--- _id: '9917' abstract: - lang: eng text: Adaptive divergence and speciation may happen despite opposition by gene flow. Identifying the genomic basis underlying divergence with gene flow is a major task in evolutionary genomics. Most approaches (e.g., outlier scans) focus on genomic regions of high differentiation. However, not all genomic architectures potentially underlying divergence are expected to show extreme differentiation. Here, we develop an approach that combines hybrid zone analysis (i.e., focuses on spatial patterns of allele frequency change) with system-specific simulations to identify loci inconsistent with neutral evolution. We apply this to a genome-wide SNP set from an ideally suited study organism, the intertidal snail Littorina saxatilis, which shows primary divergence between ecotypes associated with different shore habitats. We detect many SNPs with clinal patterns, most of which are consistent with neutrality. Among non-neutral SNPs, most are located within three large putative inversions differentiating ecotypes. Many non-neutral SNPs show relatively low levels of differentiation. We discuss potential reasons for this pattern, including loose linkage to selected variants, polygenic adaptation and a component of balancing selection within populations (which may be expected for inversions). Our work is in line with theory predicting a role for inversions in divergence, and emphasizes that genomic regions contributing to divergence may not always be accessible with methods purely based on allele frequency differences. These conclusions call for approaches that take spatial patterns of allele frequency change into account in other systems. acknowledgement: We are very grateful to people who helped with fieldwork, snail processing, and DNA extractions, particularly Laura Brettell, Mårten Duvetorp, Juan Galindo, Anne-Lise Liabot and Irena Senčić. We would also like to thank Magnus Alm Rosenblad and Mats Töpel for their contribution to assembling the Littorina saxatilis genome, Carl André, Pasi Rastas, and Romain Villoutreix for discussion, and two anonymous reviewers for their helpful comments on the manuscript. We are grateful to RapidGenomics for library preparation and sequencing. We thank the Natural Environment Research Council, the European Research Council and the Swedish Research Councils VR and Formas (Linnaeus grant to the Centre for Marine Evolutionary Biology and Tage Erlander Guest Professorship) for funding. P.C. was funded by the University of Sheffield Vice-chancellor's India scholarship. R.F. is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 706376. M. Raf. was supported by the Adlerbert Research Foundation. article_processing_charge: Yes article_type: letter_note author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Pragya full_name: Chaube, Pragya last_name: Chaube - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Tomas full_name: Larsson, Tomas last_name: Larsson - first_name: Marina full_name: Panova, Marina last_name: Panova - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Anders full_name: Blomberg, Anders last_name: Blomberg - first_name: Bernhard full_name: Mehlig, Bernhard last_name: Mehlig - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Westram AM, Rafajlović M, Chaube P, et al. Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters. 2018;2(4):297-309. doi:10.1002/evl3.74' apa: 'Westram, A. M., Rafajlović, M., Chaube, P., Faria, R., Larsson, T., Panova, M., … Butlin, R. (2018). Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters. Wiley. https://doi.org/10.1002/evl3.74' chicago: 'Westram, Anja M, Marina Rafajlović, Pragya Chaube, Rui Faria, Tomas Larsson, Marina Panova, Mark Ravinet, et al. “Clines on the Seashore: The Genomic Architecture Underlying Rapid Divergence in the Face of Gene Flow.” Evolution Letters. Wiley, 2018. https://doi.org/10.1002/evl3.74.' ieee: 'A. M. Westram et al., “Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow,” Evolution Letters, vol. 2, no. 4. Wiley, pp. 297–309, 2018.' ista: 'Westram AM, Rafajlović M, Chaube P, Faria R, Larsson T, Panova M, Ravinet M, Blomberg A, Mehlig B, Johannesson K, Butlin R. 2018. Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters. 2(4), 297–309.' mla: 'Westram, Anja M., et al. “Clines on the Seashore: The Genomic Architecture Underlying Rapid Divergence in the Face of Gene Flow.” Evolution Letters, vol. 2, no. 4, Wiley, 2018, pp. 297–309, doi:10.1002/evl3.74.' short: A.M. Westram, M. Rafajlović, P. Chaube, R. Faria, T. Larsson, M. Panova, M. Ravinet, A. Blomberg, B. Mehlig, K. Johannesson, R. Butlin, Evolution Letters 2 (2018) 297–309. date_created: 2021-08-16T07:45:38Z date_published: 2018-08-20T00:00:00Z date_updated: 2023-09-19T15:08:25Z day: '20' ddc: - '570' department: - _id: BeVi doi: 10.1002/evl3.74 external_id: isi: - '000446774400004' pmid: - '30283683' file: - access_level: open_access checksum: 8524e72507d521416be3f8ccfcd5e3f5 content_type: application/pdf creator: asandaue date_created: 2021-08-16T07:48:03Z date_updated: 2021-08-16T07:48:03Z file_id: '9918' file_name: 2018_EvolutionLetters_Westram.pdf file_size: 764299 relation: main_file success: 1 file_date_updated: 2021-08-16T07:48:03Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 297-309 pmid: 1 publication: Evolution Letters publication_identifier: eissn: - 2056-3744 issn: - 2056-3744 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '9930' relation: research_data status: public status: public title: 'Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2 year: '2018' ... --- _id: '9915' abstract: - lang: eng text: 'The evolution of assortative mating is a key part of the speciation process. Stronger assortment, or greater divergence in mating traits, between species pairs with overlapping ranges is commonly observed, but possible causes of this pattern of reproductive character displacement are difficult to distinguish. We use a multidisciplinary approach to provide a rare example where it is possible to distinguish among hypotheses concerning the evolution of reproductive character displacement. We build on an earlier comparative analysis that illustrated a strong pattern of greater divergence in penis form between pairs of sister species with overlapping ranges than between allopatric sister-species pairs, in a large clade of marine gastropods (Littorinidae). We investigate both assortative mating and divergence in male genitalia in one of the sister-species pairs, discriminating among three contrasting processes each of which can generate a pattern of reproductive character displacement: reinforcement, reproductive interference and the Templeton effect. We demonstrate reproductive character displacement in assortative mating, but not in genital form between this pair of sister species and use demographic models to distinguish among the different processes. Our results support a model with no gene flow since secondary contact and thus favor reproductive interference as the cause of reproductive character displacement for mate choice, rather than reinforcement. High gene flow within species argues against the Templeton effect. Secondary contact appears to have had little impact on genital divergence.' acknowledgement: The authors express a special thanks to Dr Richard Willan at the Museum and Art Gallery of the Northern Territory for guidance and support in the field, and to Carole Smadja for reading and commenting on the manuscript. The authors thank the Government of Western Australia Department of Parks and Wildlife (license no. 009254) and Fishery Research Division (exemption no. 2262) for assistance with permits. Khalid Belkhir modified the coalescent sampler msnsam for the specific needs of this project and Martin Hirsch helped to set up the ABC pipeline and to modify the summary statistic calculator mscalc. The authors are grateful to the Crafoord Foundation for supporting this project. R.K.B., A.M.W., and L.D. were supported by grants from the Natural Environment Research Council, R.K.B. and A.M.W. were also supported by the European Research Council and R.K.B. and L.D. by the Leverhulme Trust. M.M.R. was supported by Consejo Nacional de Ciencia y Tecnología and Secretaría de Educación Pública, Mexico. G.B. was supported by the Centre for Animal Movement Research (CAnMove) financed by a Linnaeus grant (No. 349-2007-8690) from the Swedish Research Council and Lund University. article_processing_charge: Yes article_type: letter_note author: - first_name: Johan full_name: Hollander, Johan last_name: Hollander - first_name: Mauricio full_name: Montaño-Rendón, Mauricio last_name: Montaño-Rendón - first_name: Giuseppe full_name: Bianco, Giuseppe last_name: Bianco - first_name: Xi full_name: Yang, Xi last_name: Yang - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Ludovic full_name: Duvaux, Ludovic last_name: Duvaux - first_name: David G. full_name: Reid, David G. last_name: Reid - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Hollander J, Montaño-Rendón M, Bianco G, et al. Are assortative mating and genital divergence driven by reinforcement? Evolution Letters. 