--- _id: '6947' abstract: - lang: eng text: Lymph nodes are es s ential organs of the immune s ys tem where adaptive immune responses originate, and consist of various leukocyte populations and a stromal backbone. Fibroblastic reticular cells (FRCs) are the main stromal cells and form a sponge-like extracellular matrix network, called conduits , which they thems elves enwrap and contract. Lymph, containing s oluble antigens , arrive in lymph nodes via afferent lymphatic vessels that connect to the s ubcaps ular s inus and conduit network. According to the current paradigm, the conduit network dis tributes afferent lymph through lymph nodes and thus provides acces s for immune cells to lymph-borne antigens. An elas tic caps ule s urrounds the organ and confines the immune cells and FRC network. Lymph nodes are completely packed with lymphocytes and lymphocyte numbers directly dictates the size of the organ. Although lymphocytes cons tantly enter and leave the lymph node, its s ize remains remarkedly s table under homeostatic conditions. It is only partly known how the cellularity and s ize of the lymph node is regulated and how the lymph node is able to swell in inflammation. The role of the FRC network in lymph node s welling and trans fer of fluids are inves tigated in this thes is. Furthermore, we s tudied what trafficking routes are us ed by cancer cells in lymph nodes to form distal metastases.We examined the role of a mechanical feedback in regulation of lymph node swelling. Using parallel plate compression and UV-las er cutting experiments we dis s ected the mechanical force dynamics of the whole lymph node, and individually for FRCs and the caps ule. Physical forces generated by packed lymphocytes directly affect the tens ion on the FRC network and capsule, which increases its resistance to swelling. This implies a feedback mechanism between tis s ue pres s ure and ability of lymphocytes to enter the organ. Following inflammation, the lymph node swells ∼10 fold in two weeks . Yet, what is the role for tens ion on the FRC network and caps ule, and how are lymphocytes able to enter in conditions that resist swelling remain open ques tions . We s how that tens ion on the FRC network is important to limit the swelling rate of the organ so that the FRC network can grow in a coordinated fashion. This is illustrated by interfering with FRC contractility, which leads to faster swelling rates and a dis organized FRC network in the inflamed lymph node. Growth of the FRC network in turn is expected to releas e tens ion on thes e s tructures and lowers the res is tance to swelling, thereby allowing more lymphocytes to enter the organ and drive more swelling. Halt of swelling coincides with a thickening of the caps ule, which forms a thick res is tant band around the organ and lowers tens ion on the FRC network to form a new force equilibrium.The FRC and conduit network are further believed to be a privileged s ite of s oluble information within the lymph node, although many details remain uns olved. We s how by 3D ultra-recons truction that FRCs and antigen pres enting cells cover the s urface of conduit s ys tem for more than 99% and we dis cus s the implications for s oluble information exchangeat the conduit level.Finally, there is an ongoing debate in the cancer field whether and how cancer cells in lymph nodes s eed dis tal metas tas es . We s how that cancer cells infus ed into the lymph node can utilize trafficking routes of immune cells and rapidly migrate to blood vessels. Once in the blood circulation, these cells are able to form metastases in distal tissues. acknowledged_ssus: - _id: Bio - _id: PreCl - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 citation: ama: 'Assen FP. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. 2019. doi:10.15479/AT:ISTA:6947' apa: 'Assen, F. P. (2019). Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6947' chicago: 'Assen, Frank P. “Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6947.' ieee: 'F. P. Assen, “Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking,” Institute of Science and Technology Austria, 2019.' ista: 'Assen FP. 2019. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria.' mla: 'Assen, Frank P. Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6947.' short: 'F.P. Assen, Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking, Institute of Science and Technology Austria, 2019.' date_created: 2019-10-14T16:54:52Z date_published: 2019-10-09T00:00:00Z date_updated: 2023-09-13T08:50:57Z day: '9' ddc: - '570' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:6947 file: - access_level: closed checksum: 53a739752a500f84d0f8ec953cbbd0b6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: fassen date_created: 2019-11-06T12:30:02Z date_updated: 2020-11-07T23:30:03Z embargo_to: open_access file_id: '6990' file_name: PhDthesis_FrankAssen_revised2.docx file_size: 214172667 relation: source_file - access_level: open_access checksum: 8c156b65d9347bb599623a4b09f15d15 content_type: application/pdf creator: fassen date_created: 2019-11-06T12:30:57Z date_updated: 2020-11-07T23:30:03Z embargo: 2020-11-06 file_id: '6991' file_name: PhDthesis_FrankAssen_revised2.pdf file_size: 83637532 relation: main_file file_date_updated: 2020-11-07T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '142' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '664' relation: part_of_dissertation status: public - id: '402' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: 'Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6849' abstract: - lang: eng text: 'Brain function is mediated by complex dynamical interactions between excitatory and inhibitory cell types. The Cholecystokinin-expressing inhibitory cells (CCK-interneurons) are one of the least studied types, despite being suspected to play important roles in cognitive processes. We studied the network effects of optogenetic silencing of CCK-interneurons in the CA1 hippocampal area during exploration and sleep states. The cell firing pattern in response to light pulses allowed us to classify the recorded neurons in 5 classes, including disinhibited and non-responsive pyramidal cell and interneurons, and the inhibited interneurons corresponding to the CCK group. The light application, which inhibited the activity of CCK interneurons triggered wider changes in the firing dynamics of cells. We observed rate changes (i.e. remapping) of pyramidal cells during the exploration session in which the light was applied relative to the previous control session that was not restricted neither in time nor space to the light delivery. Also, the disinhibited pyramidal cells had higher increase in bursting than in single spike firing rate as a result of CCK silencing. In addition, the firing activity patterns during exploratory periods were more weakly reactivated in sleep for those periods in which CCK-interneuron were silenced than in the unaffected periods. Furthermore, light pulses during sleep disrupted the reactivation of recent waking patterns. Hence, silencing CCK neurons during exploration suppressed the reactivation of waking firing patterns in sleep and CCK interneuron activity was also required during sleep for the normal reactivation of waking patterns. These findings demonstrate the involvement of CCK cells in reactivation-related memory consolidation. An important part of our analysis was to test the relationship of the identified CCKinterneurons to brain oscillations. Our findings showed that these cells exhibited different oscillatory behaviour during anaesthesia and natural waking and sleep conditions. We showed that: 1) Contrary to the past studies performed under anaesthesia, the identified CCKinterneurons fired on the descending portion of the theta phase in waking exploration. 2) CCKinterneuron preferred phases around the trough of gamma oscillations. 3) Contrary to anaesthesia conditions, the average firing rate of the CCK-interneurons increased around the peak activity of the sharp-wave ripple (SWR) events in natural sleep, which is congruent with new reports about their functional connectivity. We also found that light driven CCK-interneuron silencing altered the dynamics on the CA1 network oscillatory activity: 1) Pyramidal cells negatively shifted their preferred theta phases when the light was applied, while interneurons responses were less consistent. 2) As a population, pyramidal cells negatively shifted their preferred activity during gamma oscillations, albeit we did not find gamma modulation differences related to the light application when pyramidal cells were subdivided into the disinhibited and unaffected groups. 3) During the peak of SWR events, all but the CCK-interneurons had a reduction in their relative firing rate change during the light application as compared to the change observed at SWR initiation. Finally, regarding to the place field activity of the recorded pyramidal neurons, we showed that the disinhibited pyramidal cells had reduced place field similarity, coherence and spatial information, but only during the light application. The mechanisms behind such observed behaviours might involve eCB signalling and plastic changes in CCK-interneuron synapses. In conclusion, the observed changes related to the light-mediated silencing of CCKinterneurons have unravelled characteristics of this interneuron subpopulation that might change the understanding not only of their particular network interactions, but also of the current theories about the emergence of certain cognitive processes such as place coding needed for navigation or hippocampus-dependent memory consolidation. ' acknowledged_ssus: - _id: Bio - _id: PreCl - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Dámaris K full_name: Rangel Guerrero, Dámaris K id: 4871BCE6-F248-11E8-B48F-1D18A9856A87 last_name: Rangel Guerrero orcid: 0000-0002-8602-4374 citation: ama: Rangel Guerrero DK. The role of CCK-interneurons in regulating hippocampal network dynamics. 2019. doi:10.15479/AT:ISTA:6849 apa: Rangel Guerrero, D. K. (2019). The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6849 chicago: Rangel Guerrero, Dámaris K. “The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6849. ieee: D. K. Rangel Guerrero, “The role of CCK-interneurons in regulating hippocampal network dynamics,” Institute of Science and Technology Austria, 2019. ista: Rangel Guerrero DK. 2019. The role of CCK-interneurons in regulating hippocampal network dynamics. Institute of Science and Technology Austria. mla: Rangel Guerrero, Dámaris K. The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6849. short: D.K. Rangel Guerrero, The Role of CCK-Interneurons in Regulating Hippocampal Network Dynamics, Institute of Science and Technology Austria, 2019. date_created: 2019-09-06T06:54:16Z date_published: 2019-09-09T00:00:00Z date_updated: 2023-09-19T10:01:12Z day: '09' ddc: - '570' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:6849 file: - access_level: closed checksum: 244dc4f74dbfc94f414156092298831f content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: drangel date_created: 2019-09-09T13:09:45Z date_updated: 2021-02-10T23:30:09Z embargo_to: open_access file_id: '6865' file_name: Thesis_Damaris_Rangel_source.docx file_size: 18253100 relation: source_file - access_level: open_access checksum: 59c73be40eeaa1c4db24067270151555 content_type: application/pdf creator: drangel date_created: 2019-09-09T13:09:52Z date_updated: 2020-09-11T22:30:04Z embargo: 2020-09-10 file_id: '6866' file_name: Thesis_Damaris_Rangel_pdfa.pdf file_size: 2160109 relation: main_file request_a_copy: 0 file_date_updated: 2021-02-10T23:30:09Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '97' publication_identifier: isbn: - '9783990780039' issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5914' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: The role of CCK-interneurons in regulating hippocampal network dynamics type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6351' abstract: - lang: eng text: "A process of restorative patterning in plant roots correctly replaces eliminated cells to heal local injuries despite the absence of cell migration, which underpins wound healing in animals. \r\n\r\nPatterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing." acknowledged_ssus: - _id: Bio article_processing_charge: No author: - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 2019;177(4):957-969.e13. doi:10.1016/j.cell.2019.04.015 apa: Marhavá, P., Hörmayer, L., Yoshida, S., Marhavý, P., Benková, E., & Friml, J. (2019). Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.015 chicago: Marhavá, Petra, Lukas Hörmayer, Saiko Yoshida, Peter Marhavý, Eva Benková, and Jiří Friml. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.015. ieee: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, and J. Friml, “Re-activation of stem cell pathways for pattern restoration in plant wound healing,” Cell, vol. 177, no. 4. Elsevier, p. 957–969.e13, 2019. ista: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. 2019. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 177(4), 957–969.e13. mla: Marhavá, Petra, et al. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell, vol. 177, no. 4, Elsevier, 2019, p. 957–969.e13, doi:10.1016/j.cell.2019.04.015. short: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, J. Friml, Cell 177 (2019) 957–969.e13. date_created: 2019-04-28T21:59:14Z date_published: 2019-05-02T00:00:00Z date_updated: 2024-03-27T23:30:10Z day: '02' ddc: - '570' department: - _id: JiFr - _id: EvBe doi: 10.1016/j.cell.2019.04.015 ec_funded: 1 external_id: isi: - '000466843000015' pmid: - '31051107' file: - access_level: open_access checksum: 4ceba04a96a74f5092ec3ce2c579a0c7 content_type: application/pdf creator: dernst date_created: 2019-05-13T06:12:45Z date_updated: 2020-07-14T12:47:28Z file_id: '6411' file_name: 2019_Cell_Marhava.pdf file_size: 10272032 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '05' oa: 1 oa_version: Published Version page: 957-969.e13 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/specialized-plant-cells-regain-stem-cell-features-to-heal-wounds/ record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Re-activation of stem cell pathways for pattern restoration in plant wound healing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ... --- _id: '6943' abstract: - lang: eng text: Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration. article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Hörmayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. 2019;52:124-130. doi:10.1016/j.pbi.2019.08.006 apa: Hörmayer, L., & Friml, J. (2019). Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2019.08.006 chicago: Hörmayer, Lukas, and Jiří Friml. “Targeted Cell Ablation-Based Insights into Wound Healing and Restorative Patterning.” Current Opinion in Plant Biology. Elsevier, 2019. https://doi.org/10.1016/j.pbi.2019.08.006. ieee: L. Hörmayer and J. Friml, “Targeted cell ablation-based insights into wound healing and restorative patterning,” Current Opinion in Plant Biology, vol. 52. Elsevier, pp. 124–130, 2019. ista: Hörmayer L, Friml J. 2019. Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. 52, 124–130. mla: Hörmayer, Lukas, and Jiří Friml. “Targeted Cell Ablation-Based Insights into Wound Healing and Restorative Patterning.” Current Opinion in Plant Biology, vol. 52, Elsevier, 2019, pp. 124–30, doi:10.1016/j.pbi.2019.08.006. short: L. Hörmayer, J. Friml, Current Opinion in Plant Biology 52 (2019) 124–130. date_created: 2019-10-14T07:00:24Z date_published: 2019-12-01T00:00:00Z date_updated: 2024-03-27T23:30:11Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2019.08.006 ec_funded: 1 external_id: isi: - '000502890600017' pmid: - '31585333' file: - access_level: open_access checksum: d6fd68a6e965f1efe3f0bf2d2070a616 content_type: application/pdf creator: dernst date_created: 2019-10-14T14:48:21Z date_updated: 2020-07-14T12:47:45Z file_id: '6946' file_name: 2019_CurrentOpinionPlant_Hoermayer.pdf file_size: 1659288 relation: main_file file_date_updated: 2020-07-14T12:47:45Z has_accepted_license: '1' intvolume: ' 52' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 124-130 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Targeted cell ablation-based insights into wound healing and restorative patterning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 52 year: '2019' ... --- _id: '7391' abstract: - lang: eng text: Electron microscopy (EM) is a technology that enables visualization of single proteins at a nanometer resolution. However, current protein analysis by EM mainly relies on immunolabeling with gold-particle-conjugated antibodies, which is compromised by large size of antibody, precluding precise detection of protein location in biological samples. Here, we develop a specific chemical labeling method for EM detection of proteins at single-molecular level. Rational design of α-helical peptide tag and probe structure provided a complementary reaction pair that enabled specific cysteine conjugation of the tag. The developed chemical labeling with gold-nanoparticle-conjugated probe showed significantly higher labeling efficiency and detectability of high-density clusters of tag-fused G protein-coupled receptors in freeze-fracture replicas compared with immunogold labeling. Furthermore, in ultrathin sections, the spatial resolution of the chemical labeling was significantly higher than that of antibody-mediated labeling. These results demonstrate substantial advantages of the chemical labeling approach for single protein visualization by EM. article_processing_charge: No article_type: original author: - first_name: Shigekazu full_name: Tabata, Shigekazu id: 4427179E-F248-11E8-B48F-1D18A9856A87 last_name: Tabata - first_name: Marijo full_name: Jevtic, Marijo id: 4BE3BC94-F248-11E8-B48F-1D18A9856A87 last_name: Jevtic - first_name: Nobutaka full_name: Kurashige, Nobutaka last_name: Kurashige - first_name: Hirokazu full_name: Fuchida, Hirokazu last_name: Fuchida - first_name: Munetsugu full_name: Kido, Munetsugu last_name: Kido - first_name: Kazushi full_name: Tani, Kazushi last_name: Tani - first_name: Naoki full_name: Zenmyo, Naoki last_name: Zenmyo - first_name: Shohei full_name: Uchinomiya, Shohei last_name: Uchinomiya - first_name: Harumi full_name: Harada, Harumi id: 2E55CDF2-F248-11E8-B48F-1D18A9856A87 last_name: Harada orcid: 0000-0001-7429-7896 - first_name: Makoto full_name: Itakura, Makoto last_name: Itakura - first_name: Itaru full_name: Hamachi, Itaru last_name: Hamachi - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Akio full_name: Ojida, Akio last_name: Ojida citation: ama: Tabata S, Jevtic M, Kurashige N, et al. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience. 2019;22(12):256-268. doi:10.1016/j.isci.2019.11.025 apa: Tabata, S., Jevtic, M., Kurashige, N., Fuchida, H., Kido, M., Tani, K., … Ojida, A. (2019). Electron microscopic detection of single membrane proteins by a specific chemical labeling. IScience. Elsevier. https://doi.org/10.1016/j.isci.2019.11.025 chicago: Tabata, Shigekazu, Marijo Jevtic, Nobutaka Kurashige, Hirokazu Fuchida, Munetsugu Kido, Kazushi Tani, Naoki Zenmyo, et al. “Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling.” IScience. Elsevier, 2019. https://doi.org/10.1016/j.isci.2019.11.025. ieee: S. Tabata et al., “Electron microscopic detection of single membrane proteins by a specific chemical labeling,” iScience, vol. 22, no. 12. Elsevier, pp. 256–268, 2019. ista: Tabata S, Jevtic M, Kurashige N, Fuchida H, Kido M, Tani K, Zenmyo N, Uchinomiya S, Harada H, Itakura M, Hamachi I, Shigemoto R, Ojida A. 2019. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience. 22(12), 256–268. mla: Tabata, Shigekazu, et al. “Electron Microscopic Detection of Single Membrane Proteins by a Specific Chemical Labeling.” IScience, vol. 22, no. 12, Elsevier, 2019, pp. 256–68, doi:10.1016/j.isci.2019.11.025. short: S. Tabata, M. Jevtic, N. Kurashige, H. Fuchida, M. Kido, K. Tani, N. Zenmyo, S. Uchinomiya, H. Harada, M. Itakura, I. Hamachi, R. Shigemoto, A. Ojida, IScience 22 (2019) 256–268. date_created: 2020-01-29T15:56:56Z date_published: 2019-12-20T00:00:00Z date_updated: 2024-03-27T23:30:13Z day: '20' ddc: - '570' department: - _id: RySh doi: 10.1016/j.isci.2019.11.025 ec_funded: 1 external_id: isi: - :000504652000020 pmid: - '31786521' file: - access_level: open_access checksum: f3e90056a49f09b205b1c4f8c739ffd1 content_type: application/pdf creator: dernst date_created: 2020-02-04T10:48:36Z date_updated: 2020-07-14T12:47:57Z file_id: '7448' file_name: 2019_iScience_Tabata.pdf file_size: 7197776 relation: main_file file_date_updated: 2020-07-14T12:47:57Z has_accepted_license: '1' intvolume: ' 22' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 256-268 pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 25CBA828-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '720270' name: Human Brain Project Specific Grant Agreement 1 (HBP SGA 1) publication: iScience publication_identifier: issn: - 2589-0042 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11393' relation: dissertation_contains status: public scopus_import: '1' status: public title: Electron microscopic detection of single membrane proteins by a specific chemical labeling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 22 year: '2019' ...