--- _id: '64' abstract: - lang: eng text: Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation. article_processing_charge: No article_type: original author: - first_name: Nikita full_name: Kalinin, Nikita last_name: Kalinin - first_name: Aldo full_name: Guzmán Sáenz, Aldo last_name: Guzmán Sáenz - first_name: Y full_name: Prieto, Y last_name: Prieto - first_name: Mikhail full_name: Shkolnikov, Mikhail id: 35084A62-F248-11E8-B48F-1D18A9856A87 last_name: Shkolnikov orcid: 0000-0002-4310-178X - first_name: V full_name: Kalinina, V last_name: Kalinina - first_name: Ernesto full_name: Lupercio, Ernesto last_name: Lupercio citation: ama: 'Kalinin N, Guzmán Sáenz A, Prieto Y, Shkolnikov M, Kalinina V, Lupercio E. Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. 2018;115(35):E8135-E8142. doi:10.1073/pnas.1805847115' apa: 'Kalinin, N., Guzmán Sáenz, A., Prieto, Y., Shkolnikov, M., Kalinina, V., & Lupercio, E. (2018). Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1805847115' chicago: 'Kalinin, Nikita, Aldo Guzmán Sáenz, Y Prieto, Mikhail Shkolnikov, V Kalinina, and Ernesto Lupercio. “Self-Organized Criticality and Pattern Emergence through the Lens of Tropical Geometry.” PNAS: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1805847115.' ieee: 'N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina, and E. Lupercio, “Self-organized criticality and pattern emergence through the lens of tropical geometry,” PNAS: Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 35. National Academy of Sciences, pp. E8135–E8142, 2018.' ista: 'Kalinin N, Guzmán Sáenz A, Prieto Y, Shkolnikov M, Kalinina V, Lupercio E. 2018. Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. 115(35), E8135–E8142.' mla: 'Kalinin, Nikita, et al. “Self-Organized Criticality and Pattern Emergence through the Lens of Tropical Geometry.” PNAS: Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 35, National Academy of Sciences, 2018, pp. E8135–42, doi:10.1073/pnas.1805847115.' short: 'N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina, E. Lupercio, PNAS: Proceedings of the National Academy of Sciences of the United States of America 115 (2018) E8135–E8142.' date_created: 2018-12-11T11:44:26Z date_published: 2018-08-28T00:00:00Z date_updated: 2023-09-18T08:41:16Z day: '28' department: - _id: TaHa doi: 10.1073/pnas.1805847115 ec_funded: 1 external_id: arxiv: - '1806.09153' isi: - '000442861600009' intvolume: ' 115' isi: 1 issue: '35' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.09153 month: '08' oa: 1 oa_version: Preprint page: E8135 - E8142 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: 'PNAS: Proceedings of the National Academy of Sciences of the United States of America' publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '7990' quality_controlled: '1' scopus_import: '1' status: public title: Self-organized criticality and pattern emergence through the lens of tropical geometry type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '9838' abstract: - lang: eng text: 'Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.' article_processing_charge: No author: - first_name: Marketa full_name: Kaucka, Marketa last_name: Kaucka - first_name: Julian full_name: Petersen, Julian last_name: Petersen - first_name: Marketa full_name: Tesarova, Marketa last_name: Tesarova - first_name: Bara full_name: Szarowska, Bara last_name: Szarowska - first_name: Maria Eleni full_name: Kastriti, Maria Eleni last_name: Kastriti - first_name: Meng full_name: Xie, Meng last_name: Xie - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Karl full_name: Annusver, Karl last_name: Annusver - first_name: Maria full_name: Kasper, Maria last_name: Kasper - first_name: Orsolya full_name: Symmons, Orsolya last_name: Symmons - first_name: Leslie full_name: Pan, Leslie last_name: Pan - first_name: Francois full_name: Spitz, Francois last_name: Spitz - first_name: Jozef full_name: Kaiser, Jozef last_name: Kaiser - first_name: Maria full_name: Hovorakova, Maria last_name: Hovorakova - first_name: Tomas full_name: Zikmund, Tomas last_name: Zikmund - first_name: Kazunori full_name: Sunadome, Kazunori last_name: Sunadome - first_name: Michael P full_name: Matise, Michael P last_name: Matise - first_name: Hui full_name: Wang, Hui last_name: Wang - first_name: Ulrika full_name: Marklund, Ulrika last_name: Marklund - first_name: Hind full_name: Abdo, Hind last_name: Abdo - first_name: Patrik full_name: Ernfors, Patrik last_name: Ernfors - first_name: Pascal full_name: Maire, Pascal last_name: Maire - first_name: Maud full_name: Wurmser, Maud last_name: Wurmser - first_name: Andrei S full_name: Chagin, Andrei S last_name: Chagin - first_name: Kaj full_name: Fried, Kaj last_name: Fried - first_name: Igor full_name: Adameyko, Igor last_name: Adameyko citation: ama: 'Kaucka M, Petersen J, Tesarova M, et al. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. 2018. doi:10.5061/dryad.f1s76f2' apa: 'Kaucka, M., Petersen, J., Tesarova, M., Szarowska, B., Kastriti, M. E., Xie, M., … Adameyko, I. (2018). Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Dryad. https://doi.org/10.5061/dryad.f1s76f2' chicago: 'Kaucka, Marketa, Julian Petersen, Marketa Tesarova, Bara Szarowska, Maria Eleni Kastriti, Meng Xie, Anna Kicheva, et al. “Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage.” Dryad, 2018. https://doi.org/10.5061/dryad.f1s76f2.' ieee: 'M. Kaucka et al., “Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage.” Dryad, 2018.' ista: 'Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. 2018. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage, Dryad, 10.5061/dryad.f1s76f2.' mla: 'Kaucka, Marketa, et al. Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage. Dryad, 2018, doi:10.5061/dryad.f1s76f2.' short: M. Kaucka, J. Petersen, M. Tesarova, B. Szarowska, M.E. Kastriti, M. Xie, A. Kicheva, K. Annusver, M. Kasper, O. Symmons, L. Pan, F. Spitz, J. Kaiser, M. Hovorakova, T. Zikmund, K. Sunadome, M.P. Matise, H. Wang, U. Marklund, H. Abdo, P. Ernfors, P. Maire, M. Wurmser, A.S. Chagin, K. Fried, I. Adameyko, (2018). date_created: 2021-08-09T12:54:35Z date_published: 2018-06-14T00:00:00Z date_updated: 2023-09-18T09:29:07Z day: '14' department: - _id: AnKi doi: 10.5061/dryad.f1s76f2 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.f1s76f2 month: '06' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '162' relation: used_in_publication status: public status: public title: 'Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '41' abstract: - lang: eng text: 'The small-conductance, Ca2+-activated K+ (SK) channel subtype SK2 regulates the spike rate and firing frequency, as well as Ca2+ transients in Purkinje cells (PCs). To understand the molecular basis by which SK2 channels mediate these functions, we analyzed the exact location and densities of SK2 channels along the neuronal surface of the mouse cerebellar PCs using SDS-digested freeze-fracture replica labeling (SDS-FRL) of high sensitivity combined with quantitative analyses. Immunogold particles for SK2 were observed on post- and pre-synaptic compartments showing both scattered and clustered distribution patterns. We found an axo-somato-dendritic gradient of the SK2 particle density increasing 12-fold from soma to dendritic spines. Using two different immunogold approaches, we also found that SK2 immunoparticles were frequently adjacent to, but never overlap with, the postsynaptic density of excitatory synapses in PC spines. Co-immunoprecipitation analysis demonstrated that SK2 channels form macromolecular complexes with two types of proteins that mobilize Ca2+: CaV2.1 channels and mGlu1α receptors in the cerebellum. Freeze-fracture replica double-labeling showed significant co-clustering of particles for SK2 with those for CaV2.1 channels and mGlu1α receptors. SK2 channels were also detected at presynaptic sites, mostly at the presynaptic active zone (AZ), where they are close to CaV2.1 channels, though they are not significantly co-clustered. These data demonstrate that SK2 channels located in different neuronal compartments can associate with distinct proteins mobilizing Ca2+, and suggest that the ultrastructural association of SK2 with CaV2.1 and mGlu1α provides the mechanism that ensures voltage (excitability) regulation by distinct intracellular Ca2+ transients in PCs.' article_number: '311' article_processing_charge: No article_type: original author: - first_name: Rafæl full_name: Luján, Rafæl last_name: Luján - first_name: Carolina full_name: Aguado, Carolina last_name: Aguado - first_name: Francisco full_name: Ciruela, Francisco last_name: Ciruela - first_name: Xavier full_name: Arus, Xavier last_name: Arus - first_name: Alejandro full_name: Martín Belmonte, Alejandro last_name: Martín Belmonte - first_name: Rocío full_name: Alfaro Ruiz, Rocío last_name: Alfaro Ruiz - first_name: Jesus full_name: Martinez Gomez, Jesus last_name: Martinez Gomez - first_name: Luis full_name: De La Ossa, Luis last_name: De La Ossa - first_name: Masahiko full_name: Watanabe, Masahiko last_name: Watanabe - first_name: John full_name: Adelman, John last_name: Adelman - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa citation: ama: Luján R, Aguado C, Ciruela F, et al. Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. 2018;12. doi:10.3389/fncel.2018.00311 apa: Luján, R., Aguado, C., Ciruela, F., Arus, X., Martín Belmonte, A., Alfaro Ruiz, R., … Fukazawa, Y. (2018). Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. Frontiers Media. https://doi.org/10.3389/fncel.2018.00311 chicago: Luján, Rafæl, Carolina Aguado, Francisco Ciruela, Xavier Arus, Alejandro Martín Belmonte, Rocío Alfaro Ruiz, Jesus Martinez Gomez, et al. “Sk2 Channels Associate with MGlu1α Receptors and CaV2.1 Channels in Purkinje Cells.” Frontiers in Cellular Neuroscience. Frontiers Media, 2018. https://doi.org/10.3389/fncel.2018.00311. ieee: R. Luján et al., “Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells,” Frontiers in Cellular Neuroscience, vol. 12. Frontiers Media, 2018. ista: Luján R, Aguado C, Ciruela F, Arus X, Martín Belmonte A, Alfaro Ruiz R, Martinez Gomez J, De La Ossa L, Watanabe M, Adelman J, Shigemoto R, Fukazawa Y. 2018. Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. 12, 311. mla: Luján, Rafæl, et al. “Sk2 Channels Associate with MGlu1α Receptors and CaV2.1 Channels in Purkinje Cells.” Frontiers in Cellular Neuroscience, vol. 12, 311, Frontiers Media, 2018, doi:10.3389/fncel.2018.00311. short: R. Luján, C. Aguado, F. Ciruela, X. Arus, A. Martín Belmonte, R. Alfaro Ruiz, J. Martinez Gomez, L. De La Ossa, M. Watanabe, J. Adelman, R. Shigemoto, Y. Fukazawa, Frontiers in Cellular Neuroscience 12 (2018). date_created: 2018-12-11T11:44:19Z date_published: 2018-09-19T00:00:00Z date_updated: 2023-09-18T09:31:18Z day: '19' ddc: - '570' department: - _id: RySh doi: 10.3389/fncel.2018.00311 ec_funded: 1 external_id: isi: - '000445090100002' file: - access_level: open_access checksum: 0bcaec8d596162af0b7fe3f31325d480 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:49:03Z date_updated: 2020-07-14T12:46:23Z file_id: '5684' file_name: fncel-12-00311.pdf file_size: 6834251 relation: main_file file_date_updated: 2020-07-14T12:46:23Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 25CBA828-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '720270' name: Human Brain Project Specific Grant Agreement 1 (HBP SGA 1) publication: Frontiers in Cellular Neuroscience publication_identifier: issn: - '16625102' publication_status: published publisher: Frontiers Media publist_id: '8013' quality_controlled: '1' scopus_import: '1' status: public title: Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12 year: '2018' ... --- _id: '23' abstract: - lang: eng text: The strong atomistic spin–orbit coupling of holes makes single-shot spin readout measurements difficult because it reduces the spin lifetimes. By integrating the charge sensor into a high bandwidth radio frequency reflectometry setup, we were able to demonstrate single-shot readout of a germanium quantum dot hole spin and measure the spin lifetime. Hole spin relaxation times of about 90 μs at 500 mT are reported, with a total readout visibility of about 70%. By analyzing separately the spin-to-charge conversion and charge readout fidelities, we have obtained insight into the processes limiting the visibilities of hole spins. The analyses suggest that high hole visibilities are feasible at realistic experimental conditions, underlying the potential of hole spins for the realization of viable qubit devices. acknowledged_ssus: - _id: M-Shop - _id: NanoFab article_processing_charge: No author: - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger - first_name: Joshua M full_name: Milem, Joshua M id: 4CDE0A96-F248-11E8-B48F-1D18A9856A87 last_name: Milem - first_name: Friedrich full_name: Schäffler, Friedrich last_name: Schäffler - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Vukušić L, Kukucka J, Watzinger H, Milem JM, Schäffler F, Katsaros G. Single-shot readout of hole spins in Ge. Nano Letters. 2018;18(11):7141-7145. doi:10.1021/acs.nanolett.8b03217 apa: Vukušić, L., Kukucka, J., Watzinger, H., Milem, J. M., Schäffler, F., & Katsaros, G. (2018). Single-shot readout of hole spins in Ge. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.8b03217 chicago: Vukušić, Lada, Josip Kukucka, Hannes Watzinger, Joshua M Milem, Friedrich Schäffler, and Georgios Katsaros. “Single-Shot Readout of Hole Spins in Ge.” Nano Letters. American Chemical Society, 2018. https://doi.org/10.1021/acs.nanolett.8b03217. ieee: L. Vukušić, J. Kukucka, H. Watzinger, J. M. Milem, F. Schäffler, and G. Katsaros, “Single-shot readout of hole spins in Ge,” Nano Letters, vol. 18, no. 11. American Chemical Society, pp. 7141–7145, 2018. ista: Vukušić L, Kukucka J, Watzinger H, Milem JM, Schäffler F, Katsaros G. 2018. Single-shot readout of hole spins in Ge. Nano Letters. 18(11), 7141–7145. mla: Vukušić, Lada, et al. “Single-Shot Readout of Hole Spins in Ge.” Nano Letters, vol. 18, no. 11, American Chemical Society, 2018, pp. 7141–45, doi:10.1021/acs.nanolett.8b03217. short: L. Vukušić, J. Kukucka, H. Watzinger, J.M. Milem, F. Schäffler, G. Katsaros, Nano Letters 18 (2018) 7141–7145. date_created: 2018-12-11T11:44:13Z date_published: 2018-10-25T00:00:00Z date_updated: 2023-09-18T09:30:37Z day: '25' ddc: - '530' department: - _id: GeKa doi: 10.1021/acs.nanolett.8b03217 ec_funded: 1 external_id: isi: - '000451102100064' pmid: - '30359041' file: - access_level: open_access checksum: 3e6034a94c6b5335e939145d88bdb371 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:08Z date_updated: 2020-07-14T12:45:37Z file_id: '5194' file_name: IST-2018-1065-v1+1_ACS_nanoletters_8b03217.pdf file_size: 1361441 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '11' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 7141 - 7145 pmid: 1 project: - _id: 25517E86-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '335497' name: Towards Spin qubits and Majorana fermions in Germanium selfassembled hut-wires publication: Nano Letters publication_identifier: issn: - '15306984' publication_status: published publisher: American Chemical Society publist_id: '8032' pubrep_id: '1065' quality_controlled: '1' related_material: record: - id: '7977' relation: popular_science - id: '69' relation: dissertation_contains status: public - id: '7996' relation: dissertation_contains status: public scopus_import: '1' status: public title: Single-shot readout of hole spins in Ge tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 18 year: '2018' ... --- _id: '85' abstract: - lang: eng text: Concurrent accesses to shared data structures must be synchronized to avoid data races. Coarse-grained synchronization, which locks the entire data structure, is easy to implement but does not scale. Fine-grained synchronization can scale well, but can be hard to reason about. Hand-over-hand locking, in which operations are pipelined as they traverse the data structure, combines fine-grained synchronization with ease of use. However, the traditional implementation suffers from inherent overheads. This paper introduces snapshot-based synchronization (SBS), a novel hand-over-hand locking mechanism. SBS decouples the synchronization state from the data, significantly improving cache utilization. Further, it relies on guarantees provided by pipelining to minimize synchronization that requires cross-thread communication. Snapshot-based synchronization thus scales much better than traditional hand-over-hand locking, while maintaining the same ease of use. acknowledgement: Trevor Brown was supported in part by the ISF (grants 2005/17 & 1749/14) and by a NSERC post-doctoral fellowship. alternative_title: - LNCS article_processing_charge: No author: - first_name: Eran full_name: Gilad, Eran last_name: Gilad - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Mark full_name: Oskin, Mark last_name: Oskin - first_name: Yoav full_name: Etsion, Yoav last_name: Etsion citation: ama: 'Gilad E, Brown TA, Oskin M, Etsion Y. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. In: Vol 11014. Springer; 2018:465-479. doi:10.1007/978-3-319-96983-1_33' apa: 'Gilad, E., Brown, T. A., Oskin, M., & Etsion, Y. (2018). Snapshot based synchronization: A fast replacement for Hand-over-Hand locking (Vol. 11014, pp. 465–479). Presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy: Springer. https://doi.org/10.1007/978-3-319-96983-1_33' chicago: 'Gilad, Eran, Trevor A Brown, Mark Oskin, and Yoav Etsion. “Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking,” 11014:465–79. Springer, 2018. https://doi.org/10.1007/978-3-319-96983-1_33.' ieee: 'E. Gilad, T. A. Brown, M. Oskin, and Y. Etsion, “Snapshot based synchronization: A fast replacement for Hand-over-Hand locking,” presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy, 2018, vol. 11014, pp. 465–479.' ista: 'Gilad E, Brown TA, Oskin M, Etsion Y. 2018. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11014, 465–479.' mla: 'Gilad, Eran, et al. Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking. Vol. 11014, Springer, 2018, pp. 465–79, doi:10.1007/978-3-319-96983-1_33.' short: E. Gilad, T.A. Brown, M. Oskin, Y. Etsion, in:, Springer, 2018, pp. 465–479. conference: end_date: 2018-08-31 location: Turin, Italy name: 'Euro-Par: European Conference on Parallel Processing' start_date: 2018-08-27 date_created: 2018-12-11T11:44:33Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-18T09:32:36Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1007/978-3-319-96983-1_33 external_id: isi: - '000851042300031' file: - access_level: open_access checksum: 13a3f250be8878405e791b53c19722ad content_type: application/pdf creator: dernst date_created: 2019-02-12T07:40:40Z date_updated: 2020-07-14T12:48:14Z file_id: '5954' file_name: 2018_Brown.pdf file_size: 665372 relation: main_file file_date_updated: 2020-07-14T12:48:14Z has_accepted_license: '1' intvolume: ' 11014' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Preprint page: 465 - 479 project: - _id: 26450934-B435-11E9-9278-68D0E5697425 name: NSERC Postdoctoral fellowship publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '7969' quality_controlled: '1' scopus_import: '1' status: public title: 'Snapshot based synchronization: A fast replacement for Hand-over-Hand locking' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11014 year: '2018' ... --- _id: '327' abstract: - lang: eng text: Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations. acknowledgement: 'We thank F. Huveneers for useful discussions. Z.P. and A.M. acknowledge support by EPSRC Grant No. EP/P009409/1 and and the Royal Society Research Grant No. RG160635. Statement of compliance with EPSRC policy framework on research data: This publication is theoretical work that does not require supporting research data. D.A. acknowledges support by the Swiss National Science Foundation. M.Z., M.M. and T.P. acknowledge Grants J1-7279 (M.Z.) and N1-0025 (M.M. and T.P.) of Slovenian Research Agency, and Advanced Grant of European Research Council, Grant No. 694544 - OMNES (T.P.).' article_number: '104307' article_processing_charge: No author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Marko full_name: Žnidarič, Marko last_name: Žnidarič - first_name: Mariya full_name: Medvedyeva, Mariya last_name: Medvedyeva - first_name: Dmitry full_name: Abanin, Dmitry last_name: Abanin - first_name: Tomaž full_name: Prosen, Tomaž last_name: Prosen - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 2018;97(10). doi:10.1103/PhysRevB.97.104307 apa: Michailidis, A., Žnidarič, M., Medvedyeva, M., Abanin, D., Prosen, T., & Papić, Z. (2018). Slow dynamics in translation-invariant quantum lattice models. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.97.104307 chicago: Michailidis, Alexios, Marko Žnidarič, Mariya Medvedyeva, Dmitry Abanin, Tomaž Prosen, and Zlatko Papić. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.97.104307. ieee: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, and Z. Papić, “Slow dynamics in translation-invariant quantum lattice models,” Physical Review B, vol. 97, no. 10. American Physical Society, 2018. ista: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. 2018. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 97(10), 104307. mla: Michailidis, Alexios, et al. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B, vol. 97, no. 10, 104307, American Physical Society, 2018, doi:10.1103/PhysRevB.97.104307. short: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, Z. Papić, Physical Review B 97 (2018). date_created: 2018-12-11T11:45:50Z date_published: 2018-03-19T00:00:00Z date_updated: 2023-09-18T09:31:46Z day: '19' department: - _id: MaSe doi: 10.1103/PhysRevB.97.104307 external_id: isi: - '000427798800005' intvolume: ' 97' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.05026 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '7538' quality_controlled: '1' scopus_import: '1' status: public title: Slow dynamics in translation-invariant quantum lattice models type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '29' abstract: - lang: eng text: Social insects have evolved enormous capacities to collectively build nests and defend their colonies against both predators and pathogens. The latter is achieved by a combination of individual immune responses and sophisticated collective behavioral and organizational disease defenses, that is, social immunity. We investigated how the presence or absence of these social defense lines affects individual-level immunity in ant queens after bacterial infection. To this end, we injected queens of the ant Linepithema humile with a mix of gram+ and gram− bacteria or a control solution, reared them either with workers or alone and analyzed their gene expression patterns at 2, 4, 8, and 12 hr post-injection, using RNA-seq. This allowed us to test for the effect of bacterial infection, social context, as well as the interaction between the two over the course of infection and raising of an immune response. We found that social isolation per se affected queen gene expression for metabolism genes, but not for immune genes. When infected, queens reared with and without workers up-regulated similar numbers of innate immune genes revealing activation of Toll and Imd signaling pathways and melanization. Interestingly, however, they mostly regulated different genes along the pathways and showed a different pattern of overall gene up-regulation or down-regulation. Hence, we can conclude that the absence of workers does not compromise the onset of an individual immune response by the queens, but that the social environment impacts the route of the individual innate immune responses. article_processing_charge: No author: - first_name: Lumi full_name: Viljakainen, Lumi last_name: Viljakainen - first_name: Jaana full_name: Jurvansuu, Jaana last_name: Jurvansuu - first_name: Ida full_name: Holmberg, Ida last_name: Holmberg - first_name: Tobias full_name: Pamminger, Tobias last_name: Pamminger - first_name: Silvio full_name: Erler, Silvio last_name: Erler - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Viljakainen L, Jurvansuu J, Holmberg I, Pamminger T, Erler S, Cremer S. Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. 2018;8(22):11031-11070. doi:10.1002/ece3.4573 apa: Viljakainen, L., Jurvansuu, J., Holmberg, I., Pamminger, T., Erler, S., & Cremer, S. (2018). Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. Wiley. https://doi.org/10.1002/ece3.4573 chicago: Viljakainen, Lumi, Jaana Jurvansuu, Ida Holmberg, Tobias Pamminger, Silvio Erler, and Sylvia Cremer. “Social Environment Affects the Transcriptomic Response to Bacteria in Ant Queens.” Ecology and Evolution. Wiley, 2018. https://doi.org/10.1002/ece3.4573. ieee: L. Viljakainen, J. Jurvansuu, I. Holmberg, T. Pamminger, S. Erler, and S. Cremer, “Social environment affects the transcriptomic response to bacteria in ant queens,” Ecology and Evolution, vol. 8, no. 22. Wiley, pp. 11031–11070, 2018. ista: Viljakainen L, Jurvansuu J, Holmberg I, Pamminger T, Erler S, Cremer S. 2018. Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. 8(22), 11031–11070. mla: Viljakainen, Lumi, et al. “Social Environment Affects the Transcriptomic Response to Bacteria in Ant Queens.” Ecology and Evolution, vol. 8, no. 22, Wiley, 2018, pp. 11031–70, doi:10.1002/ece3.4573. short: L. Viljakainen, J. Jurvansuu, I. Holmberg, T. Pamminger, S. Erler, S. Cremer, Ecology and Evolution 8 (2018) 11031–11070. date_created: 2018-12-11T11:44:15Z date_published: 2018-11-01T00:00:00Z date_updated: 2023-09-19T09:29:12Z day: '01' ddc: - '576' - '591' department: - _id: SyCr doi: 10.1002/ece3.4573 external_id: isi: - '000451611000032' file: - access_level: open_access checksum: 0d1355c78627ca7210aadd9a17a01915 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:27:04Z date_updated: 2020-07-14T12:45:52Z file_id: '5682' file_name: Viljakainen_et_al-2018-Ecology_and_Evolution.pdf file_size: 1272096 relation: main_file file_date_updated: 2020-07-14T12:45:52Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 11031-11070 publication: Ecology and Evolution publication_identifier: issn: - '20457758' publication_status: published publisher: Wiley publist_id: '8026' quality_controlled: '1' scopus_import: '1' status: public title: Social environment affects the transcriptomic response to bacteria in ant queens tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2018' ... --- _id: '806' abstract: - lang: eng text: Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the role that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology. article_processing_charge: No author: - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Matthias full_name: Fürst, Matthias id: 393B1196-F248-11E8-B48F-1D18A9856A87 last_name: Fürst orcid: 0000-0002-3712-925X citation: ama: 'Cremer S, Pull C, Fürst M. Social immunity: Emergence and evolution of colony-level disease protection. Annual Review of Entomology. 2018;63:105-123. doi:10.1146/annurev-ento-020117-043110' apa: 'Cremer, S., Pull, C., & Fürst, M. (2018). Social immunity: Emergence and evolution of colony-level disease protection. Annual Review of Entomology. Annual Reviews. https://doi.org/10.1146/annurev-ento-020117-043110' chicago: 'Cremer, Sylvia, Christopher Pull, and Matthias Fürst. “Social Immunity: Emergence and Evolution of Colony-Level Disease Protection.” Annual Review of Entomology. Annual Reviews, 2018. https://doi.org/10.1146/annurev-ento-020117-043110.' ieee: 'S. Cremer, C. Pull, and M. Fürst, “Social immunity: Emergence and evolution of colony-level disease protection,” Annual Review of Entomology, vol. 63. Annual Reviews, pp. 105–123, 2018.' ista: 'Cremer S, Pull C, Fürst M. 2018. Social immunity: Emergence and evolution of colony-level disease protection. Annual Review of Entomology. 63, 105–123.' mla: 'Cremer, Sylvia, et al. “Social Immunity: Emergence and Evolution of Colony-Level Disease Protection.” Annual Review of Entomology, vol. 63, Annual Reviews, 2018, pp. 105–23, doi:10.1146/annurev-ento-020117-043110.' short: S. Cremer, C. Pull, M. Fürst, Annual Review of Entomology 63 (2018) 105–123. date_created: 2018-12-11T11:48:36Z date_published: 2018-01-07T00:00:00Z date_updated: 2023-09-19T09:29:45Z day: '07' department: - _id: SyCr doi: 10.1146/annurev-ento-020117-043110 external_id: isi: - '000424633700008' intvolume: ' 63' isi: 1 language: - iso: eng month: '01' oa_version: None page: 105 - 123 publication: Annual Review of Entomology publication_identifier: issn: - 1545-4487 publication_status: published publisher: Annual Reviews publist_id: '6844' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Social immunity: Emergence and evolution of colony-level disease protection' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 63 year: '2018' ... --- _id: '140' abstract: - lang: eng text: Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate affine flowpipes. But interval methods impose bounded and rigid shapes, which make refinement expensive and fixpoint detection difficult. Template polyhedra, on the other hand, can be adapted flexibly and can be unbounded, but sound template refinement for unbounded reachability analysis has been implemented only for systems with piecewise constant dynamics. We capitalize on the advantages of both techniques, combining interval arithmetic and template polyhedra, using the former to abstract time and the latter to abstract space. During a CEGAR loop, whenever a spurious error trajectory is found, we compute additional space constraints and split time intervals, and use these space-time interpolants to eliminate the counterexample. Space-time interpolation offers a lazy, flexible framework for increasing precision while guaranteeing soundness, both for error avoidance and fixpoint detection. To the best of out knowledge, this is the first abstraction refinement scheme for the reachability analysis over unbounded and dense time of affine hybrid systems, which is both sound and automatic. We demonstrate the effectiveness of our algorithm with several benchmark examples, which cannot be handled by other tools. alternative_title: - LNCS article_processing_charge: No author: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Frehse G, Giacobbe M, Henzinger TA. Space-time interpolants. In: Vol 10981. Springer; 2018:468-486. doi:10.1007/978-3-319-96145-3_25' apa: 'Frehse, G., Giacobbe, M., & Henzinger, T. A. (2018). Space-time interpolants (Vol. 10981, pp. 468–486). Presented at the CAV: Computer Aided Verification, Oxford, United Kingdom: Springer. https://doi.org/10.1007/978-3-319-96145-3_25' chicago: Frehse, Goran, Mirco Giacobbe, and Thomas A Henzinger. “Space-Time Interpolants,” 10981:468–86. Springer, 2018. https://doi.org/10.1007/978-3-319-96145-3_25. ieee: 'G. Frehse, M. Giacobbe, and T. A. Henzinger, “Space-time interpolants,” presented at the CAV: Computer Aided Verification, Oxford, United Kingdom, 2018, vol. 10981, pp. 468–486.' ista: 'Frehse G, Giacobbe M, Henzinger TA. 2018. Space-time interpolants. CAV: Computer Aided Verification, LNCS, vol. 10981, 468–486.' mla: Frehse, Goran, et al. Space-Time Interpolants. Vol. 10981, Springer, 2018, pp. 468–86, doi:10.1007/978-3-319-96145-3_25. short: G. Frehse, M. Giacobbe, T.A. Henzinger, in:, Springer, 2018, pp. 468–486. conference: end_date: 2018-07-17 location: Oxford, United Kingdom name: 'CAV: Computer Aided Verification' start_date: 2018-07-14 date_created: 2018-12-11T11:44:50Z date_published: 2018-07-18T00:00:00Z date_updated: 2023-09-19T09:30:43Z day: '18' ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-319-96145-3_25 external_id: isi: - '000491481600025' file: - access_level: open_access checksum: 6dca832f575d6b3f0ea9dff56f579142 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:53Z date_updated: 2020-07-14T12:44:50Z file_id: '5310' file_name: IST-2018-1010-v1+1_space-time_interpolants.pdf file_size: 563710 relation: main_file file_date_updated: 2020-07-14T12:44:50Z has_accepted_license: '1' intvolume: ' 10981' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 468 - 486 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '7783' pubrep_id: '1010' quality_controlled: '1' related_material: record: - id: '6894' relation: dissertation_contains status: public scopus_import: '1' status: public title: Space-time interpolants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10981 year: '2018' ... --- _id: '154' abstract: - lang: eng text: We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable, i.e., the energy is bounded from below, for m∈[m2,m2−1]. So far it was not known whether this 2 + 2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N + M system. acknowledgement: Open access funding provided by Austrian Science Fund (FWF). article_number: '19' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Moser, Thomas id: 2B5FC9A4-F248-11E8-B48F-1D18A9856A87 last_name: Moser - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Moser T, Seiringer R. Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. 2018;21(3). doi:10.1007/s11040-018-9275-3 apa: Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-018-9275-3 chicago: Moser, Thomas, and Robert Seiringer. “Stability of the 2+2 Fermionic System with Point Interactions.” Mathematical Physics Analysis and Geometry. Springer, 2018. https://doi.org/10.1007/s11040-018-9275-3. ieee: T. Moser and R. Seiringer, “Stability of the 2+2 fermionic system with point interactions,” Mathematical Physics Analysis and Geometry, vol. 21, no. 3. Springer, 2018. ista: Moser T, Seiringer R. 2018. Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. 21(3), 19. mla: Moser, Thomas, and Robert Seiringer. “Stability of the 2+2 Fermionic System with Point Interactions.” Mathematical Physics Analysis and Geometry, vol. 21, no. 3, 19, Springer, 2018, doi:10.1007/s11040-018-9275-3. short: T. Moser, R. Seiringer, Mathematical Physics Analysis and Geometry 21 (2018). date_created: 2018-12-11T11:44:55Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T09:31:15Z day: '01' ddc: - '530' department: - _id: RoSe doi: 10.1007/s11040-018-9275-3 ec_funded: 1 external_id: isi: - '000439639700001' file: - access_level: open_access checksum: 411c4db5700d7297c9cd8ebc5dd29091 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:49:02Z date_updated: 2020-07-14T12:45:01Z file_id: '5729' file_name: 2018_MathPhysics_Moser.pdf file_size: 496973 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '3' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Mathematical Physics Analysis and Geometry publication_identifier: eissn: - '15729656' issn: - '13850172' publication_status: published publisher: Springer publist_id: '7767' quality_controlled: '1' related_material: record: - id: '52' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability of the 2+2 fermionic system with point interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 21 year: '2018' ... --- _id: '5787' abstract: - lang: eng text: "Branching morphogenesis remains a subject of abiding interest. Although \ much is \r\nknown about the gene regulatory programs and signaling pathways that operate at \r\nthe cellular scale, it has remained unclear how the macroscopic features of branched \r\norgans, including their size, network topology and \ spatial patterning, are encoded. \r\nLately, it has been proposed that, these features can be explained quantitatively in \r\nseveral organs within a single unifying framework. Based on large-\r\nscale organ recon\r\n-\r\nstructions \ and cell lineage tracing, it has been argued that morphogenesis follows \ \r\nfrom the collective dynamics of sublineage- \r\nrestricted self- \r\nrenewing progenitor cells, \r\nlocalized at ductal tips, that act cooperatively to drive a serial process of ductal elon\r\n-\r\ngation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit \r\nwith proximity to maturing ducts, this dynamic results in the specification of a com-\r\nplex network of \ defined density and statistical organization. These results suggest \r\nthat, for several mammalian tissues, branched epithelial structures develop as a self- \r\norganized process, reliant upon a strikingly simple, but generic, \ set of local rules, \r\nwithout recourse to a rigid and deterministic \ sequence of genetically programmed \r\nevents. Here, we review the basis of these findings and discuss their implications." article_processing_charge: No author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Benjamin D. full_name: Simons, Benjamin D. last_name: Simons citation: ama: Hannezo EB, Simons BD. Statistical theory of branching morphogenesis. Development Growth and Differentiation. 2018;60(9):512-521. doi:10.1111/dgd.12570 apa: Hannezo, E. B., & Simons, B. D. (2018). Statistical theory of branching morphogenesis. Development Growth and Differentiation. Wiley. https://doi.org/10.1111/dgd.12570 chicago: Hannezo, Edouard B, and Benjamin D. Simons. “Statistical Theory of Branching Morphogenesis.” Development Growth and Differentiation. Wiley, 2018. https://doi.org/10.1111/dgd.12570. ieee: E. B. Hannezo and B. D. Simons, “Statistical theory of branching morphogenesis,” Development Growth and Differentiation, vol. 60, no. 9. Wiley, pp. 512–521, 2018. ista: Hannezo EB, Simons BD. 2018. Statistical theory of branching morphogenesis. Development Growth and Differentiation. 60(9), 512–521. mla: Hannezo, Edouard B., and Benjamin D. Simons. “Statistical Theory of Branching Morphogenesis.” Development Growth and Differentiation, vol. 60, no. 9, Wiley, 2018, pp. 512–21, doi:10.1111/dgd.12570. short: E.B. Hannezo, B.D. Simons, Development Growth and Differentiation 60 (2018) 512–521. date_created: 2018-12-30T22:59:14Z date_published: 2018-12-09T00:00:00Z date_updated: 2023-09-19T09:32:49Z day: '09' ddc: - '570' department: - _id: EdHa doi: 10.1111/dgd.12570 external_id: isi: - '000453555100002' file: - access_level: open_access checksum: a6d30b0785db902c734a84fecb2eadd9 content_type: application/pdf creator: dernst date_created: 2019-02-06T10:40:46Z date_updated: 2020-07-14T12:47:11Z file_id: '5933' file_name: 2018_DevGrowh_Hannezo.pdf file_size: 1313606 relation: main_file file_date_updated: 2020-07-14T12:47:11Z has_accepted_license: '1' intvolume: ' 60' isi: 1 issue: '9' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 512-521 publication: Development Growth and Differentiation publication_identifier: issn: - '00121592' publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Statistical theory of branching morphogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 60 year: '2018' ... --- _id: '297' abstract: - lang: eng text: Graph games played by two players over finite-state graphs are central in many problems in computer science. In particular, graph games with ω -regular winning conditions, specified as parity objectives, which can express properties such as safety, liveness, fairness, are the basic framework for verification and synthesis of reactive systems. The decisions for a player at various states of the graph game are represented as strategies. While the algorithmic problem for solving graph games with parity objectives has been widely studied, the most prominent data-structure for strategy representation in graph games has been binary decision diagrams (BDDs). However, due to the bit-level representation, BDDs do not retain the inherent flavor of the decisions of strategies, and are notoriously hard to minimize to obtain succinct representation. In this work we propose decision trees for strategy representation in graph games. Decision trees retain the flavor of decisions of strategies and allow entropy-based minimization to obtain succinct trees. However, decision trees work in settings (e.g., probabilistic models) where errors are allowed, and overfitting of data is typically avoided. In contrast, for strategies in graph games no error is allowed, and the decision tree must represent the entire strategy. We develop new techniques to extend decision trees to overcome the above obstacles, while retaining the entropy-based techniques to obtain succinct trees. We have implemented our techniques to extend the existing decision tree solvers. We present experimental results for problems in reactive synthesis to show that decision trees provide a much more efficient data-structure for strategy representation as compared to BDDs. alternative_title: - LNCS article_processing_charge: No author: - first_name: Tomáš full_name: Brázdil, Tomáš last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jan full_name: Kretinsky, Jan id: 44CEF464-F248-11E8-B48F-1D18A9856A87 last_name: Kretinsky orcid: 0000-0002-8122-2881 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Brázdil T, Chatterjee K, Kretinsky J, Toman V. Strategy representation by decision trees in reactive synthesis. In: Vol 10805. Springer; 2018:385-407. doi:10.1007/978-3-319-89960-2_21' apa: 'Brázdil, T., Chatterjee, K., Kretinsky, J., & Toman, V. (2018). Strategy representation by decision trees in reactive synthesis (Vol. 10805, pp. 385–407). Presented at the TACAS 2018: Tools and Algorithms for the Construction and Analysis of Systems, Thessaloniki, Greece: Springer. https://doi.org/10.1007/978-3-319-89960-2_21' chicago: Brázdil, Tomáš, Krishnendu Chatterjee, Jan Kretinsky, and Viktor Toman. “Strategy Representation by Decision Trees in Reactive Synthesis,” 10805:385–407. Springer, 2018. https://doi.org/10.1007/978-3-319-89960-2_21. ieee: 'T. Brázdil, K. Chatterjee, J. Kretinsky, and V. Toman, “Strategy representation by decision trees in reactive synthesis,” presented at the TACAS 2018: Tools and Algorithms for the Construction and Analysis of Systems, Thessaloniki, Greece, 2018, vol. 10805, pp. 385–407.' ista: 'Brázdil T, Chatterjee K, Kretinsky J, Toman V. 2018. Strategy representation by decision trees in reactive synthesis. TACAS 2018: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 10805, 385–407.' mla: Brázdil, Tomáš, et al. Strategy Representation by Decision Trees in Reactive Synthesis. Vol. 10805, Springer, 2018, pp. 385–407, doi:10.1007/978-3-319-89960-2_21. short: T. Brázdil, K. Chatterjee, J. Kretinsky, V. Toman, in:, Springer, 2018, pp. 385–407. conference: end_date: 2018-04-20 location: Thessaloniki, Greece name: 'TACAS 2018: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2018-04-14 date_created: 2018-12-11T11:45:41Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-19T09:57:08Z day: '12' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-319-89960-2_21 ec_funded: 1 external_id: isi: - '000546326300021' file: - access_level: open_access checksum: b13874ffb114932ad9cc2586b7469db4 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:29:08Z date_updated: 2020-07-14T12:45:57Z file_id: '5723' file_name: 2018_LNCS_Brazdil.pdf file_size: 1829940 relation: main_file file_date_updated: 2020-07-14T12:45:57Z has_accepted_license: '1' intvolume: ' 10805' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 385 - 407 project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_status: published publisher: Springer publist_id: '7584' quality_controlled: '1' scopus_import: '1' status: public title: Strategy representation by decision trees in reactive synthesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10805 year: '2018' ... --- _id: '141' abstract: - lang: eng text: 'Given a model and a specification, the fundamental model-checking problem asks for algorithmic verification of whether the model satisfies the specification. We consider graphs and Markov decision processes (MDPs), which are fundamental models for reactive systems. One of the very basic specifications that arise in verification of reactive systems is the strong fairness (aka Streett) objective. Given different types of requests and corresponding grants, the objective requires that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All ω -regular objectives can be expressed as Streett objectives and hence they are canonical in verification. To handle the state-space explosion, symbolic algorithms are required that operate on a succinct implicit representation of the system rather than explicitly accessing the system. While explicit algorithms for graphs and MDPs with Streett objectives have been widely studied, there has been no improvement of the basic symbolic algorithms. The worst-case numbers of symbolic steps required for the basic symbolic algorithms are as follows: quadratic for graphs and cubic for MDPs. In this work we present the first sub-quadratic symbolic algorithm for graphs with Streett objectives, and our algorithm is sub-quadratic even for MDPs. Based on our algorithmic insights we present an implementation of the new symbolic approach and show that it improves the existing approach on several academic benchmark examples.' acknowledgement: 'Acknowledgements. K. C. and M. H. are partially supported by the Vienna Science and Technology Fund (WWTF) grant ICT15-003. K. C. is partially supported by the Austrian Science Fund (FWF): S11407-N23 (RiSE/SHiNE), and an ERC Start Grant (279307: Graph Games). V. T. is partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie Grant Agreement No. 665385.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Veronika full_name: Loitzenbauer, Veronika last_name: Loitzenbauer - first_name: Simin full_name: Oraee, Simin last_name: Oraee - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Chatterjee K, Henzinger MH, Loitzenbauer V, Oraee S, Toman V. Symbolic algorithms for graphs and Markov decision processes with fairness objectives. In: Vol 10982. Springer; 2018:178-197. doi:10.1007/978-3-319-96142-2_13' apa: 'Chatterjee, K., Henzinger, M. H., Loitzenbauer, V., Oraee, S., & Toman, V. (2018). Symbolic algorithms for graphs and Markov decision processes with fairness objectives (Vol. 10982, pp. 178–197). Presented at the CAV: Computer Aided Verification, Oxford, United Kingdom: Springer. https://doi.org/10.1007/978-3-319-96142-2_13' chicago: Chatterjee, Krishnendu, Monika H Henzinger, Veronika Loitzenbauer, Simin Oraee, and Viktor Toman. “Symbolic Algorithms for Graphs and Markov Decision Processes with Fairness Objectives,” 10982:178–97. Springer, 2018. https://doi.org/10.1007/978-3-319-96142-2_13. ieee: 'K. Chatterjee, M. H. Henzinger, V. Loitzenbauer, S. Oraee, and V. Toman, “Symbolic algorithms for graphs and Markov decision processes with fairness objectives,” presented at the CAV: Computer Aided Verification, Oxford, United Kingdom, 2018, vol. 10982, pp. 178–197.' ista: 'Chatterjee K, Henzinger MH, Loitzenbauer V, Oraee S, Toman V. 2018. Symbolic algorithms for graphs and Markov decision processes with fairness objectives. CAV: Computer Aided Verification, LNCS, vol. 10982, 178–197.' mla: Chatterjee, Krishnendu, et al. Symbolic Algorithms for Graphs and Markov Decision Processes with Fairness Objectives. Vol. 10982, Springer, 2018, pp. 178–97, doi:10.1007/978-3-319-96142-2_13. short: K. Chatterjee, M.H. Henzinger, V. Loitzenbauer, S. Oraee, V. Toman, in:, Springer, 2018, pp. 178–197. conference: end_date: 2018-07-17 location: Oxford, United Kingdom name: 'CAV: Computer Aided Verification' start_date: 2018-07-14 date_created: 2018-12-11T11:44:51Z date_published: 2018-07-18T00:00:00Z date_updated: 2023-09-19T09:59:55Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-319-96142-2_13 ec_funded: 1 external_id: isi: - '000491469700013' file: - access_level: open_access checksum: 1a6ffa4febe8bb8ac28be3adb3eafebc content_type: application/pdf creator: dernst date_created: 2018-12-18T08:52:38Z date_updated: 2020-07-14T12:44:53Z file_id: '5737' file_name: 2018_LNCS_Chatterjee.pdf file_size: 675606 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 10982' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 178-197 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_status: published publisher: Springer publist_id: '7782' quality_controlled: '1' related_material: record: - id: '10199' relation: dissertation_contains status: public scopus_import: '1' status: public title: Symbolic algorithms for graphs and Markov decision processes with fairness objectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10982 year: '2018' ... --- _id: '298' abstract: - lang: eng text: "Memory-hard functions (MHF) are functions whose evaluation cost is dominated by memory cost. MHFs are egalitarian, in the sense that evaluating them on dedicated hardware (like FPGAs or ASICs) is not much cheaper than on off-the-shelf hardware (like x86 CPUs). MHFs have interesting cryptographic applications, most notably to password hashing and securing blockchains.\r\n\r\nAlwen and Serbinenko [STOC’15] define the cumulative memory complexity (cmc) of a function as the sum (over all time-steps) of the amount of memory required to compute the function. They advocate that a good MHF must have high cmc. Unlike previous notions, cmc takes into account that dedicated hardware might exploit amortization and parallelism. Still, cmc has been critizised as insufficient, as it fails to capture possible time-memory trade-offs; as memory cost doesn’t scale linearly, functions with the same cmc could still have very different actual hardware cost.\r\n\r\nIn this work we address this problem, and introduce the notion of sustained-memory complexity, which requires that any algorithm evaluating the function must use a large amount of memory for many steps. We construct functions (in the parallel random oracle model) whose sustained-memory complexity is almost optimal: our function can be evaluated using n steps and O(n/log(n)) memory, in each step making one query to the (fixed-input length) random oracle, while any algorithm that can make arbitrary many parallel queries to the random oracle, still needs Ω(n/log(n)) memory for Ω(n) steps.\r\n\r\nAs has been done for various notions (including cmc) before, we reduce the task of constructing an MHFs with high sustained-memory complexity to proving pebbling lower bounds on DAGs. Our main technical contribution is the construction is a family of DAGs on n nodes with constant indegree with high “sustained-space complexity”, meaning that any parallel black-pebbling strategy requires Ω(n/log(n)) pebbles for at least Ω(n) steps.\r\n\r\nAlong the way we construct a family of maximally “depth-robust” DAGs with maximum indegree O(logn) , improving upon the construction of Mahmoody et al. [ITCS’13] which had maximum indegree O(log2n⋅" alternative_title: - LNCS article_processing_charge: No author: - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Jeremiah full_name: Blocki, Jeremiah last_name: Blocki - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Alwen JF, Blocki J, Pietrzak KZ. Sustained space complexity. In: Vol 10821. Springer; 2018:99-130. doi:10.1007/978-3-319-78375-8_4' apa: 'Alwen, J. F., Blocki, J., & Pietrzak, K. Z. (2018). Sustained space complexity (Vol. 10821, pp. 99–130). Presented at the Eurocrypt 2018: Advances in Cryptology, Tel Aviv, Israel: Springer. https://doi.org/10.1007/978-3-319-78375-8_4' chicago: Alwen, Joel F, Jeremiah Blocki, and Krzysztof Z Pietrzak. “Sustained Space Complexity,” 10821:99–130. Springer, 2018. https://doi.org/10.1007/978-3-319-78375-8_4. ieee: 'J. F. Alwen, J. Blocki, and K. Z. Pietrzak, “Sustained space complexity,” presented at the Eurocrypt 2018: Advances in Cryptology, Tel Aviv, Israel, 2018, vol. 10821, pp. 99–130.' ista: 'Alwen JF, Blocki J, Pietrzak KZ. 2018. Sustained space complexity. Eurocrypt 2018: Advances in Cryptology, LNCS, vol. 10821, 99–130.' mla: Alwen, Joel F., et al. Sustained Space Complexity. Vol. 10821, Springer, 2018, pp. 99–130, doi:10.1007/978-3-319-78375-8_4. short: J.F. Alwen, J. Blocki, K.Z. Pietrzak, in:, Springer, 2018, pp. 99–130. conference: end_date: 2018-05-03 location: Tel Aviv, Israel name: 'Eurocrypt 2018: Advances in Cryptology' start_date: 2018-04-29 date_created: 2018-12-11T11:45:41Z date_published: 2018-03-31T00:00:00Z date_updated: 2023-09-19T09:59:30Z day: '31' department: - _id: KrPi doi: 10.1007/978-3-319-78375-8_4 ec_funded: 1 external_id: arxiv: - '1705.05313' isi: - '000517098700004' intvolume: ' 10821' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.05313 month: '03' oa: 1 oa_version: Preprint page: 99 - 130 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_status: published publisher: Springer publist_id: '7583' quality_controlled: '1' scopus_import: '1' status: public title: Sustained space complexity type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10821 year: '2018' ... --- _id: '36' abstract: - lang: eng text: Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity. acknowledgement: TZ is supported by a grant from the Chinese Scholarship Council. article_processing_charge: No author: - first_name: Lam full_name: Vu, Lam last_name: Vu - first_name: Tingting full_name: Zhu, Tingting last_name: Zhu - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Brigitte full_name: Van De Cotte, Brigitte last_name: Van De Cotte - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Ive full_name: De Smet, Ive last_name: De Smet citation: ama: Vu L, Zhu T, Verstraeten I, Van De Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. 2018;69(19):4609-4624. doi:10.1093/jxb/ery204 apa: Vu, L., Zhu, T., Verstraeten, I., Van De Cotte, B., Gevaert, K., & De Smet, I. (2018). Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/ery204 chicago: Vu, Lam, Tingting Zhu, Inge Verstraeten, Brigitte Van De Cotte, Kris Gevaert, and Ive De Smet. “Temperature-Induced Changes in the Wheat Phosphoproteome Reveal Temperature-Regulated Interconversion of Phosphoforms.” Journal of Experimental Botany. Oxford University Press, 2018. https://doi.org/10.1093/jxb/ery204. ieee: L. Vu, T. Zhu, I. Verstraeten, B. Van De Cotte, K. Gevaert, and I. De Smet, “Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms,” Journal of Experimental Botany, vol. 69, no. 19. Oxford University Press, pp. 4609–4624, 2018. ista: Vu L, Zhu T, Verstraeten I, Van De Cotte B, Gevaert K, De Smet I. 2018. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. 69(19), 4609–4624. mla: Vu, Lam, et al. “Temperature-Induced Changes in the Wheat Phosphoproteome Reveal Temperature-Regulated Interconversion of Phosphoforms.” Journal of Experimental Botany, vol. 69, no. 19, Oxford University Press, 2018, pp. 4609–24, doi:10.1093/jxb/ery204. short: L. Vu, T. Zhu, I. Verstraeten, B. Van De Cotte, K. Gevaert, I. De Smet, Journal of Experimental Botany 69 (2018) 4609–4624. date_created: 2018-12-11T11:44:17Z date_published: 2018-08-31T00:00:00Z date_updated: 2023-09-19T10:00:46Z day: '31' ddc: - '581' department: - _id: JiFr doi: 10.1093/jxb/ery204 external_id: isi: - '000443568700010' file: - access_level: open_access checksum: 34cb0a1611588b75bd6f4913fb4e30f1 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:47:51Z date_updated: 2020-07-14T12:46:13Z file_id: '5741' file_name: 2018_JournalExperimBotany_Vu.pdf file_size: 3359316 relation: main_file file_date_updated: 2020-07-14T12:46:13Z has_accepted_license: '1' intvolume: ' 69' isi: 1 issue: '19' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 4609 - 4624 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '8019' quality_controlled: '1' scopus_import: '1' status: public title: Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 69 year: '2018' ... --- _id: '326' abstract: - lang: eng text: Three-dimensional (3D) super-resolution microscopy technique structured illumination microscopy (SIM) imaging of dendritic spines along the dendrite has not been previously performed in fixed tissues, mainly due to deterioration of the stripe pattern of the excitation laser induced by light scattering and optical aberrations. To address this issue and solve these optical problems, we applied a novel clearing reagent, LUCID, to fixed brains. In SIM imaging, the penetration depth and the spatial resolution were improved in LUCID-treated slices, and 160-nm spatial resolution was obtained in a large portion of the imaging volume on a single apical dendrite. Furthermore, in a morphological analysis of spine heads of layer V pyramidal neurons (L5PNs) in the medial prefrontal cortex (mPFC) of chronic dexamethasone (Dex)-treated mice, SIM imaging revealed an altered distribution of spine forms that could not be detected by high-NA confocal imaging. Thus, super-resolution SIM imaging represents a promising high-throughput method for revealing spine morphologies in single dendrites. acknowledged_ssus: - _id: EM-Fac article_processing_charge: No author: - first_name: Kazuaki full_name: Sawada, Kazuaki last_name: Sawada - first_name: Ryosuke full_name: Kawakami, Ryosuke last_name: Kawakami - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Tomomi full_name: Nemoto, Tomomi last_name: Nemoto citation: ama: Sawada K, Kawakami R, Shigemoto R, Nemoto T. Super resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. European Journal of Neuroscience. 2018;47(9):1033-1042. doi:10.1111/ejn.13901 apa: Sawada, K., Kawakami, R., Shigemoto, R., & Nemoto, T. (2018). Super resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. European Journal of Neuroscience. Wiley. https://doi.org/10.1111/ejn.13901 chicago: Sawada, Kazuaki, Ryosuke Kawakami, Ryuichi Shigemoto, and Tomomi Nemoto. “Super Resolution Structural Analysis of Dendritic Spines Using Three-Dimensional Structured Illumination Microscopy in Cleared Mouse Brain Slices.” European Journal of Neuroscience. Wiley, 2018. https://doi.org/10.1111/ejn.13901. ieee: K. Sawada, R. Kawakami, R. Shigemoto, and T. Nemoto, “Super resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices,” European Journal of Neuroscience, vol. 47, no. 9. Wiley, pp. 1033–1042, 2018. ista: Sawada K, Kawakami R, Shigemoto R, Nemoto T. 2018. Super resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices. European Journal of Neuroscience. 