag-Mediated Metal Particle Labeling.” Microscopy. Oxford Academic, 2022. https://doi.org/10.1093/jmicro/dfab048. ieee: R. Shigemoto, “Electron microscopic visualization of single molecules by tag-mediated metal particle labeling,” Microscopy, vol. 71, no. Supplement_1. Oxford Academic, pp. i72–i80, 2022. ista: Shigemoto R. 2022. Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy. 71(Supplement_1), i72–i80. mla: Shigemoto, Ryuichi. “Electron Microscopic Visualization of Single Molecules by Tag-Mediated Metal Particle Labeling.” Microscopy, vol. 71, no. Supplement_1, Oxford Academic, 2022, pp. i72–80, doi:10.1093/jmicro/dfab048. short: R. Shigemoto, Microscopy 71 (2022) i72–i80. date_created: 2022-03-20T23:01:39Z date_published: 2022-03-01T00:00:00Z date_updated: 2023-08-03T06:08:01Z day: '01' department: - _id: RySh doi: 10.1093/jmicro/dfab048 ec_funded: 1 external_id: isi: - '000768384100011' pmid: - '35275179' intvolume: ' 71' isi: 1 issue: Supplement_1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/jmicro/dfab048 month: '03' oa: 1 oa_version: Published Version page: i72-i80 pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: Microscopy publication_identifier: eissn: - 2050-5701 issn: - 2050-5698 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Electron microscopic visualization of single molecules by tag-mediated metal particle labeling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 71 year: '2022' ... --- _id: '11419' abstract: - lang: eng text: Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer’s disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10–20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission. acknowledgement: We thank Yasuo Ihara, Nobuyuki Nukina, and Takeshi Sakaba for comments and Patrick Stoney for editing this paper. We also thank Shota Okuda and Mikako Matsubara for their contributions in the early stage of this study, and Satoko Wada-Kakuda for technical assistant with in vitro analysis of tau. This research was supported by funding from Okinawa Institute of Science and Technology and from Technology (OIST) and Core Research for the Evolutional Science and Technology of Japan Science and Technology Agency (CREST) to TT, and by Scientific Research on Innovative Areas to TM (Brain Protein Aging and Dementia Control 26117004). article_number: e73542 article_processing_charge: No article_type: original author: - first_name: Tetsuya full_name: Hori, Tetsuya last_name: Hori - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Han Ying full_name: Wang, Han Ying last_name: Wang - first_name: Tomohiro full_name: Miyasaka, Tomohiro last_name: Miyasaka - first_name: Laurent full_name: Guillaud, Laurent last_name: Guillaud - first_name: Zacharie full_name: Taoufiq, Zacharie last_name: Taoufiq - first_name: Satyajit full_name: Mahapatra, Satyajit last_name: Mahapatra - first_name: Hiroshi full_name: Yamada, Hiroshi last_name: Yamada - first_name: Kohji full_name: Takei, Kohji last_name: Takei - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Hori T, Eguchi K, Wang HY, et al. Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model. eLife. 2022;11. doi:10.7554/eLife.73542 apa: Hori, T., Eguchi, K., Wang, H. Y., Miyasaka, T., Guillaud, L., Taoufiq, Z., … Takahashi, T. (2022). Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.73542 chicago: Hori, Tetsuya, Kohgaku Eguchi, Han Ying Wang, Tomohiro Miyasaka, Laurent Guillaud, Zacharie Taoufiq, Satyajit Mahapatra, Hiroshi Yamada, Kohji Takei, and Tomoyuki Takahashi. “Microtubule Assembly by Tau Impairs Endocytosis and Neurotransmission via Dynamin Sequestration in Alzheimer’s Disease Synapse Model.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/eLife.73542. ieee: T. Hori et al., “Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Hori T, Eguchi K, Wang HY, Miyasaka T, Guillaud L, Taoufiq Z, Mahapatra S, Yamada H, Takei K, Takahashi T. 2022. Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model. eLife. 11, e73542. mla: Hori, Tetsuya, et al. “Microtubule Assembly by Tau Impairs Endocytosis and Neurotransmission via Dynamin Sequestration in Alzheimer’s Disease Synapse Model.” ELife, vol. 11, e73542, eLife Sciences Publications, 2022, doi:10.7554/eLife.73542. short: T. Hori, K. Eguchi, H.Y. Wang, T. Miyasaka, L. Guillaud, Z. Taoufiq, S. Mahapatra, H. Yamada, K. Takei, T. Takahashi, ELife 11 (2022). date_created: 2022-05-29T22:01:54Z date_published: 2022-05-05T00:00:00Z date_updated: 2023-08-03T07:15:49Z day: '05' ddc: - '616' department: - _id: RySh doi: 10.7554/eLife.73542 external_id: isi: - '000876231600001' pmid: - '35471147 ' file: - access_level: open_access checksum: ccddbd167e00ff8375f12998af497152 content_type: application/pdf creator: cchlebak date_created: 2022-05-30T08:09:16Z date_updated: 2022-05-30T08:09:16Z file_id: '11421' file_name: elife-73542-v2.pdf file_size: 2466296 relation: main_file success: 1 file_date_updated: 2022-05-30T08:09:16Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer's disease synapse model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ...