--- _id: '8' abstract: - lang: eng text: Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside the nervous system (hemocytes) require the same transcription factor Glide/Gcm for their development. This raises the issue of how do glia specifically differentiate in the nervous system and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and pan-glial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENTDistinct cell types often require the same pioneer transcription factor, raising the issue of how does one factor trigger different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the Glide/Gcm transcription factor, glia originate from the ectoderm, hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification. acknowledgement: This work was supported by INSERM, CNRS, UDS, Ligue Régionale contre le Cancer, Hôpital de Strasbourg, Association pour la Recherche sur le Cancer (ARC) and Agence Nationale de la Recherche (ANR) grants. P.B.C. was funded by the ANR and by the ARSEP (Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques), and G.T. by governmental and ARC fellowships. This work was also supported by grants from the Ataxia UK (2491) and the NC3R (NC/L000199/1) awarded to M.F. The Institut de Génétique et de Biologie Moléculaire et Cellulaire was also supported by a French state fund through the ANR labex. D.E.S. was funded by Marie Curie Grant CIG 334077/IRTIM. We thank B. Altenhein, K. Brückner, M. Crozatier, L. Waltzer, M. Logan, E. Kurant, R. Reuter, E. Kurucz, J.L Dimarcq, J. Hoffmann, C. Goodman, the DHSB, and the BDSC for reagents and flies. We also thank all of the laboratory members for comments on the manuscript; C. Diebold, C. Delaporte, M. Pezze, the fly, and imaging and antibody facilities for technical assistance; and D. Dembele for help with statistics. In addition, we thank Alison Brewer for help with Luciferase assays. article_processing_charge: No article_type: original author: - first_name: Guillaume full_name: Trébuchet, Guillaume last_name: Trébuchet - first_name: Pierre B full_name: Cattenoz, Pierre B last_name: Cattenoz - first_name: János full_name: Zsámboki, János last_name: Zsámboki - first_name: David full_name: Mazaud, David last_name: Mazaud - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 - first_name: Manolis full_name: Fanto, Manolis last_name: Fanto - first_name: Angela full_name: Giangrande, Angela last_name: Giangrande citation: ama: Trébuchet G, Cattenoz PB, Zsámboki J, et al. The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate. Journal of Neuroscience. 2019;39(2):238-255. doi:10.1523/JNEUROSCI.1059-18.2018 apa: Trébuchet, G., Cattenoz, P. B., Zsámboki, J., Mazaud, D., Siekhaus, D. E., Fanto, M., & Giangrande, A. (2019). The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1059-18.2018 chicago: Trébuchet, Guillaume, Pierre B Cattenoz, János Zsámboki, David Mazaud, Daria E Siekhaus, Manolis Fanto, and Angela Giangrande. “The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate.” Journal of Neuroscience. Society for Neuroscience, 2019. https://doi.org/10.1523/JNEUROSCI.1059-18.2018. ieee: G. Trébuchet et al., “The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate,” Journal of Neuroscience, vol. 39, no. 2. Society for Neuroscience, pp. 238–255, 2019. ista: Trébuchet G, Cattenoz PB, Zsámboki J, Mazaud D, Siekhaus DE, Fanto M, Giangrande A. 2019. The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate. Journal of Neuroscience. 39(2), 238–255. mla: Trébuchet, Guillaume, et al. “The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate.” Journal of Neuroscience, vol. 39, no. 2, Society for Neuroscience, 2019, pp. 238–55, doi:10.1523/JNEUROSCI.1059-18.2018. short: G. Trébuchet, P.B. Cattenoz, J. Zsámboki, D. Mazaud, D.E. Siekhaus, M. Fanto, A. Giangrande, Journal of Neuroscience 39 (2019) 238–255. date_created: 2018-12-11T11:44:07Z date_published: 2019-01-09T00:00:00Z date_updated: 2023-09-19T10:10:55Z day: '09' ddc: - '570' department: - _id: DaSi doi: 10.1523/JNEUROSCI.1059-18.2018 ec_funded: 1 external_id: isi: - '000455189900006' pmid: - '30504274' file: - access_level: open_access checksum: 8f6925eb4cd1e8747d8ea25929c68de6 content_type: application/pdf creator: dernst date_created: 2020-10-02T09:33:28Z date_updated: 2020-10-02T09:33:28Z file_id: '8596' file_name: 2019_JournNeuroscience_Trebuchet.pdf file_size: 9455414 relation: main_file success: 1 file_date_updated: 2020-10-02T09:33:28Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 238-255 pmid: 1 project: - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Journal of Neuroscience publication_status: published publisher: Society for Neuroscience publist_id: '8048' quality_controlled: '1' scopus_import: '1' status: public title: The Repo homeodomain transcription factor suppresses hematopoiesis in Drosophila and preserves the glial fate type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 39 year: '2019' ... --- _id: '5' abstract: - lang: eng text: In this paper, we introduce a quantum version of the wonderful compactification of a group as a certain noncommutative projective scheme. Our approach stems from the fact that the wonderful compactification encodes the asymptotics of matrix coefficients, and from its realization as a GIT quotient of the Vinberg semigroup. In order to define the wonderful compactification for a quantum group, we adopt a generalized formalism of Proj categories in the spirit of Artin and Zhang. Key to our construction is a quantum version of the Vinberg semigroup, which we define as a q-deformation of a certain Rees algebra, compatible with a standard Poisson structure. Furthermore, we discuss quantum analogues of the stratification of the wonderful compactification by orbits for a certain group action, and provide explicit computations in the case of SL2. article_processing_charge: Yes (via OA deal) author: - first_name: Iordan V full_name: Ganev, Iordan V id: 447491B8-F248-11E8-B48F-1D18A9856A87 last_name: Ganev citation: ama: Ganev IV. The wonderful compactification for quantum groups. Journal of the London Mathematical Society. 