2018;2(6):557-566. doi:10.1002/evl3.85 apa: Hollander, J., Montaño-Rendón, M., Bianco, G., Yang, X., Westram, A. M., Duvaux, L., … Butlin, R. K. (2018). Are assortative mating and genital divergence driven by reinforcement? Evolution Letters. Wiley. https://doi.org/10.1002/evl3.85 chicago: Hollander, Johan, Mauricio Montaño-Rendón, Giuseppe Bianco, Xi Yang, Anja M Westram, Ludovic Duvaux, David G. Reid, and Roger K. Butlin. “Are Assortative Mating and Genital Divergence Driven by Reinforcement?” Evolution Letters. Wiley, 2018. https://doi.org/10.1002/evl3.85. ieee: J. Hollander et al., “Are assortative mating and genital divergence driven by reinforcement?,” Evolution Letters, vol. 2, no. 6. Wiley, pp. 557–566, 2018. ista: Hollander J, Montaño-Rendón M, Bianco G, Yang X, Westram AM, Duvaux L, Reid DG, Butlin RK. 2018. Are assortative mating and genital divergence driven by reinforcement? Evolution Letters. 2(6), 557–566. mla: Hollander, Johan, et al. “Are Assortative Mating and Genital Divergence Driven by Reinforcement?” Evolution Letters, vol. 2, no. 6, Wiley, 2018, pp. 557–66, doi:10.1002/evl3.85. short: J. Hollander, M. Montaño-Rendón, G. Bianco, X. Yang, A.M. Westram, L. Duvaux, D.G. Reid, R.K. Butlin, Evolution Letters 2 (2018) 557–566. date_created: 2021-08-16T07:30:00Z date_published: 2018-12-13T00:00:00Z date_updated: 2023-09-19T15:08:53Z day: '13' ddc: - '570' department: - _id: BeVi doi: 10.1002/evl3.85 external_id: isi: - '000452990000002' pmid: - '30564439' file: - access_level: open_access checksum: 997a78ac41c809975ca69cbdea441f88 content_type: application/pdf creator: asandaue date_created: 2021-08-16T07:37:28Z date_updated: 2021-08-16T07:37:28Z file_id: '9916' file_name: 2018_EvolutionLetters_Hollander.pdf file_size: 584606 relation: main_file success: 1 file_date_updated: 2021-08-16T07:37:28Z has_accepted_license: '1' intvolume: ' 2' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 557-566 pmid: 1 publication: Evolution Letters publication_identifier: eissn: - 2056-3744 issn: - ' 2056-3744' publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '9929' relation: research_data status: public status: public title: Are assortative mating and genital divergence driven by reinforcement? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2 year: '2018' ... --- _id: '8618' abstract: - lang: eng text: The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT nanoscopy have been developed from fluorescent proteins of the GFP superfamily. These proteins are bright, but exhibit several drawbacks such as relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching speed. Therefore, RSFPs from other origins with improved properties need to be explored. Here, we report the development of two RSFPs based on the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. LOV domains obtain their fluorescence by association with the abundant cellular cofactor flavin mononucleotide (FMN). Under illumination with blue and ultraviolet light, they undergo a photocycle, making these proteins inherently photoswitchable. Our first improved variant, rsLOV1, can be used for RESOLFT imaging, whereas rsLOV2 proved useful for STED nanoscopy of living cells with a resolution of down to 50 nm. In addition to their smaller size compared to GFP-related proteins (17 kDa instead of 27 kDa) and their usability at low pH, rsLOV1 and rsLOV2 exhibit faster switching kinetics, switching on and off 3 times faster than rsEGFP2, the fastest-switching RSFP reported to date. Therefore, LOV-domain-based RSFPs have potential for applications where the switching speed of GFP-based proteins is limiting. article_number: '2724' article_processing_charge: No article_type: original author: - first_name: Carola full_name: Gregor, Carola last_name: Gregor - first_name: Sven C. full_name: Sidenstein, Sven C. last_name: Sidenstein - first_name: Martin full_name: Andresen, Martin last_name: Andresen - first_name: Steffen J. full_name: Sahl, Steffen J. last_name: Sahl - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Stefan W. full_name: Hell, Stefan W. last_name: Hell citation: ama: Gregor C, Sidenstein SC, Andresen M, Sahl SJ, Danzl JG, Hell SW. Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Scientific Reports. 2018;8. doi:10.1038/s41598-018-19947-1 apa: Gregor, C., Sidenstein, S. C., Andresen, M., Sahl, S. J., Danzl, J. G., & Hell, S. W. (2018). Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-018-19947-1 chicago: Gregor, Carola, Sven C. Sidenstein, Martin Andresen, Steffen J. Sahl, Johann G Danzl, and Stefan W. Hell. “Novel Reversibly Switchable Fluorescent Proteins for RESOLFT and STED Nanoscopy Engineered from the Bacterial Photoreceptor YtvA.” Scientific Reports. Springer Nature, 2018. https://doi.org/10.1038/s41598-018-19947-1. ieee: C. Gregor, S. C. Sidenstein, M. Andresen, S. J. Sahl, J. G. Danzl, and S. W. Hell, “Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA,” Scientific Reports, vol. 8. Springer Nature, 2018. ista: Gregor C, Sidenstein SC, Andresen M, Sahl SJ, Danzl JG, Hell SW. 2018. Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Scientific Reports. 8, 2724. mla: Gregor, Carola, et al. “Novel Reversibly Switchable Fluorescent Proteins for RESOLFT and STED Nanoscopy Engineered from the Bacterial Photoreceptor YtvA.” Scientific Reports, vol. 8, 2724, Springer Nature, 2018, doi:10.1038/s41598-018-19947-1. short: C. Gregor, S.C. Sidenstein, M. Andresen, S.J. Sahl, J.G. Danzl, S.W. Hell, Scientific Reports 8 (2018). date_created: 2020-10-06T16:33:37Z date_published: 2018-02-09T00:00:00Z date_updated: 2023-09-19T15:04:49Z day: '09' ddc: - '570' department: - _id: JoDa doi: 10.1038/s41598-018-19947-1 external_id: isi: - '000424630400037' pmid: - '29426833' file: - access_level: open_access checksum: e642080fcbde9584c63544f587c74f03 content_type: application/pdf creator: dernst date_created: 2020-10-06T16:35:16Z date_updated: 2020-10-06T16:35:16Z file_id: '8619' file_name: 2018_ScientificReports_Gregor.pdf file_size: 2818077 relation: main_file success: 1 file_date_updated: 2020-10-06T16:35:16Z has_accepted_license: '1' intvolume: ' 8' isi: 1 keyword: - Multidisciplinary language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_identifier: issn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2018' ... --- _id: '10881' abstract: - lang: eng text: Strigolactones (SLs) are a relatively recent addition to the list of plant hormones that control different aspects of plant development. SL signalling is perceived by an α/β hydrolase, DWARF 14 (D14). A close homolog of D14, KARRIKIN INSENSTIVE2 (KAI2), is involved in perception of an uncharacterized molecule called karrikin (KAR). Recent studies in Arabidopsis identified the SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 7 (SMXL7) to be potential SCF–MAX2 complex-mediated proteasome targets of KAI2 and D14, respectively. Genetic studies on SMXL7 and SMAX1 demonstrated distinct developmental roles for each, but very little is known about these repressors in terms of their sequence features. In this study, we performed an extensive comparative analysis of SMXLs and determined their phylogenetic and evolutionary history in the plant lineage. Our results show that SMXL family members can be sub-divided into four distinct phylogenetic clades/classes, with an ancient SMAX1. Further, we identified the clade-specific motifs that have evolved and that might act as determinants of SL-KAR signalling specificity. These specificities resulted from functional diversities among the clades. Our results suggest that a gradual co-evolution of SMXL members with their upstream receptors D14/KAI2 provided an increased specificity to both the SL perception and response in land plants. acknowledgement: "This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions and it is co-financed by the South Moravian Region under grant agreement No. 665860 (SS). Access to computing and storage facilities owned by parties and projects contributing to the national grid infrastructure, MetaCentrum, provided under the program ‘Projects of Large Infrastructure for Research, Development, and Innovations’ (LM2010005) was greatly appreciated (RSV). The project was funded by The Ministry of Education, Youth and Sports/MES of the Czech Republic under the project CEITEC 2020 (LQ1601) (TN, TRM). JF was supported by the European Research Council (project ERC-2011-StG 20101109-PSDP) and the Czech Science Foundation GAČR (GA13-40637S). We thank Dr Kamel Chibani for active discussions on the evolutionary analysis and Nandan Mysore Vardarajan for his critical comments on the manuscript. This article reflects\r\nonly the authors’ views, and the EU is not responsible for any use that may be made of the information it contains. " article_processing_charge: No article_type: original author: - first_name: Taraka Ramji full_name: Moturu, Taraka Ramji last_name: Moturu - first_name: Sravankumar full_name: Thula, Sravankumar last_name: Thula - first_name: Ravi Kumar full_name: Singh, Ravi Kumar last_name: Singh - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Radka Svobodová full_name: Vařeková, Radka Svobodová last_name: Vařeková - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Sibu full_name: Simon, Sibu last_name: Simon citation: ama: Moturu TR, Thula S, Singh RK, et al. Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. 2018;69(9):2367-2378. doi:10.1093/jxb/ery097 apa: Moturu, T. R., Thula, S., Singh, R. K., Nodzyński, T., Vařeková, R. S., Friml, J., & Simon, S. (2018). Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/ery097 chicago: Moturu, Taraka Ramji, Sravankumar Thula, Ravi Kumar Singh, Tomasz Nodzyński, Radka Svobodová Vařeková, Jiří Friml, and Sibu Simon. “Molecular Evolution and Diversification of the SMXL Gene Family.” Journal of Experimental Botany. Oxford University Press, 2018. https://doi.org/10.1093/jxb/ery097. ieee: T. R. Moturu et al., “Molecular evolution and diversification of the SMXL gene family,” Journal of Experimental Botany, vol. 69, no. 9. Oxford University Press, pp. 2367–2378, 2018. ista: Moturu TR, Thula S, Singh RK, Nodzyński T, Vařeková RS, Friml J, Simon S. 2018. Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. 69(9), 2367–2378. mla: Moturu, Taraka Ramji, et al. “Molecular Evolution and Diversification of the SMXL Gene Family.” Journal of Experimental Botany, vol. 69, no. 9, Oxford University Press, 2018, pp. 2367–78, doi:10.1093/jxb/ery097. short: T.R. Moturu, S. Thula, R.K. Singh, T. Nodzyński, R.S. Vařeková, J. Friml, S. Simon, Journal of Experimental Botany 69 (2018) 2367–2378. date_created: 2022-03-18T12:43:22Z date_published: 2018-04-13T00:00:00Z date_updated: 2023-09-19T15:10:43Z day: '13' department: - _id: JiFr doi: 10.1093/jxb/ery097 ec_funded: 1 external_id: isi: - '000430727000016' pmid: - '29538714' intvolume: ' 69' isi: 1 issue: '9' keyword: - Plant Science - Physiology language: - iso: eng month: '04' oa_version: None page: 2367-2378 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Molecular evolution and diversification of the SMXL gene family type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 69 year: '2018' ... --- _id: '10880' abstract: - lang: eng text: Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation. acknowledgement: This work was supported by JSPS overseas research fellowships (Y.M.) and SENSHIN Medical Research Foundation (K.K.T.). article_processing_charge: No article_type: original author: - first_name: Moriyama full_name: Yuuta, Moriyama id: 4968E7C8-F248-11E8-B48F-1D18A9856A87 last_name: Yuuta orcid: 0000-0002-2853-8051 - first_name: Kazuko full_name: Koshiba-Takeuchi, Kazuko last_name: Koshiba-Takeuchi citation: ama: Yuuta M, Koshiba-Takeuchi K. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 2018;17(5):329-338. doi:10.1093/bfgp/ely007 apa: Yuuta, M., & Koshiba-Takeuchi, K. (2018). Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. Oxford University Press. https://doi.org/10.1093/bfgp/ely007 chicago: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics. Oxford University Press, 2018. https://doi.org/10.1093/bfgp/ely007. ieee: M. Yuuta and K. Koshiba-Takeuchi, “Significance of whole-genome duplications on the emergence of evolutionary novelties,” Briefings in Functional Genomics, vol. 17, no. 5. Oxford University Press, pp. 329–338, 2018. ista: Yuuta M, Koshiba-Takeuchi K. 2018. Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics. 17(5), 329–338. mla: Yuuta, Moriyama, and Kazuko Koshiba-Takeuchi. “Significance of Whole-Genome Duplications on the Emergence of Evolutionary Novelties.” Briefings in Functional Genomics, vol. 17, no. 5, Oxford University Press, 2018, pp. 329–38, doi:10.1093/bfgp/ely007. short: M. Yuuta, K. Koshiba-Takeuchi, Briefings in Functional Genomics 17 (2018) 329–338. date_created: 2022-03-18T12:40:35Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T15:11:22Z day: '01' department: - _id: CaHe doi: 10.1093/bfgp/ely007 external_id: isi: - '000456054400004' pmid: - '29579140' intvolume: ' 17' isi: 1 issue: '5' keyword: - Genetics - Molecular Biology - Biochemistry - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/bfgp/ely007 month: '09' oa: 1 oa_version: Published Version page: 329-338 pmid: 1 publication: Briefings in Functional Genomics publication_identifier: eissn: - 2041-2657 issn: - 2041-2649 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Significance of whole-genome duplications on the emergence of evolutionary novelties type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2018' ...