47(9), 1033–1042. mla: Sawada, Kazuaki, et al. “Super Resolution Structural Analysis of Dendritic Spines Using Three-Dimensional Structured Illumination Microscopy in Cleared Mouse Brain Slices.” European Journal of Neuroscience, vol. 47, no. 9, Wiley, 2018, pp. 1033–42, doi:10.1111/ejn.13901. short: K. Sawada, R. Kawakami, R. Shigemoto, T. Nemoto, European Journal of Neuroscience 47 (2018) 1033–1042. date_created: 2018-12-11T11:45:50Z date_published: 2018-03-07T00:00:00Z date_updated: 2023-09-19T09:58:40Z day: '07' ddc: - '570' department: - _id: RySh doi: 10.1111/ejn.13901 external_id: isi: - '000431496400001' file: - access_level: open_access checksum: 98e901d8229e44aa8f3b51d248dedd09 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:16:50Z date_updated: 2020-07-14T12:46:06Z file_id: '5721' file_name: 2018_EJN_Sawada.pdf file_size: 4850261 relation: main_file file_date_updated: 2020-07-14T12:46:06Z has_accepted_license: '1' intvolume: ' 47' isi: 1 issue: '9' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '03' oa: 1 oa_version: Published Version page: 1033 - 1042 publication: European Journal of Neuroscience publication_status: published publisher: Wiley publist_id: '7539' quality_controlled: '1' scopus_import: '1' status: public title: Super resolution structural analysis of dendritic spines using three-dimensional structured illumination microscopy in cleared mouse brain slices tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 47 year: '2018' ... --- _id: '5770' abstract: - lang: eng text: Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein–protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry. article_processing_charge: No author: - first_name: Kun full_name: Qu, Kun last_name: Qu - first_name: Bärbel full_name: Glass, Bärbel last_name: Glass - first_name: Michal full_name: Doležal, Michal last_name: Doležal - first_name: Florian full_name: Schur, Florian id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 - first_name: Brice full_name: Murciano, Brice last_name: Murciano - first_name: Alan full_name: Rein, Alan last_name: Rein - first_name: Michaela full_name: Rumlová, Michaela last_name: Rumlová - first_name: Tomáš full_name: Ruml, Tomáš last_name: Ruml - first_name: Hans-Georg full_name: Kräusslich, Hans-Georg last_name: Kräusslich - first_name: John A. G. full_name: Briggs, John A. G. last_name: Briggs citation: ama: Qu K, Glass B, Doležal M, et al. Structure and architecture of immature and mature murine leukemia virus capsids. Proceedings of the National Academy of Sciences. 2018;115(50):E11751-E11760. doi:10.1073/pnas.1811580115 apa: Qu, K., Glass, B., Doležal, M., Schur, F. K., Murciano, B., Rein, A., … Briggs, J. A. G. (2018). Structure and architecture of immature and mature murine leukemia virus capsids. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1811580115 chicago: Qu, Kun, Bärbel Glass, Michal Doležal, Florian KM Schur, Brice Murciano, Alan Rein, Michaela Rumlová, Tomáš Ruml, Hans-Georg Kräusslich, and John A. G. Briggs. “Structure and Architecture of Immature and Mature Murine Leukemia Virus Capsids.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1811580115. ieee: K. Qu et al., “Structure and architecture of immature and mature murine leukemia virus capsids,” Proceedings of the National Academy of Sciences, vol. 115, no. 50. Proceedings of the National Academy of Sciences, pp. E11751–E11760, 2018. ista: Qu K, Glass B, Doležal M, Schur FK, Murciano B, Rein A, Rumlová M, Ruml T, Kräusslich H-G, Briggs JAG. 2018. Structure and architecture of immature and mature murine leukemia virus capsids. Proceedings of the National Academy of Sciences. 115(50), E11751–E11760. mla: Qu, Kun, et al. “Structure and Architecture of Immature and Mature Murine Leukemia Virus Capsids.” Proceedings of the National Academy of Sciences, vol. 115, no. 50, Proceedings of the National Academy of Sciences, 2018, pp. E11751–60, doi:10.1073/pnas.1811580115. short: K. Qu, B. Glass, M. Doležal, F.K. Schur, B. Murciano, A. Rein, M. Rumlová, T. Ruml, H.-G. Kräusslich, J.A.G. Briggs, Proceedings of the National Academy of Sciences 115 (2018) E11751–E11760. date_created: 2018-12-20T21:09:37Z date_published: 2018-12-11T00:00:00Z date_updated: 2023-09-19T09:57:45Z day: '11' department: - _id: FlSc doi: 10.1073/pnas.1811580115 external_id: isi: - '000452866000022' pmid: - '30478053' intvolume: ' 115' isi: 1 issue: '50' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30478053 month: '12' oa: 1 oa_version: Submitted Version page: E11751-E11760 pmid: 1 publication: Proceedings of the National Academy of Sciences publication_identifier: issn: - '00278424' publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Structure and architecture of immature and mature murine leukemia virus capsids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '608' abstract: - lang: eng text: Synthesis is the automated construction of a system from its specification. In real life, hardware and software systems are rarely constructed from scratch. Rather, a system is typically constructed from a library of components. Lustig and Vardi formalized this intuition and studied LTL synthesis from component libraries. In real life, designers seek optimal systems. In this paper we add optimality considerations to the setting. We distinguish between quality considerations (for example, size - the smaller a system is, the better it is), and pricing (for example, the payment to the company who manufactured the component). We study the problem of designing systems with minimal quality-cost and price. A key point is that while the quality cost is individual - the choices of a designer are independent of choices made by other designers that use the same library, pricing gives rise to a resource-allocation game - designers that use the same component share its price, with the share being proportional to the number of uses (a component can be used several times in a design). We study both closed and open settings, and in both we solve the problem of finding an optimal design. In a setting with multiple designers, we also study the game-theoretic problems of the induced resource-allocation game. article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman citation: ama: Avni G, Kupferman O. Synthesis from component libraries with costs. Theoretical Computer Science. 2018;712:50-72. doi:10.1016/j.tcs.2017.11.001 apa: Avni, G., & Kupferman, O. (2018). Synthesis from component libraries with costs. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2017.11.001 chicago: Avni, Guy, and Orna Kupferman. “Synthesis from Component Libraries with Costs.” Theoretical Computer Science. Elsevier, 2018. https://doi.org/10.1016/j.tcs.2017.11.001. ieee: G. Avni and O. Kupferman, “Synthesis from component libraries with costs,” Theoretical Computer Science, vol. 712. Elsevier, pp. 50–72, 2018. ista: Avni G, Kupferman O. 2018. Synthesis from component libraries with costs. Theoretical Computer Science. 712, 50–72. mla: Avni, Guy, and Orna Kupferman. “Synthesis from Component Libraries with Costs.” Theoretical Computer Science, vol. 712, Elsevier, 2018, pp. 50–72, doi:10.1016/j.tcs.2017.11.001. short: G. Avni, O. Kupferman, Theoretical Computer Science 712 (2018) 50–72. date_created: 2018-12-11T11:47:28Z date_published: 2018-02-15T00:00:00Z date_updated: 2023-09-19T10:00:21Z day: '15' department: - _id: ToHe doi: 10.1016/j.tcs.2017.11.001 ec_funded: 1 external_id: isi: - '000424959200003' intvolume: ' 712' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.636.4529 month: '02' oa: 1 oa_version: Published Version page: 50 - 72 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Theoretical Computer Science publication_status: published publisher: Elsevier publist_id: '7197' quality_controlled: '1' scopus_import: '1' status: public title: Synthesis from component libraries with costs type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 712 year: '2018' ... --- _id: '705' abstract: - lang: eng text: Although dopamine receptors D1 and D2 play key roles in hippocampal function, their synaptic localization within the hippocampus has not been fully elucidated. In order to understand precise functions of pre- or postsynaptic dopamine receptors (DRs), the development of protocols to differentiate pre- and postsynaptic DRs is essential. So far, most studies on determination and quantification of DRs did not discriminate between subsynaptic localization. Therefore, the aim of the study was to generate a robust workflow for the localization of DRs. This work provides the basis for future work on hippocampal DRs, in light that DRs may have different functions at pre- or postsynaptic sites. Synaptosomes from rat hippocampi isolated by a sucrose gradient protocol were prepared for super-resolution direct stochastic optical reconstruction microscopy (dSTORM) using Bassoon as a presynaptic zone and Homer1 as postsynaptic density marker. Direct labeling of primary validated antibodies against dopamine receptors D1 (D1R) and D2 (D2R) with Alexa Fluor 594 enabled unequivocal assignment of D1R and D2R to both, pre- and postsynaptic sites. D1R immunoreactivity clusters were observed within the presynaptic active zone as well as at perisynaptic sites at the edge of the presynaptic active zone. The results may be useful for the interpretation of previous studies and the design of future work on DRs in the hippocampus. Moreover, the reduction of the complexity of brain tissue by the use of synaptosomal preparations and dSTORM technology may represent a useful tool for synaptic localization of brain proteins. article_processing_charge: No author: - first_name: Andras full_name: Miklosi, Andras last_name: Miklosi - first_name: Giorgia full_name: Del Favero, Giorgia last_name: Del Favero - first_name: Tanja full_name: Bulat, Tanja last_name: Bulat - first_name: Harald full_name: Höger, Harald last_name: Höger - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Doris full_name: Marko, Doris last_name: Marko - first_name: Gert full_name: Lubec, Gert last_name: Lubec citation: ama: Miklosi A, Del Favero G, Bulat T, et al. Super resolution microscopical localization of dopamine receptors 1 and 2 in rat hippocampal synaptosomes. Molecular Neurobiology. 2018;55(6):4857 – 4869. doi:10.1007/s12035-017-0688-y apa: Miklosi, A., Del Favero, G., Bulat, T., Höger, H., Shigemoto, R., Marko, D., & Lubec, G. (2018). Super resolution microscopical localization of dopamine receptors 1 and 2 in rat hippocampal synaptosomes. Molecular Neurobiology. Springer. https://doi.org/10.1007/s12035-017-0688-y chicago: Miklosi, Andras, Giorgia Del Favero, Tanja Bulat, Harald Höger, Ryuichi Shigemoto, Doris Marko, and Gert Lubec. “Super Resolution Microscopical Localization of Dopamine Receptors 1 and 2 in Rat Hippocampal Synaptosomes.” Molecular Neurobiology. Springer, 2018. https://doi.org/10.1007/s12035-017-0688-y. ieee: A. Miklosi et al., “Super resolution microscopical localization of dopamine receptors 1 and 2 in rat hippocampal synaptosomes,” Molecular Neurobiology, vol. 55, no. 6. Springer, pp. 4857 – 4869, 2018. ista: Miklosi A, Del Favero G, Bulat T, Höger H, Shigemoto R, Marko D, Lubec G. 2018. Super resolution microscopical localization of dopamine receptors 1 and 2 in rat hippocampal synaptosomes. Molecular Neurobiology. 55(6), 4857 – 4869. mla: Miklosi, Andras, et al. “Super Resolution Microscopical Localization of Dopamine Receptors 1 and 2 in Rat Hippocampal Synaptosomes.” Molecular Neurobiology, vol. 55, no. 6, Springer, 2018, pp. 4857 – 4869, doi:10.1007/s12035-017-0688-y. short: A. Miklosi, G. Del Favero, T. Bulat, H. Höger, R. Shigemoto, D. Marko, G. Lubec, Molecular Neurobiology 55 (2018) 4857 – 4869. date_created: 2018-12-11T11:48:02Z date_published: 2018-06-01T00:00:00Z date_updated: 2023-09-19T09:58:11Z day: '01' department: - _id: RySh doi: 10.1007/s12035-017-0688-y external_id: isi: - '000431991500025' intvolume: ' 55' isi: 1 issue: '6' language: - iso: eng month: '06' oa_version: None page: 4857 – 4869 publication: Molecular Neurobiology publication_status: published publisher: Springer publist_id: '6991' quality_controlled: '1' scopus_import: '1' status: public title: Super resolution microscopical localization of dopamine receptors 1 and 2 in rat hippocampal synaptosomes type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 55 year: '2018' ... --- _id: '148' abstract: - lang: eng text: 'Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.' acknowledgement: In-Data-Review article_processing_charge: No author: - first_name: Tomoaki full_name: Nishiyama, Tomoaki last_name: Nishiyama - first_name: Hidetoshi full_name: Sakayama, Hidetoshi last_name: Sakayama - first_name: Jan full_name: De Vries, Jan last_name: De Vries - first_name: Henrik full_name: Buschmann, Henrik last_name: Buschmann - first_name: Denis full_name: Saint Marcoux, Denis last_name: Saint Marcoux - first_name: Kristian full_name: Ullrich, Kristian last_name: Ullrich - first_name: Fabian full_name: Haas, Fabian last_name: Haas - first_name: Lisa full_name: Vanderstraeten, Lisa last_name: Vanderstraeten - first_name: Dirk full_name: Becker, Dirk last_name: Becker - first_name: Daniel full_name: Lang, Daniel last_name: Lang - first_name: Stanislav full_name: Vosolsobě, Stanislav last_name: Vosolsobě - first_name: Stephane full_name: Rombauts, Stephane last_name: Rombauts - first_name: Per full_name: Wilhelmsson, Per last_name: Wilhelmsson - first_name: Philipp full_name: Janitza, Philipp last_name: Janitza - first_name: Ramona full_name: Kern, Ramona last_name: Kern - first_name: Alexander full_name: Heyl, Alexander last_name: Heyl - first_name: Florian full_name: Rümpler, Florian last_name: Rümpler - first_name: Luz full_name: Calderón Villalobos, Luz last_name: Calderón Villalobos - first_name: John full_name: Clay, John last_name: Clay - first_name: Roman full_name: Skokan, Roman last_name: Skokan - first_name: Atsushi full_name: Toyoda, Atsushi last_name: Toyoda - first_name: Yutaka full_name: Suzuki, Yutaka last_name: Suzuki - first_name: Hiroshi full_name: Kagoshima, Hiroshi last_name: Kagoshima - first_name: Elio full_name: Schijlen, Elio last_name: Schijlen - first_name: Navindra full_name: Tajeshwar, Navindra last_name: Tajeshwar - first_name: Bruno full_name: Catarino, Bruno last_name: Catarino - first_name: Alexander full_name: Hetherington, Alexander last_name: Hetherington - first_name: Assia full_name: Saltykova, Assia last_name: Saltykova - first_name: Clemence full_name: Bonnot, Clemence last_name: Bonnot - first_name: Holger full_name: Breuninger, Holger last_name: Breuninger - first_name: Aikaterini full_name: Symeonidi, Aikaterini last_name: Symeonidi - first_name: Guru full_name: Radhakrishnan, Guru last_name: Radhakrishnan - first_name: Filip full_name: Van Nieuwerburgh, Filip last_name: Van Nieuwerburgh - first_name: Dieter full_name: Deforce, Dieter last_name: Deforce - first_name: Caren full_name: Chang, Caren last_name: Chang - first_name: Kenneth full_name: Karol, Kenneth last_name: Karol - first_name: Rainer full_name: Hedrich, Rainer last_name: Hedrich - first_name: Peter full_name: Ulvskov, Peter last_name: Ulvskov - first_name: Gernot full_name: Glöckner, Gernot last_name: Glöckner - first_name: Charles full_name: Delwiche, Charles last_name: Delwiche - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Yves full_name: Van De Peer, Yves last_name: Van De Peer - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Mary full_name: Beilby, Mary last_name: Beilby - first_name: Liam full_name: Dolan, Liam last_name: Dolan - first_name: Yuji full_name: Kohara, Yuji last_name: Kohara - first_name: Sumio full_name: Sugano, Sumio last_name: Sugano - first_name: Asao full_name: Fujiyama, Asao last_name: Fujiyama - first_name: Pierre Marc full_name: Delaux, Pierre Marc last_name: Delaux - first_name: Marcel full_name: Quint, Marcel last_name: Quint - first_name: Gunter full_name: Theissen, Gunter last_name: Theissen - first_name: Martin full_name: Hagemann, Martin last_name: Hagemann - first_name: Jesper full_name: Harholt, Jesper last_name: Harholt - first_name: Christophe full_name: Dunand, Christophe last_name: Dunand - first_name: Sabine full_name: Zachgo, Sabine last_name: Zachgo - first_name: Jane full_name: Langdale, Jane last_name: Langdale - first_name: Florian full_name: Maumus, Florian last_name: Maumus - first_name: Dominique full_name: Van Der Straeten, Dominique last_name: Van Der Straeten - first_name: Sven B full_name: Gould, Sven B last_name: Gould - first_name: Stefan full_name: Rensing, Stefan last_name: Rensing citation: ama: 'Nishiyama T, Sakayama H, De Vries J, et al. The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. 2018;174(2):448-464.e24. doi:10.1016/j.cell.2018.06.033' apa: 'Nishiyama, T., Sakayama, H., De Vries, J., Buschmann, H., Saint Marcoux, D., Ullrich, K., … Rensing, S. (2018). The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. Cell Press. https://doi.org/10.1016/j.cell.2018.06.033' chicago: 'Nishiyama, Tomoaki, Hidetoshi Sakayama, Jan De Vries, Henrik Buschmann, Denis Saint Marcoux, Kristian Ullrich, Fabian Haas, et al. “The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization.” Cell. Cell Press, 2018. https://doi.org/10.1016/j.cell.2018.06.033.' ieee: 'T. Nishiyama et al., “The Chara genome: Secondary complexity and implications for plant terrestrialization,” Cell, vol. 174, no. 2. Cell Press, p. 448–464.e24, 2018.' ista: 'Nishiyama T, Sakayama H, De Vries J, Buschmann H, Saint Marcoux D, Ullrich K, Haas F, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson P, Janitza P, Kern R, Heyl A, Rümpler F, Calderón Villalobos L, Clay J, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington A, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan G, Van Nieuwerburgh F, Deforce D, Chang C, Karol K, Hedrich R, Ulvskov P, Glöckner G, Delwiche C, Petrášek J, Van De Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theissen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing S. 2018. The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. 174(2), 448–464.e24.' mla: 'Nishiyama, Tomoaki, et al. “The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization.” Cell, vol. 174, no. 2, Cell Press, 2018, p. 448–464.e24, doi:10.1016/j.cell.2018.06.033.' short: T. Nishiyama, H. Sakayama, J. De Vries, H. Buschmann, D. Saint Marcoux, K. Ullrich, F. Haas, L. Vanderstraeten, D. Becker, D. Lang, S. Vosolsobě, S. Rombauts, P. Wilhelmsson, P. Janitza, R. Kern, A. Heyl, F. Rümpler, L. Calderón Villalobos, J. Clay, R. Skokan, A. Toyoda, Y. Suzuki, H. Kagoshima, E. Schijlen, N. Tajeshwar, B. Catarino, A. Hetherington, A. Saltykova, C. Bonnot, H. Breuninger, A. Symeonidi, G. Radhakrishnan, F. Van Nieuwerburgh, D. Deforce, C. Chang, K. Karol, R. Hedrich, P. Ulvskov, G. Glöckner, C. Delwiche, J. Petrášek, Y. Van De Peer, J. Friml, M. Beilby, L. Dolan, Y. Kohara, S. Sugano, A. Fujiyama, P.M. Delaux, M. Quint, G. Theissen, M. Hagemann, J. Harholt, C. Dunand, S. Zachgo, J. Langdale, F. Maumus, D. Van Der Straeten, S.B. Gould, S. Rensing, Cell 174 (2018) 448–464.e24. date_created: 2018-12-11T11:44:53Z date_published: 2018-07-12T00:00:00Z date_updated: 2023-09-19T10:02:47Z day: '12' department: - _id: JiFr doi: 10.1016/j.cell.2018.06.033 ec_funded: 1 external_id: isi: - '000438482800019' pmid: - '30007417' intvolume: ' 174' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30007417 month: '07' oa: 1 oa_version: Published Version page: 448 - 464.e24 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Cell publication_status: published publisher: Cell Press publist_id: '7774' quality_controlled: '1' scopus_import: '1' status: public title: 'The Chara genome: Secondary complexity and implications for plant terrestrialization' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 174 year: '2018' ...