2019;99(3):778-806. doi:10.1112/jlms.12193 apa: Ganev, I. V. (2019). The wonderful compactification for quantum groups. Journal of the London Mathematical Society. Wiley. https://doi.org/10.1112/jlms.12193 chicago: Ganev, Iordan V. “The Wonderful Compactification for Quantum Groups.” Journal of the London Mathematical Society. Wiley, 2019. https://doi.org/10.1112/jlms.12193. ieee: I. V. Ganev, “The wonderful compactification for quantum groups,” Journal of the London Mathematical Society, vol. 99, no. 3. Wiley, pp. 778–806, 2019. ista: Ganev IV. 2019. The wonderful compactification for quantum groups. Journal of the London Mathematical Society. 99(3), 778–806. mla: Ganev, Iordan V. “The Wonderful Compactification for Quantum Groups.” Journal of the London Mathematical Society, vol. 99, no. 3, Wiley, 2019, pp. 778–806, doi:10.1112/jlms.12193. short: I.V. Ganev, Journal of the London Mathematical Society 99 (2019) 778–806. date_created: 2018-12-11T11:44:06Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-19T10:13:08Z day: '01' ddc: - '510' department: - _id: TaHa doi: 10.1112/jlms.12193 external_id: isi: - '000470025900008' file: - access_level: open_access checksum: 1be56239b2cd740a0e9a084f773c22f6 content_type: application/pdf creator: kschuh date_created: 2020-01-07T13:31:53Z date_updated: 2020-07-14T12:46:35Z file_id: '7238' file_name: 2019_Wiley_Ganev.pdf file_size: 431754 relation: main_file file_date_updated: 2020-07-14T12:46:35Z has_accepted_license: '1' intvolume: ' 99' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version page: 778-806 publication: Journal of the London Mathematical Society publication_status: published publisher: Wiley publist_id: '8052' quality_controlled: '1' scopus_import: '1' status: public title: The wonderful compactification for quantum groups tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 99 year: '2019' ... --- _id: '7172' abstract: - lang: eng text: "The development and growth of Arabidopsis thaliana is regulated by a combination of genetic programing and also by the environmental influences. An important role in these processes play the phytohormones and among them, auxin is crucial as it controls many important functions. It is transported through the whole plant body by creating local and temporal concentration maxima and minima, which have an impact on the cell status, tissue and organ identity. Auxin has the property to undergo a directional and finely regulated cell-to-cell transport, which is enabled by the transport proteins, localized on the plasma membrane. An important role in this process have the PIN auxin efflux proteins, which have an asymmetric/polar subcellular localization and determine the directionality of the auxin transport. During the last years, there were significant advances in understanding how the trafficking molecular machineries function, including studies on molecular interactions, function, subcellular localization and intracellular distribution. However, there is still a lack of detailed characterization on the steps of endocytosis, exocytosis, endocytic recycling and degradation. Due to this fact, I focused on the identification of novel trafficking factors and better characterization of the intracellular trafficking pathways. My PhD thesis consists of an introductory chapter, three experimental chapters, a chapter containing general discussion, conclusions and perspectives and also an appendix chapter with published collaborative papers.\r\nThe first chapter is separated in two different parts: I start by a general introduction to auxin biology and then I introduce the trafficking pathways in the model plant Arabidopsis thaliana. Then, I explain also the phosphorylation-signals for polar targeting and also the roles of the phytohormone strigolactone.\r\nThe second chapter includes the characterization of bar1/sacsin mutant, which was identified in a forward genetic screen for novel trafficking components in Arabidopsis thaliana, where by the implementation of an EMS-treated pPIN1::PIN1-GFP marker line and by using the established inhibitor of ARF-GEFs, Brefeldin A (BFA) as a tool to study trafficking processes, we identified a novel factor, which is mediating the adaptation of the plant cell to ARF-GEF inhibition. The mutation is in a previously uncharacterized gene, encoding a very big protein that we, based on its homologies, called SACSIN with domains suggesting roles as a molecular chaperon or as a component of the ubiquitin-proteasome system. Our physiology and imaging studies revealed that SACSIN is a crucial plant cell component of the adaptation to the ARF-GEF inhibition.\r\nThe third chapter includes six subchapters, where I focus on the role of the phytohormone strigolactone, which interferes with auxin feedback on PIN internalization. Strigolactone moderates the polar auxin transport by increasing the internalization of the PIN auxin efflux carriers, which reduces the canalization related growth responses. In addition, I also studied the role of phosphorylation in the strigolactone regulation of auxin feedback on PIN internalization. In this chapter I also present my results on the MAX2-dependence of strigolactone-mediated root growth inhibition and I also share my results on the auxin metabolomics profiling after application of GR24.\r\nIn the fourth chapter I studied the effect of two small molecules ES-9 and ES9-17, which were identified from a collection of small molecules with the property to impair the clathrin-mediated endocytosis.\r\nIn the fifth chapter, I discuss all my observations and experimental findings and suggest alternative hypothesis to interpret my results.\r\nIn the appendix there are three collaborative published projects. In the first, I participated in the characterization of the role of ES9 as a small molecule, which is inhibitor of clathrin- mediated endocytosis in different model organisms. In the second paper, I contributed to the characterization of another small molecule ES9-17, which is a non-protonophoric analog of ES9 and also impairs the clathrin-mediated endocytosis not only in plant cells, but also in mammalian HeLa cells. Last but not least, I also attach another paper, where I tried to establish the grafting method as a technique in our lab to study canalization related processes." acknowledged_ssus: - _id: LifeSc - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva citation: ama: Vasileva MK. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. 2019. doi:10.15479/AT:ISTA:7172 apa: Vasileva, M. K. (2019). Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7172 chicago: Vasileva, Mina K. “Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7172. ieee: M. K. Vasileva, “Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana,” Institute of Science and Technology Austria, 2019. ista: Vasileva MK. 2019. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. mla: Vasileva, Mina K. Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7172. short: M.K. Vasileva, Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana, Institute of Science and Technology Austria, 2019. date_created: 2019-12-11T21:24:39Z date_published: 2019-12-12T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '12' ddc: - '570' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:7172 file: - access_level: closed checksum: ef981c1a3b1d9da0edcbedcff4970d37 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mvasilev date_created: 2019-12-12T09:32:36Z date_updated: 2020-07-14T12:47:51Z file_id: '7175' file_name: Thesis_Mina_final_upload_7.docx file_size: 20454014 relation: source_file - access_level: open_access checksum: 3882c4585e46c9cfb486e4225cad54ab content_type: application/pdf creator: mvasilev date_created: 2019-12-12T09:33:10Z date_updated: 2020-07-14T12:47:51Z file_id: '7176' file_name: Thesis_Mina_final_upload_7.pdf file_size: 11565025 relation: main_file file_date_updated: 2020-07-14T12:47:51Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '192' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1346' relation: part_of_dissertation status: public - id: '6377' relation: part_of_dissertation status: public - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6473' abstract: - lang: eng text: "Single cells are constantly interacting with their environment and each other, more importantly, the accurate perception of environmental cues is crucial for growth, survival, and reproduction. This communication between cells and their environment can be formalized in mathematical terms and be quantified as the information flow between them, as prescribed by information theory. \r\nThe recent availability of real–time dynamical patterns of signaling molecules in single cells has allowed us to identify encoding about the identity of the environment in the time–series. However, efficient estimation of the information transmitted by these signals has been a data–analysis challenge due to the high dimensionality of the trajectories and the limited number of samples. In the first part of this thesis, we develop and evaluate decoding–based estimation methods to lower bound the mutual information and derive model–based precise information estimates for biological reaction networks governed by the chemical master equation. This is followed by applying the decoding-based methods to study the intracellular representation of extracellular changes in budding yeast, by observing the transient dynamics of nuclear translocation of 10 transcription factors in response to 3 stress conditions. Additionally, we apply these estimators to previously published data on ERK and Ca2+ signaling and yeast stress response. We argue that this single cell decoding-based measure of information provides an unbiased, quantitative and interpretable measure for the fidelity of biological signaling processes. \r\nFinally, in the last section, we deal with gene regulation which is primarily controlled by transcription factors (TFs) that bind to the DNA to activate gene expression. The possibility that non-cognate TFs activate transcription diminishes the accuracy of regulation with potentially disastrous effects for the cell. This ’crosstalk’ acts as a previously unexplored source of noise in biochemical networks and puts a strong constraint on their performance. To mitigate erroneous initiation we propose an out of equilibrium scheme that implements kinetic proofreading. We show that such architectures are favored over their equilibrium counterparts for complex organisms despite introducing noise in gene expression. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sarah A full_name: Cepeda Humerez, Sarah A id: 3DEE19A4-F248-11E8-B48F-1D18A9856A87 last_name: Cepeda Humerez citation: ama: Cepeda Humerez SA. Estimating information flow in single cells. 2019. doi:10.15479/AT:ISTA:6473 apa: Cepeda Humerez, S. A. (2019). Estimating information flow in single cells. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6473 chicago: Cepeda Humerez, Sarah A. “Estimating Information Flow in Single Cells.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6473. ieee: S. A. Cepeda Humerez, “Estimating information flow in single cells,” Institute of Science and Technology Austria, 2019. ista: Cepeda Humerez SA. 2019. Estimating information flow in single cells. Institute of Science and Technology Austria. mla: Cepeda Humerez, Sarah A. Estimating Information Flow in Single Cells. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6473. short: S.A. Cepeda Humerez, Estimating Information Flow in Single Cells, Institute of Science and Technology Austria, 2019. date_created: 2019-05-21T00:11:23Z date_published: 2019-05-23T00:00:00Z date_updated: 2023-09-19T15:13:26Z day: '23' ddc: - '004' degree_awarded: PhD department: - _id: GaTk doi: 10.15479/AT:ISTA:6473 file: - access_level: closed checksum: 75f9184c1346e10a5de5f9cc7338309a content_type: application/zip creator: scepeda date_created: 2019-05-23T11:18:16Z date_updated: 2020-07-14T12:47:31Z file_id: '6480' file_name: Thesis_Cepeda.zip file_size: 23937464 relation: source_file - access_level: open_access checksum: afdc0633ddbd71d5b13550d7fb4f4454 content_type: application/pdf creator: scepeda date_created: 2019-05-23T11:18:13Z date_updated: 2020-07-14T12:47:31Z file_id: '6481' file_name: CepedaThesis.pdf file_size: 16646985 relation: main_file file_date_updated: 2020-07-14T12:47:31Z has_accepted_license: '1' keyword: - Information estimation - Time-series - data analysis language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '135' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1576' relation: dissertation_contains status: public - id: '6900' relation: dissertation_contains status: public - id: '281' relation: dissertation_contains status: public - id: '2016' relation: dissertation_contains status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Estimating information flow in single cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6071' abstract: - lang: eng text: 'Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak citation: ama: Prizak R. Coevolution of transcription factors and their binding sites in sequence space. 2019. doi:10.15479/at:ista:th6071 apa: Prizak, R. (2019). Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th6071 chicago: Prizak, Roshan. “Coevolution of Transcription Factors and Their Binding Sites in Sequence Space.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th6071. ieee: R. Prizak, “Coevolution of transcription factors and their binding sites in sequence space,” Institute of Science and Technology Austria, 2019. ista: Prizak R. 2019. Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. mla: Prizak, Roshan. Coevolution of Transcription Factors and Their Binding Sites in Sequence Space. Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th6071. short: R. Prizak, Coevolution of Transcription Factors and Their Binding Sites in Sequence Space, Institute of Science and Technology Austria, 2019. date_created: 2019-03-06T16:16:10Z date_published: 2019-03-11T00:00:00Z date_updated: 2023-09-22T10:00:48Z day: '11' ddc: - '576' degree_awarded: PhD department: - _id: GaTk - _id: NiBa doi: 10.15479/at:ista:th6071 file: - access_level: open_access checksum: e60a72de35d270b31f1a23d50f224ec0 content_type: application/pdf creator: rprizak date_created: 2019-03-06T16:05:07Z date_updated: 2020-07-14T12:47:18Z file_id: '6072' file_name: Thesis_final_PDFA_RoshanPrizak.pdf file_size: 20995465 relation: main_file - access_level: closed checksum: 67c2630333d05ebafef5f018863a8465 content_type: application/zip creator: rprizak date_created: 2019-03-06T16:09:39Z date_updated: 2020-07-14T12:47:18Z file_id: '6073' file_name: thesis_v2_merge.zip file_size: 85705272 relation: source_file title: Latex files file_date_updated: 2020-07-14T12:47:18Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '189' project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1358' relation: part_of_dissertation status: public - id: '955' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Coevolution of transcription factors and their binding sites in sequence space type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ...