--- _id: '14884' abstract: - lang: eng text: We perform a stochastic homogenization analysis for composite materials exhibiting a random microstructure. Under the assumptions of stationarity and ergodicity, we characterize the Gamma-limit of a micromagnetic energy functional defined on magnetizations taking value in the unit sphere and including both symmetric and antisymmetric exchange contributions. This Gamma-limit corresponds to a micromagnetic energy functional with homogeneous coefficients. We provide explicit formulas for the effective magnetic properties of the composite material in terms of homogenization correctors. Additionally, the variational analysis of the two exchange energy terms is performed in the more general setting of functionals defined on manifold-valued maps with Sobolev regularity, in the case in which the target manifold is a bounded, orientable smooth surface with tubular neighborhood of uniform thickness. Eventually, we present an explicit characterization of minimizers of the effective exchange in the case of magnetic multilayers, providing quantitative evidence of Dzyaloshinskii’s predictions on the emergence of helical structures in composite ferromagnetic materials with stochastic microstructure. acknowledgement: All authors acknowledge support of the Austrian Science Fund (FWF) through the SFB project F65. The research of E. Davoli and L. D’Elia has additionally been supported by the FWF through grants V662, Y1292, and P35359, as well as from OeAD through the WTZ grant CZ09/2023. article_number: '30' article_processing_charge: No article_type: original author: - first_name: Elisa full_name: Davoli, Elisa last_name: Davoli - first_name: Lorenza full_name: D’Elia, Lorenza last_name: D’Elia - first_name: Jonas full_name: Ingmanns, Jonas id: 71523d30-15b2-11ec-abd3-f80aa909d6b0 last_name: Ingmanns citation: ama: Davoli E, D’Elia L, Ingmanns J. Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions. Journal of Nonlinear Science. 2024;34(2). doi:10.1007/s00332-023-10005-3 apa: Davoli, E., D’Elia, L., & Ingmanns, J. (2024). Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions. Journal of Nonlinear Science. Springer Nature. https://doi.org/10.1007/s00332-023-10005-3 chicago: Davoli, Elisa, Lorenza D’Elia, and Jonas Ingmanns. “Stochastic Homogenization of Micromagnetic Energies and Emergence of Magnetic Skyrmions.” Journal of Nonlinear Science. Springer Nature, 2024. https://doi.org/10.1007/s00332-023-10005-3. ieee: E. Davoli, L. D’Elia, and J. Ingmanns, “Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions,” Journal of Nonlinear Science, vol. 34, no. 2. Springer Nature, 2024. ista: Davoli E, D’Elia L, Ingmanns J. 2024. Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions. Journal of Nonlinear Science. 34(2), 30. mla: Davoli, Elisa, et al. “Stochastic Homogenization of Micromagnetic Energies and Emergence of Magnetic Skyrmions.” Journal of Nonlinear Science, vol. 34, no. 2, 30, Springer Nature, 2024, doi:10.1007/s00332-023-10005-3. short: E. Davoli, L. D’Elia, J. Ingmanns, Journal of Nonlinear Science 34 (2024). date_created: 2024-01-28T23:01:42Z date_published: 2024-01-23T00:00:00Z date_updated: 2024-02-05T08:54:44Z day: '23' department: - _id: JuFi doi: 10.1007/s00332-023-10005-3 external_id: arxiv: - '2306.05151' intvolume: ' 34' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2306.05151 month: '01' oa: 1 oa_version: Preprint project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication: Journal of Nonlinear Science publication_identifier: eissn: - 1432-1467 issn: - 0938-8974 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Stochastic homogenization of micromagnetic energies and emergence of magnetic skyrmions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '14933' abstract: - lang: eng text: Centrioles are part of centrosomes and cilia, which are microtubule organising centres (MTOC) with diverse functions. Despite their stability, centrioles can disappear during differentiation, such as in oocytes, but little is known about the regulation of their structural integrity. Our previous research revealed that the pericentriolar material (PCM) that surrounds centrioles and its recruiter, Polo kinase, are downregulated in oogenesis and sufficient for maintaining both centrosome structural integrity and MTOC activity. We now show that the expression of specific components of the centriole cartwheel and wall, including ANA1/CEP295, is essential for maintaining centrosome integrity. We find that Polo kinase requires ANA1 to promote centriole stability in cultured cells and eggs. In addition, ANA1 expression prevents the loss of centrioles observed upon PCM-downregulation. However, the centrioles maintained by overexpressing and tethering ANA1 are inactive, unlike the MTOCs observed upon tethering Polo kinase. These findings demonstrate that several centriole components are needed to maintain centrosome structure. Our study also highlights that centrioles are more dynamic than previously believed, with their structural stability relying on the continuous expression of multiple components. acknowledgement: We thank all members of the Cell Cycle and Regulation Lab for the discussions and for the critical reading of the manuscript. We thank Tomer Avidor-Reiss (University of Toledo, Toledo, OH), Daniel St. Johnston (The Gurdon Institute, Cambridge, UK), David Glover (University of Cambridge, Cambridge, UK), Jingyan Fu (Agricultural University, Beijing, China) Jordan Raff (University of Oxford, Oxford, UK) and Timothy Megraw (Florida State University, Tallahassee, FL) for sharing tools. We acknowledge the technical support of Instituto Gulbenkian de Ciência (IGC)‘s Advanced Imaging Facility, in particular Gabriel Martins, Nuno Pimpão Martins and José Marques. We also thank Tiago Paixão from the IGC’s Quantitative & Digital Science Unit and Marco Louro from the CCR lab for the support provided on statistical analysis. IGC’s Advanced Imaging Facility (AIF-UIC) is supported by the national Portuguese funding ref# PPBI-POCI-01-0145-FEDER -022122. We thank the IGC’s Fly Facility, supported by CONGENTO (LISBOA-01-0145-FEDER-022170). This work was supported by an ERC grant (ERC-2015-CoG-683258) awarded to MBD and a grant from the Portuguese Research Council (FCT) awarded to APM (PTDC/BIA-BID/32225/2017). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Ana full_name: Pimenta-Marques, Ana last_name: Pimenta-Marques - first_name: Tania full_name: Perestrelo, Tania last_name: Perestrelo - first_name: Patricia full_name: Dos Reis Rodrigues, Patricia id: 26E95904-5160-11E9-9C0B-C5B0DC97E90F last_name: Dos Reis Rodrigues orcid: 0000-0003-1681-508X - first_name: Paulo full_name: Duarte, Paulo last_name: Duarte - first_name: Ana full_name: Ferreira-Silva, Ana last_name: Ferreira-Silva - first_name: Mariana full_name: Lince-Faria, Mariana last_name: Lince-Faria - first_name: Mónica full_name: Bettencourt-Dias, Mónica last_name: Bettencourt-Dias citation: ama: Pimenta-Marques A, Perestrelo T, Dos Reis Rodrigues P, et al. Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO reports. 2024;25(1):102-127. doi:10.1038/s44319-023-00020-6 apa: Pimenta-Marques, A., Perestrelo, T., Dos Reis Rodrigues, P., Duarte, P., Ferreira-Silva, A., Lince-Faria, M., & Bettencourt-Dias, M. (2024). Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO Reports. Embo Press. https://doi.org/10.1038/s44319-023-00020-6 chicago: Pimenta-Marques, Ana, Tania Perestrelo, Patricia Dos Reis Rodrigues, Paulo Duarte, Ana Ferreira-Silva, Mariana Lince-Faria, and Mónica Bettencourt-Dias. “Ana1/CEP295 Is an Essential Player in the Centrosome Maintenance Program Regulated by Polo Kinase and the PCM.” EMBO Reports. Embo Press, 2024. https://doi.org/10.1038/s44319-023-00020-6. ieee: A. Pimenta-Marques et al., “Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM,” EMBO reports, vol. 25, no. 1. Embo Press, pp. 102–127, 2024. ista: Pimenta-Marques A, Perestrelo T, Dos Reis Rodrigues P, Duarte P, Ferreira-Silva A, Lince-Faria M, Bettencourt-Dias M. 2024. Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM. EMBO reports. 25(1), 102–127. mla: Pimenta-Marques, Ana, et al. “Ana1/CEP295 Is an Essential Player in the Centrosome Maintenance Program Regulated by Polo Kinase and the PCM.” EMBO Reports, vol. 25, no. 1, Embo Press, 2024, pp. 102–27, doi:10.1038/s44319-023-00020-6. short: A. Pimenta-Marques, T. Perestrelo, P. Dos Reis Rodrigues, P. Duarte, A. Ferreira-Silva, M. Lince-Faria, M. Bettencourt-Dias, EMBO Reports 25 (2024) 102–127. date_created: 2024-02-04T23:00:53Z date_published: 2024-01-10T00:00:00Z date_updated: 2024-02-05T12:37:07Z day: '10' ddc: - '570' department: - _id: MiSi doi: 10.1038/s44319-023-00020-6 file: - access_level: open_access checksum: 53c3ef43d9bd6d7bff3ffcf57d763cac content_type: application/pdf creator: dernst date_created: 2024-02-05T12:35:03Z date_updated: 2024-02-05T12:35:03Z file_id: '14941' file_name: 2023_EmboReports_PimentaMarques.pdf file_size: 9645056 relation: main_file success: 1 file_date_updated: 2024-02-05T12:35:03Z has_accepted_license: '1' intvolume: ' 25' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 102-127 publication: EMBO reports publication_identifier: eissn: - 1469-3178 publication_status: published publisher: Embo Press quality_controlled: '1' scopus_import: '1' status: public title: Ana1/CEP295 is an essential player in the centrosome maintenance program regulated by Polo kinase and the PCM tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2024' ... --- _id: '14932' abstract: - lang: eng text: The huge antlers of the extinct Irish elk have invited evolutionary speculation since Darwin. In the 1970s, Stephen Jay Gould presented the first extensive data on antler size in the Irish elk and combined these with comparative data from other deer to test the hypothesis that the gigantic antlers were the outcome of a positive allometry that constrained large-bodied deer to have proportionally even larger antlers. He concluded that the Irish elk had antlers as predicted for its size and interpreted this within his emerging framework of developmental constraints as an explanatory factor in evolution. Here we reanalyze antler allometry based on new morphometric data for 57 taxa of the family Cervidae. We also present a new phylogeny for the Cervidae, which we use for comparative analyses. In contrast to Gould, we find that the antlers of Irish elk were larger than predicted from the allometry within the true deer, Cervini, as analyzed by Gould, but follow the allometry across Cervidae as a whole. After dissecting the discrepancy, we reject the allometric-constraint hypothesis because, contrary to Gould, we find no similarity between static and evolutionary allometries, and because we document extensive non-allometric evolution of antler size across the Cervidae. acknowledgement: "Open access funding provided by University of Oslo (incl Oslo University Hospital).\r\nWe thank Adrian Lister, Louis Tomsett, Roberto Portela Miguez and Roula Pappa (NHMUK), Brian O'Toole and Eileen Westwig (AMNH), Daniela Kalthoff (NHRM), Alexander Bibl and Zachos Frank (NHMW), Darrin Lunde and John Ososky (NMNH), Matthew Parkes and Nigel Monaghan (NMI), Elizabetta Cioppi and Luca Bellucci (IGF), and Yoshihiro Tanaka and Hiroyuki Taruno (OMNH), who helped us in obtaining the museum data, and a special thanks to Jørgen Sikkeland (NTNU NHM) for assistance in obtaining the ontogenetic data for the red deer. We thank Olja Toljagic and Kjetil L. Voje for discussions, Ayumu Tsuboi for assistance with data collection, and Jean-Michel Gaillard and the anonymous reviewers for comments on the manuscript. We thank the Centre of Advanced Study (CAS) at the Norwegian Academy of Sciences and Letters for hosting us during the academic year of 2019/2020 when much of the analysis and writing were done. MT was funded by JSPS Research Fellowship for Young Scientists (201603238)." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Masahito full_name: Tsuboi, Masahito last_name: Tsuboi - first_name: Bjørn Tore full_name: Kopperud, Bjørn Tore last_name: Kopperud - first_name: Michael full_name: Matschiner, Michael last_name: Matschiner - first_name: Mark full_name: Grabowski, Mark last_name: Grabowski - first_name: Chrsitine full_name: Syrowatka, Chrsitine id: 205ffb76-7fe7-11eb-aa17-958bd11b99ad last_name: Syrowatka - first_name: Christophe full_name: Pélabon, Christophe last_name: Pélabon - first_name: Thomas F. full_name: Hansen, Thomas F. last_name: Hansen citation: ama: Tsuboi M, Kopperud BT, Matschiner M, et al. Antler allometry, the Irish elk and Gould revisited. Evolutionary Biology. 2024. doi:10.1007/s11692-023-09624-1 apa: Tsuboi, M., Kopperud, B. T., Matschiner, M., Grabowski, M., Syrowatka, C., Pélabon, C., & Hansen, T. F. (2024). Antler allometry, the Irish elk and Gould revisited. Evolutionary Biology. Springer Nature. https://doi.org/10.1007/s11692-023-09624-1 chicago: Tsuboi, Masahito, Bjørn Tore Kopperud, Michael Matschiner, Mark Grabowski, Chrsitine Syrowatka, Christophe Pélabon, and Thomas F. Hansen. “Antler Allometry, the Irish Elk and Gould Revisited.” Evolutionary Biology. Springer Nature, 2024. https://doi.org/10.1007/s11692-023-09624-1. ieee: M. Tsuboi et al., “Antler allometry, the Irish elk and Gould revisited,” Evolutionary Biology. Springer Nature, 2024. ista: Tsuboi M, Kopperud BT, Matschiner M, Grabowski M, Syrowatka C, Pélabon C, Hansen TF. 2024. Antler allometry, the Irish elk and Gould revisited. Evolutionary Biology. mla: Tsuboi, Masahito, et al. “Antler Allometry, the Irish Elk and Gould Revisited.” Evolutionary Biology, Springer Nature, 2024, doi:10.1007/s11692-023-09624-1. short: M. Tsuboi, B.T. Kopperud, M. Matschiner, M. Grabowski, C. Syrowatka, C. Pélabon, T.F. Hansen, Evolutionary Biology (2024). date_created: 2024-02-04T23:00:53Z date_published: 2024-01-29T00:00:00Z date_updated: 2024-02-05T12:43:58Z day: '29' department: - _id: MaRo doi: 10.1007/s11692-023-09624-1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s11692-023-09624-1 month: '01' oa: 1 oa_version: Published Version publication: Evolutionary Biology publication_identifier: eissn: - 1934-2845 issn: - 0071-3260 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Antler allometry, the Irish elk and Gould revisited type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14931' abstract: - lang: eng text: We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin et al. (1971) [15]. acknowledgement: A.B.L. would like to thank Johannes Agerskov and Jan Philip Solovej for valuable discussions. We thank Alessandro Giuliani for helpful discussions and for pointing out the reference [18]. Funding from the European Union's Horizon 2020 research and innovation programme under the ERC grant agreement No 694227 is acknowledged. Financial support by the Austrian Science Fund (FWF) through project number I 6427-N (as part of the SFB/TRR 352) is gratefully acknowledged. article_number: '110320' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Asbjørn Bækgaard full_name: Lauritsen, Asbjørn Bækgaard id: e1a2682f-dc8d-11ea-abe3-81da9ac728f1 last_name: Lauritsen orcid: 0000-0003-4476-2288 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: 'Lauritsen AB, Seiringer R. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. 2024;286(7). doi:10.1016/j.jfa.2024.110320' apa: 'Lauritsen, A. B., & Seiringer, R. (2024). Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2024.110320' chicago: 'Lauritsen, Asbjørn Bækgaard, and Robert Seiringer. “Ground State Energy of the Dilute Spin-Polarized Fermi Gas: Upper Bound via Cluster Expansion.” Journal of Functional Analysis. Elsevier, 2024. https://doi.org/10.1016/j.jfa.2024.110320.' ieee: 'A. B. Lauritsen and R. Seiringer, “Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion,” Journal of Functional Analysis, vol. 286, no. 7. Elsevier, 2024.' ista: 'Lauritsen AB, Seiringer R. 2024. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. 286(7), 110320.' mla: 'Lauritsen, Asbjørn Bækgaard, and Robert Seiringer. “Ground State Energy of the Dilute Spin-Polarized Fermi Gas: Upper Bound via Cluster Expansion.” Journal of Functional Analysis, vol. 286, no. 7, 110320, Elsevier, 2024, doi:10.1016/j.jfa.2024.110320.' short: A.B. Lauritsen, R. Seiringer, Journal of Functional Analysis 286 (2024). date_created: 2024-02-04T23:00:53Z date_published: 2024-01-24T00:00:00Z date_updated: 2024-02-05T12:53:21Z day: '24' department: - _id: RoSe doi: 10.1016/j.jfa.2024.110320 ec_funded: 1 external_id: arxiv: - '2301.04894' intvolume: ' 286' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.jfa.2024.110320 month: '01' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: bda63fe5-d553-11ed-ba76-a16e3d2f256b grant_number: I06427 name: Mathematical Challenges in BCS Theory of Superconductivity publication: Journal of Functional Analysis publication_identifier: eissn: - 1096--0783 issn: - 0022-1236 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 286 year: '2024' ... --- _id: '14934' abstract: - lang: eng text: "We study random perturbations of a Riemannian manifold (M, g) by means of so-called\r\nFractional Gaussian Fields, which are defined intrinsically by the given manifold. The fields\r\nh• : ω \x02→ hω will act on the manifold via the conformal transformation g \x02→ gω := e2hω g.\r\nOur focus will be on the regular case with Hurst parameter H > 0, the critical case H = 0\r\nbeing the celebrated Liouville geometry in two dimensions. We want to understand how basic\r\ngeometric and functional-analytic quantities like diameter, volume, heat kernel, Brownian\r\nmotion, spectral bound, or spectral gap change under the influence of the noise. And if so, is\r\nit possible to quantify these dependencies in terms of key parameters of the noise? Another\r\ngoal is to define and analyze in detail the Fractional Gaussian Fields on a general Riemannian\r\nmanifold, a fascinating object of independent interest." acknowledgement: "The authors would like to thank Matthias Erbar and Ronan Herry for valuable discussions on this project. They are also grateful to Nathanaël Berestycki, and Fabrice Baudoin for respectively pointing out the references [7], and [6, 24], and to Julien Fageot and Thomas Letendre for pointing out a mistake in a previous version of the proof of Proposition 3.10. The authors feel very much indebted to an anonymous reviewer for his/her careful reading and the many valuable suggestions that have significantly contributed to the improvement of the paper. L.D.S. gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft through CRC 1060 as well as through SPP 2265, and by the Austrian Science Fund (FWF) grant F65 at Institute of Science and Technology Austria. This research was funded in whole or in part by the Austrian Science Fund (FWF) ESPRIT 208. For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. E.K. and K.-T.S. gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through the Hausdorff Center for Mathematics and through CRC 1060 as well as through SPP 2265.\r\nOpen Access funding enabled and organized by Projekt DEAL." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lorenzo full_name: Dello Schiavo, Lorenzo id: ECEBF480-9E4F-11EA-B557-B0823DDC885E last_name: Dello Schiavo orcid: 0000-0002-9881-6870 - first_name: Eva full_name: Kopfer, Eva last_name: Kopfer - first_name: Karl Theodor full_name: Sturm, Karl Theodor last_name: Sturm citation: ama: Dello Schiavo L, Kopfer E, Sturm KT. A discovery tour in random Riemannian geometry. Potential Analysis. 2024. doi:10.1007/s11118-023-10118-0 apa: Dello Schiavo, L., Kopfer, E., & Sturm, K. T. (2024). A discovery tour in random Riemannian geometry. Potential Analysis. Springer Nature. https://doi.org/10.1007/s11118-023-10118-0 chicago: Dello Schiavo, Lorenzo, Eva Kopfer, and Karl Theodor Sturm. “A Discovery Tour in Random Riemannian Geometry.” Potential Analysis. Springer Nature, 2024. https://doi.org/10.1007/s11118-023-10118-0. ieee: L. Dello Schiavo, E. Kopfer, and K. T. Sturm, “A discovery tour in random Riemannian geometry,” Potential Analysis. Springer Nature, 2024. ista: Dello Schiavo L, Kopfer E, Sturm KT. 2024. A discovery tour in random Riemannian geometry. Potential Analysis. mla: Dello Schiavo, Lorenzo, et al. “A Discovery Tour in Random Riemannian Geometry.” Potential Analysis, Springer Nature, 2024, doi:10.1007/s11118-023-10118-0. short: L. Dello Schiavo, E. Kopfer, K.T. Sturm, Potential Analysis (2024). date_created: 2024-02-04T23:00:54Z date_published: 2024-01-26T00:00:00Z date_updated: 2024-02-05T13:04:23Z day: '26' department: - _id: JaMa doi: 10.1007/s11118-023-10118-0 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s11118-023-10118-0 month: '01' oa: 1 oa_version: Published Version project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems publication: Potential Analysis publication_identifier: eissn: - 1572-929X issn: - 0926-2601 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A discovery tour in random Riemannian geometry type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '12312' abstract: - lang: eng text: "Let $\\ell$ be a prime number. We classify the subgroups $G$ of $\\operatorname{Sp}_4(\\mathbb{F}_\\ell)$ and $\\operatorname{GSp}_4(\\mathbb{F}_\\ell)$ that act irreducibly on $\\mathbb{F}_\\ell^4$, but such that every element of $G$ fixes an $\\mathbb{F}_\\ell$-vector subspace of dimension 1. We use this classification to prove that the local-global principle for isogenies of degree $\\ell$ between abelian surfaces over number fields holds in many cases -- in particular, whenever the abelian surface has non-trivial endomorphisms and $\\ell$ is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes $\\ell$ for which some abelian surface\r\n$A/\\mathbb{Q}$ fails the local-global principle for isogenies of degree $\\ell$." acknowledgement: "It is a pleasure to thank Samuele Anni for his interest in this project and for several discussions on the topic of this paper, which led in particular to Remark 6.30 and to a better understanding of the difficulties with [6]. We also thank John Cullinan for correspondence about [6] and Barinder Banwait for his many insightful comments on the first version of this paper. Finally, we thank the referee for their thorough reading of the manuscript.\r\nOpen access funding provided by Università di Pisa within the CRUI-CARE Agreement. The authors have been partially supported by MIUR (Italy) through PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic\" and PRIN 2022 “Semiabelian varieties, Galois representations and related Diophantine problems\", and by the University of Pisa through PRA 2018-19 and 2022 “Spazi di moduli, rappresentazioni e strutture combinatorie\". The first author is a member of the INdAM group GNSAGA." article_number: '18' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Davide full_name: Lombardo, Davide last_name: Lombardo - first_name: Matteo full_name: Verzobio, Matteo id: 7aa8f170-131e-11ed-88e1-a9efd01027cb last_name: Verzobio orcid: 0000-0002-0854-0306 citation: ama: Lombardo D, Verzobio M. On the local-global principle for isogenies of abelian surfaces. Selecta Mathematica. 2024;30(2). doi:10.1007/s00029-023-00908-0 apa: Lombardo, D., & Verzobio, M. (2024). On the local-global principle for isogenies of abelian surfaces. Selecta Mathematica. Springer Nature. https://doi.org/10.1007/s00029-023-00908-0 chicago: Lombardo, Davide, and Matteo Verzobio. “On the Local-Global Principle for Isogenies of Abelian Surfaces.” Selecta Mathematica. Springer Nature, 2024. https://doi.org/10.1007/s00029-023-00908-0. ieee: D. Lombardo and M. Verzobio, “On the local-global principle for isogenies of abelian surfaces,” Selecta Mathematica, vol. 30, no. 2. Springer Nature, 2024. ista: Lombardo D, Verzobio M. 2024. On the local-global principle for isogenies of abelian surfaces. Selecta Mathematica. 30(2), 18. mla: Lombardo, Davide, and Matteo Verzobio. “On the Local-Global Principle for Isogenies of Abelian Surfaces.” Selecta Mathematica, vol. 30, no. 2, 18, Springer Nature, 2024, doi:10.1007/s00029-023-00908-0. short: D. Lombardo, M. Verzobio, Selecta Mathematica 30 (2024). date_created: 2023-01-16T11:45:53Z date_published: 2024-01-26T00:00:00Z date_updated: 2024-02-05T12:25:00Z day: '26' department: - _id: TiBr doi: 10.1007/s00029-023-00908-0 external_id: arxiv: - '2206.15240' intvolume: ' 30' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.15240 month: '01' oa: 1 oa_version: Preprint publication: Selecta Mathematica publication_identifier: eissn: - 1420-9020 issn: - 1022-1824 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On the local-global principle for isogenies of abelian surfaces type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2024' ... --- _id: '14930' abstract: - lang: eng text: In this paper we investigate locally free representations of a quiver Q over a commutative Frobenius algebra R by arithmetic Fourier transform. When the base field is finite we prove that the number of isomorphism classes of absolutely indecomposable locally free representations of fixed rank is independent of the orientation of Q. We also prove that the number of isomorphism classes of locally free absolutely indecomposable representations of the preprojective algebra of Q over R equals the number of isomorphism classes of locally free absolutely indecomposable representations of Q over R[t]/(t2). Using these results together with results of Geiss, Leclerc and Schröer we give, when k is algebraically closed, a classification of pairs (Q, R) such that the set of isomorphism classes of indecomposable locally free representations of Q over R is finite. Finally when the representation is free of rank 1 at each vertex of Q, we study the function that counts the number of isomorphism classes of absolutely indecomposable locally free representations of Q over the Frobenius algebra Fq[t]/(tr). We prove that they are polynomial in q and their generating function is rational and satisfies a functional equation. acknowledgement: Special thanks go to Christof Geiss, Bernard Leclerc and Jan Schröer for explaining their work but also for sharing some unpublished results with us. We also thank the referee for many useful suggestions. We would like to thank Tommaso Scognamiglio for pointing out a mistake in the proof of Proposition 5.17 in an earlier version of the paper. We would like also to thank Alexander Beilinson, Bill Crawley-Boevey, Joel Kamnitzer, and Peng Shan for useful discussions. article_number: '20' article_processing_charge: No article_type: original author: - first_name: Tamás full_name: Hausel, Tamás id: 4A0666D8-F248-11E8-B48F-1D18A9856A87 last_name: Hausel - first_name: Emmanuel full_name: Letellier, Emmanuel last_name: Letellier - first_name: Fernando full_name: Rodriguez-Villegas, Fernando last_name: Rodriguez-Villegas citation: ama: Hausel T, Letellier E, Rodriguez-Villegas F. Locally free representations of quivers over commutative Frobenius algebras. Selecta Mathematica. 2024;30(2). doi:10.1007/s00029-023-00914-2 apa: Hausel, T., Letellier, E., & Rodriguez-Villegas, F. (2024). Locally free representations of quivers over commutative Frobenius algebras. Selecta Mathematica. Springer Nature. https://doi.org/10.1007/s00029-023-00914-2 chicago: Hausel, Tamás, Emmanuel Letellier, and Fernando Rodriguez-Villegas. “Locally Free Representations of Quivers over Commutative Frobenius Algebras.” Selecta Mathematica. Springer Nature, 2024. https://doi.org/10.1007/s00029-023-00914-2. ieee: T. Hausel, E. Letellier, and F. Rodriguez-Villegas, “Locally free representations of quivers over commutative Frobenius algebras,” Selecta Mathematica, vol. 30, no. 2. Springer Nature, 2024. ista: Hausel T, Letellier E, Rodriguez-Villegas F. 2024. Locally free representations of quivers over commutative Frobenius algebras. Selecta Mathematica. 30(2), 20. mla: Hausel, Tamás, et al. “Locally Free Representations of Quivers over Commutative Frobenius Algebras.” Selecta Mathematica, vol. 30, no. 2, 20, Springer Nature, 2024, doi:10.1007/s00029-023-00914-2. short: T. Hausel, E. Letellier, F. Rodriguez-Villegas, Selecta Mathematica 30 (2024). date_created: 2024-02-04T23:00:53Z date_published: 2024-01-27T00:00:00Z date_updated: 2024-02-05T12:58:21Z day: '27' department: - _id: TaHa doi: 10.1007/s00029-023-00914-2 intvolume: ' 30' issue: '2' language: - iso: eng month: '01' oa_version: None publication: Selecta Mathematica publication_identifier: eissn: - 1420-9020 issn: - 1022-1824 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Locally free representations of quivers over commutative Frobenius algebras type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2024' ... --- _id: '14885' abstract: - lang: eng text: The near-surface boundary layer can mediate the response of mountain glaciers to external climate, cooling the overlying air and promoting a density-driven glacier wind. The fundamental processes are conceptually well understood, though the magnitudes of cooling and presence of glacier winds are poorly quantified in space and time, increasing the forcing uncertainty for melt models. We utilize a new data set of on-glacier meteorological measurements on three neighboring glaciers in the Swiss Alps to explore their distinct response to regional climate under the extreme 2022 summer. We find that synoptic wind origins and local terrain modifications, not only glacier size, play an important role in the ability of a glacier to cool the near-surface air. Warm air intrusions from valley or synoptically-driven winds onto the glacier can occur between ∼19% and 64% of the time and contribute between 3% and 81% of the total sensible heat flux to the surface during warm afternoon hours, depending on the fetch of the glacier flowline and its susceptibility to boundary layer erosion. In the context of extreme summer warmth, indicative of future conditions, the boundary layer cooling (up to 6.5°C cooler than its surroundings) and resultant katabatic wind flow are highly heterogeneous between the study glaciers, highlighting the complex and likely non-linear response of glaciers to an uncertain future. acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101026058. The authors acknowledge the invaluable field assistance of Marta Corrà, Achille Jouberton, Marin Kneib, Stefan Fugger, Celine Ducret and Alexander Groos. The authors would also like to thank Luca Carturan for advice regarding AWS setup and maintenance and Simone Fatichi for provision and support in the use of the Tethys-Chloris model. Open access funding provided by ETH-Bereich Forschungsanstalten. article_number: e2023JD040214 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Thomas full_name: Shaw, Thomas id: 3caa3f91-1f03-11ee-96ce-e0e553054d6e last_name: Shaw orcid: 0000-0001-7640-6152 - first_name: Pascal full_name: Buri, Pascal id: 317987aa-9421-11ee-ac5a-b941b041abba last_name: Buri - first_name: Michael full_name: Mccarthy, Michael id: 22a2674a-61ce-11ee-94b5-d18813baf16f last_name: Mccarthy - first_name: Evan S. full_name: Miles, Evan S. last_name: Miles - first_name: Francesca full_name: Pellicciotti, Francesca id: b28f055a-81ea-11ed-b70c-a9fe7f7b0e70 last_name: Pellicciotti orcid: 0000-0002-5554-8087 citation: ama: 'Shaw T, Buri P, McCarthy M, Miles ES, Pellicciotti F. Local controls on near-surface glacier cooling under warm atmospheric conditions. Journal of Geophysical Research: Atmospheres. 2024;129(2). doi:10.1029/2023JD040214' apa: 'Shaw, T., Buri, P., McCarthy, M., Miles, E. S., & Pellicciotti, F. (2024). Local controls on near-surface glacier cooling under warm atmospheric conditions. Journal of Geophysical Research: Atmospheres. Wiley. https://doi.org/10.1029/2023JD040214' chicago: 'Shaw, Thomas, Pascal Buri, Michael McCarthy, Evan S. Miles, and Francesca Pellicciotti. “Local Controls on Near-Surface Glacier Cooling under Warm Atmospheric Conditions.” Journal of Geophysical Research: Atmospheres. Wiley, 2024. https://doi.org/10.1029/2023JD040214.' ieee: 'T. Shaw, P. Buri, M. McCarthy, E. S. Miles, and F. Pellicciotti, “Local controls on near-surface glacier cooling under warm atmospheric conditions,” Journal of Geophysical Research: Atmospheres, vol. 129, no. 2. Wiley, 2024.' ista: 'Shaw T, Buri P, McCarthy M, Miles ES, Pellicciotti F. 2024. Local controls on near-surface glacier cooling under warm atmospheric conditions. Journal of Geophysical Research: Atmospheres. 129(2), e2023JD040214.' mla: 'Shaw, Thomas, et al. “Local Controls on Near-Surface Glacier Cooling under Warm Atmospheric Conditions.” Journal of Geophysical Research: Atmospheres, vol. 129, no. 2, e2023JD040214, Wiley, 2024, doi:10.1029/2023JD040214.' short: 'T. Shaw, P. Buri, M. McCarthy, E.S. Miles, F. Pellicciotti, Journal of Geophysical Research: Atmospheres 129 (2024).' date_created: 2024-01-28T23:01:42Z date_published: 2024-01-28T00:00:00Z date_updated: 2024-02-06T08:44:02Z day: '28' ddc: - '550' department: - _id: FrPe doi: 10.1029/2023JD040214 file: - access_level: open_access checksum: cad5b93caadb40c14e5faedc34f7bba7 content_type: application/pdf creator: dernst date_created: 2024-02-06T08:38:27Z date_updated: 2024-02-06T08:38:27Z file_id: '14943' file_name: 2024_JGRAtmospheres_Shaw.pdf file_size: 7481087 relation: main_file success: 1 file_date_updated: 2024-02-06T08:38:27Z has_accepted_license: '1' intvolume: ' 129' issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: 'Journal of Geophysical Research: Atmospheres' publication_identifier: eissn: - 2169-8996 issn: - 2169-897X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '14919' relation: research_data status: public scopus_import: '1' status: public title: Local controls on near-surface glacier cooling under warm atmospheric conditions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 129 year: '2024' ... --- _id: '14938' abstract: - lang: eng text: High elevation headwater catchments are complex hydrological systems that seasonally buffer water and release it in the form of snow and ice melt, modulating downstream runoff regimes and water availability. In High Mountain Asia (HMA), where a wide range of climates from semi-arid to monsoonal exist, the importance of the cryospheric contributions to the water budget varies with the amount and seasonal distribution of precipitation. Losses due to evapotranspiration and sublimation are to date largely unquantified components of the water budget in such catchments, although they can be comparable in magnitude to glacier melt contributions to streamflow. 
Here, we simulate the hydrology of three high elevation headwater catchments in distinct climates in HMA over 10 years using an ecohydrological model geared towards high-mountain areas including snow and glaciers, forced with reanalysis data. 
Our results show that evapotranspiration and sublimation together are most important at the semi-arid site, Kyzylsu, on the northernmost slopes of the Pamir mountain range. Here, the evaporative loss amounts to 28% of the water throughput, which we define as the total water added to, or removed from the water balance within a year. In comparison, evaporative losses are 19% at the Central Himalayan site Langtang and 13% at the wettest site, 24K, on the Southeastern Tibetan Plateau. At the three sites, respectively, sublimation removes 15%, 13% and 6% of snowfall, while evapotranspiration removes the equivalent of 76%, 28% and 19% of rainfall. In absolute terms, and across a comparable elevation range, the highest ET flux is 413 mm yr-1 at 24K, while the highest sublimation flux is 91 mm yr-1 at Kyzylsu. During warm and dry years, glacier melt was found to only partially compensate for the annual supply deficit. article_processing_charge: Yes article_type: original author: - first_name: Stefan full_name: Fugger, Stefan id: 86698d64-c4c6-11ee-af02-cdf1e6a7d31f last_name: Fugger - first_name: Thomas full_name: Shaw, Thomas id: 3caa3f91-1f03-11ee-96ce-e0e553054d6e last_name: Shaw orcid: 0000-0001-7640-6152 - first_name: Achille full_name: Jouberton, Achille last_name: Jouberton - first_name: Evan full_name: Miles, Evan last_name: Miles - first_name: Pascal full_name: Buri, Pascal id: 317987aa-9421-11ee-ac5a-b941b041abba last_name: Buri - first_name: Michael full_name: McCarthy, Michael id: 22a2674a-61ce-11ee-94b5-d18813baf16f last_name: McCarthy - first_name: Catriona Louise full_name: Fyffe, Catriona Louise id: 001b0422-8d15-11ed-bc51-cab6c037a228 last_name: Fyffe - first_name: Simone full_name: Fatichi, Simone last_name: Fatichi - first_name: Marin full_name: Kneib, Marin last_name: Kneib - first_name: Peter full_name: Molnar, Peter last_name: Molnar - first_name: Francesca full_name: Pellicciotti, Francesca id: b28f055a-81ea-11ed-b70c-a9fe7f7b0e70 last_name: Pellicciotti orcid: 0000-0002-5554-8087 citation: ama: Fugger S, Shaw T, Jouberton A, et al. Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. doi:10.1088/1748-9326/ad25a0 apa: Fugger, S., Shaw, T., Jouberton, A., Miles, E., Buri, P., McCarthy, M., … Pellicciotti, F. (n.d.). Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. IOP Publishing. https://doi.org/10.1088/1748-9326/ad25a0 chicago: Fugger, Stefan, Thomas Shaw, Achille Jouberton, Evan Miles, Pascal Buri, Michael McCarthy, Catriona Louise Fyffe, et al. “Hydrological Regimes and Evaporative Flux Partitioning at the Climatic Ends of High Mountain Asia.” Environmental Research Letters. IOP Publishing, n.d. https://doi.org/10.1088/1748-9326/ad25a0. ieee: S. Fugger et al., “Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia,” Environmental Research Letters. IOP Publishing. ista: Fugger S, Shaw T, Jouberton A, Miles E, Buri P, McCarthy M, Fyffe CL, Fatichi S, Kneib M, Molnar P, Pellicciotti F. Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. mla: Fugger, Stefan, et al. “Hydrological Regimes and Evaporative Flux Partitioning at the Climatic Ends of High Mountain Asia.” Environmental Research Letters, IOP Publishing, doi:10.1088/1748-9326/ad25a0. short: S. Fugger, T. Shaw, A. Jouberton, E. Miles, P. Buri, M. McCarthy, C.L. Fyffe, S. Fatichi, M. Kneib, P. Molnar, F. Pellicciotti, Environmental Research Letters (n.d.). date_created: 2024-02-05T09:01:11Z date_published: 2024-02-02T00:00:00Z date_updated: 2024-02-06T08:35:39Z day: '02' ddc: - '550' department: - _id: FrPe doi: 10.1088/1748-9326/ad25a0 has_accepted_license: '1' keyword: - Public Health - Environmental and Occupational Health - General Environmental Science - Renewable Energy - Sustainability and the Environment language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1088/1748-9326/ad25a0 month: '02' oa: 1 oa_version: Published Version publication: Environmental Research Letters publication_identifier: issn: - 1748-9326 publication_status: accepted publisher: IOP Publishing quality_controlled: '1' status: public title: Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14213' abstract: - lang: eng text: We introduce a method to segment the visual field into independently moving regions, trained with no ground truth or supervision. It consists of an adversarial conditional encoder-decoder architecture based on Slot Attention, modified to use the image as context to decode optical flow without attempting to reconstruct the image itself. In the resulting multi-modal representation, one modality (flow) feeds the encoder to produce separate latent codes (slots), whereas the other modality (image) conditions the decoder to generate the first (flow) from the slots. This design frees the representation from having to encode complex nuisance variability in the image due to, for instance, illumination and reflectance properties of the scene. Since customary autoencoding based on minimizing the reconstruction error does not preclude the entire flow from being encoded into a single slot, we modify the loss to an adversarial criterion based on Contextual Information Separation. The resulting min-max optimization fosters the separation of objects and their assignment to different attention slots, leading to Divided Attention, or DivA. DivA outperforms recent unsupervised multi-object motion segmentation methods while tripling run-time speed up to 104FPS and reducing the performance gap from supervised methods to 12% or less. DivA can handle different numbers of objects and different image sizes at training and test time, is invariant to permutation of object labels, and does not require explicit regularization. article_processing_charge: No author: - first_name: Dong full_name: Lao, Dong last_name: Lao - first_name: Zhengyang full_name: Hu, Zhengyang last_name: Hu - first_name: Francesco full_name: Locatello, Francesco id: 26cfd52f-2483-11ee-8040-88983bcc06d4 last_name: Locatello orcid: 0000-0002-4850-0683 - first_name: Yanchao full_name: Yang, Yanchao last_name: Yang - first_name: Stefano full_name: Soatto, Stefano last_name: Soatto citation: ama: 'Lao D, Hu Z, Locatello F, Yang Y, Soatto S. Divided attention: Unsupervised multi-object discovery with contextually separated slots. In: 1st Conference on Parsimony and Learning. ; 2024.' apa: 'Lao, D., Hu, Z., Locatello, F., Yang, Y., & Soatto, S. (2024). Divided attention: Unsupervised multi-object discovery with contextually separated slots. In 1st Conference on Parsimony and Learning. Hong Kong, China.' chicago: 'Lao, Dong, Zhengyang Hu, Francesco Locatello, Yanchao Yang, and Stefano Soatto. “Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots.” In 1st Conference on Parsimony and Learning, 2024.' ieee: 'D. Lao, Z. Hu, F. Locatello, Y. Yang, and S. Soatto, “Divided attention: Unsupervised multi-object discovery with contextually separated slots,” in 1st Conference on Parsimony and Learning, Hong Kong, China, 2024.' ista: 'Lao D, Hu Z, Locatello F, Yang Y, Soatto S. 2024. Divided attention: Unsupervised multi-object discovery with contextually separated slots. 1st Conference on Parsimony and Learning. CPAL: Conference on Parsimony and Learning.' mla: 'Lao, Dong, et al. “Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots.” 1st Conference on Parsimony and Learning, 2024.' short: D. Lao, Z. Hu, F. Locatello, Y. Yang, S. Soatto, in:, 1st Conference on Parsimony and Learning, 2024. conference: end_date: 2024-01-03 location: Hong Kong, China name: 'CPAL: Conference on Parsimony and Learning' start_date: 2024-01-03 date_created: 2023-08-22T14:19:59Z date_published: 2024-01-03T00:00:00Z date_updated: 2024-02-12T08:56:23Z day: '03' ddc: - '000' department: - _id: FrLo external_id: arxiv: - '2304.01430' file: - access_level: open_access checksum: 8fad894c34f1b3d5a14fb8ffb12f7277 content_type: application/pdf creator: dernst date_created: 2024-02-12T08:40:36Z date_updated: 2024-02-12T08:40:36Z file_id: '14978' file_name: 2024_CPAL_Lao.pdf file_size: 8038511 relation: main_file success: 1 file_date_updated: 2024-02-12T08:40:36Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: 1st Conference on Parsimony and Learning publication_status: published quality_controlled: '1' status: public title: 'Divided attention: Unsupervised multi-object discovery with contextually separated slots' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14980' abstract: - lang: eng text: Precision sensing and manipulation of milligram-scale mechanical oscillators has attracted growing interest in the fields of table-top explorations of gravity and tests of quantum mechanics at macroscopic scales. Torsional oscillators present an opportunity in this regard due to their remarked isolation from environmental noise. For torsional motion, an effective employment of optical cavities to enhance optomechanical interactions—as already established for linear oscillators—so far faced certain challenges. Here, we propose a concept for sensing and manipulating torsional motion, where exclusively the torsional rotations of a pendulum are mapped onto the path length of a single two-mirror optical cavity. The concept inherently alleviates many limitations of previous approaches. A proof-of-principle experiment is conducted with a rigidly controlled pendulum to explore the sensing aspects of the concept and to identify practical limitations in a potential state-of-the art setup. Based on this study, we anticipate development of precision torque sensors utilizing torsional pendulums that can support sensitivities below 10−19Nm/√Hz, while the motion of the pendulums are dominated by quantum radiation pressure noise at sub-microwatts of incoming laser power. These developments will provide horizons for experiments at the interface of quantum mechanics and gravity. acknowledgement: "We thank Pere Rosselló for his contributions to the initial modeling of the presented sensing technique. This work was supported by Institute of Science and Technology Austria, and\r\nthe European Research Council under Grant No. 101087907 (ERC CoG QuHAMP)." article_number: '013141' article_processing_charge: Yes article_type: original author: - first_name: Sofya full_name: Agafonova, Sofya id: 09501ff6-dca7-11ea-a8ae-b3e0b9166e80 last_name: Agafonova orcid: 0000-0003-0582-2946 - first_name: Umang full_name: Mishra, Umang id: 4328fa4c-f128-11eb-9611-c107b0fe4d51 last_name: Mishra - first_name: Fritz R full_name: Diorico, Fritz R id: 2E054C4C-F248-11E8-B48F-1D18A9856A87 last_name: Diorico orcid: 0000-0002-4947-8924 - first_name: Onur full_name: Hosten, Onur id: 4C02D85E-F248-11E8-B48F-1D18A9856A87 last_name: Hosten orcid: 0000-0002-2031-204X citation: ama: Agafonova S, Mishra U, Diorico FR, Hosten O. Zigzag optical cavity for sensing and controlling torsional motion. Physical Review Research. 2024;6(1). doi:10.1103/physrevresearch.6.013141 apa: Agafonova, S., Mishra, U., Diorico, F. R., & Hosten, O. (2024). Zigzag optical cavity for sensing and controlling torsional motion. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.6.013141 chicago: Agafonova, Sofya, Umang Mishra, Fritz R Diorico, and Onur Hosten. “Zigzag Optical Cavity for Sensing and Controlling Torsional Motion.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/physrevresearch.6.013141. ieee: S. Agafonova, U. Mishra, F. R. Diorico, and O. Hosten, “Zigzag optical cavity for sensing and controlling torsional motion,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Agafonova S, Mishra U, Diorico FR, Hosten O. 2024. Zigzag optical cavity for sensing and controlling torsional motion. Physical Review Research. 6(1), 013141. mla: Agafonova, Sofya, et al. “Zigzag Optical Cavity for Sensing and Controlling Torsional Motion.” Physical Review Research, vol. 6, no. 1, 013141, American Physical Society, 2024, doi:10.1103/physrevresearch.6.013141. short: S. Agafonova, U. Mishra, F.R. Diorico, O. Hosten, Physical Review Research 6 (2024). date_created: 2024-02-12T11:42:18Z date_published: 2024-02-05T00:00:00Z date_updated: 2024-02-12T11:49:06Z day: '05' ddc: - '530' department: - _id: OnHo doi: 10.1103/physrevresearch.6.013141 external_id: arxiv: - '2306.12804' file: - access_level: open_access checksum: 3a39ebffb24c1cc1dd0b547a726dc52d content_type: application/pdf creator: dernst date_created: 2024-02-12T11:46:50Z date_updated: 2024-02-12T11:46:50Z file_id: '14981' file_name: 2024_PhysicalRevResearch_Agafonova.pdf file_size: 1437167 relation: main_file success: 1 file_date_updated: 2024-02-12T11:46:50Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: bdb2a702-d553-11ed-ba76-f12e3e5a3bc6 grant_number: '101087907' name: 'A quantum hybrid of atoms and milligram-scale pendulums: towards gravitational quantum mechanics' publication: Physical Review Research publication_identifier: eissn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Zigzag optical cavity for sensing and controlling torsional motion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '14851' abstract: - lang: ger text: Die Quantenrotation ist ein spannendes Phänomen, das in vielen verschiedenen Systemen auftritt, von Molekülen und Atomen bis hin zu subatomaren Teilchen wie Neutronen und Protonen. Durch den Einsatz von starken Laserpulsen ist es möglich, die mathematisch anspruchsvolle Topologie der Rotation von Molekülen aufzudecken und topologisch geschützte Zustände zu erzeugen, die unerwartetes Verhalten zeigen. Diese Entdeckungen könnten Auswirkungen auf die Molekülphysik und physikalische Chemie haben und die Entwicklung neuer Technologien ermöglichen. Die Verbindung von Quantenrotation und Topologie stellt ein aufregendes, interdisziplinäres Forschungsfeld dar und bietet neue Wege zur Kontrolle und Nutzung von quantenmechanischen Phänomenen. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Karle V, Lemeshko M. Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. 2024;55(1):28-33. doi:10.1002/piuz.202301690 apa: Karle, V., & Lemeshko, M. (2024). Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. Wiley. https://doi.org/10.1002/piuz.202301690 chicago: Karle, Volker, and Mikhail Lemeshko. “Die faszinierende Topologie rotierender Quanten.” Physik in unserer Zeit. Wiley, 2024. https://doi.org/10.1002/piuz.202301690. ieee: V. Karle and M. Lemeshko, “Die faszinierende Topologie rotierender Quanten,” Physik in unserer Zeit, vol. 55, no. 1. Wiley, pp. 28–33, 2024. ista: Karle V, Lemeshko M. 2024. Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. 55(1), 28–33. mla: Karle, Volker, and Mikhail Lemeshko. “Die faszinierende Topologie rotierender Quanten.” Physik in unserer Zeit, vol. 55, no. 1, Wiley, 2024, pp. 28–33, doi:10.1002/piuz.202301690. short: V. Karle, M. Lemeshko, Physik in unserer Zeit 55 (2024) 28–33. date_created: 2024-01-22T08:19:36Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-02-15T14:29:04Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1002/piuz.202301690 file: - access_level: open_access checksum: 3051dadcf9bc57da97e36b647c596ab1 content_type: application/pdf creator: dernst date_created: 2024-01-23T12:18:07Z date_updated: 2024-01-23T12:18:07Z file_id: '14878' file_name: 2024_PhysikZeit_Karle.pdf file_size: 1155244 relation: main_file success: 1 file_date_updated: 2024-01-23T12:18:07Z has_accepted_license: '1' intvolume: ' 55' issue: '1' keyword: - General Earth and Planetary Sciences - General Environmental Science language: - iso: ger month: '01' oa: 1 oa_version: Published Version page: 28-33 publication: Physik in unserer Zeit publication_identifier: eissn: - 1521-3943 issn: - 0031-9252 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Die faszinierende Topologie rotierender Quanten tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 55 year: '2024' ... --- _id: '14986' abstract: - lang: eng text: We prove a version of the tamely ramified geometric Langlands correspondence in positive characteristic for GLn(k). Let k be an algebraically closed field of characteristic p>n. Let X be a smooth projective curve over k with marked points, and fix a parabolic subgroup of GLn(k) at each marked point. We denote by Bunn,P the moduli stack of (quasi-)parabolic vector bundles on X, and by Locn,P the moduli stack of parabolic flat connections such that the residue is nilpotent with respect to the parabolic reduction at each marked point. We construct an equivalence between the bounded derived category Db(Qcoh(Loc0n,P)) of quasi-coherent sheaves on an open substack Loc0n,P⊂Locn,P, and the bounded derived category Db(D0Bunn,P-mod) of D0Bunn,P-modules, where D0Bunn,P is a localization of DBunn,P the sheaf of crystalline differential operators on Bunn,P. Thus we extend the work of Bezrukavnikov-Braverman to the tamely ramified case. We also prove a correspondence between flat connections on X with regular singularities and meromorphic Higgs bundles on the Frobenius twist X(1) of X with first order poles . acknowledgement: "This work was supported by the NSF [DMS-1502125to S.S.]; and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [101034413 to S.S.].\r\nI would like to thank my advisor Tom Nevins for many helpful discussions on this subject and for his comments on this paper. I would like to thank Christopher Dodd, Michael Groechenig, and Tamas Hausel for helpful conversations. I would like to thank Tsao-Hsien Chen for useful comments on an earlier version of this paper." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Shiyu full_name: Shen, Shiyu id: 544cccd3-9005-11ec-87bc-94aef1c5b814 last_name: Shen citation: ama: Shen S. Tamely ramified geometric Langlands correspondence in positive characteristic. International Mathematics Research Notices. 2024. doi:10.1093/imrn/rnae005 apa: Shen, S. (2024). Tamely ramified geometric Langlands correspondence in positive characteristic. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnae005 chicago: Shen, Shiyu. “Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic.” International Mathematics Research Notices. Oxford University Press, 2024. https://doi.org/10.1093/imrn/rnae005. ieee: S. Shen, “Tamely ramified geometric Langlands correspondence in positive characteristic,” International Mathematics Research Notices. Oxford University Press, 2024. ista: Shen S. 2024. Tamely ramified geometric Langlands correspondence in positive characteristic. International Mathematics Research Notices. mla: Shen, Shiyu. “Tamely Ramified Geometric Langlands Correspondence in Positive Characteristic.” International Mathematics Research Notices, Oxford University Press, 2024, doi:10.1093/imrn/rnae005. short: S. Shen, International Mathematics Research Notices (2024). date_created: 2024-02-14T12:16:17Z date_published: 2024-02-05T00:00:00Z date_updated: 2024-02-19T10:22:44Z day: '05' department: - _id: TaHa doi: 10.1093/imrn/rnae005 ec_funded: 1 external_id: arxiv: - '1810.12491' keyword: - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/imrn/rnae005 month: '02' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: epub_ahead publisher: Oxford University Press quality_controlled: '1' status: public title: Tamely ramified geometric Langlands correspondence in positive characteristic type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15016' abstract: - lang: eng text: 'The development, evolution, and function of the vertebrate central nervous system (CNS) can be best studied using diverse model organisms. Amphibians, with their unique phylogenetic position at the transition between aquatic and terrestrial lifestyles, are valuable for understanding the origin and evolution of the tetrapod brain and spinal cord. Their metamorphic developmental transitions and unique regenerative abilities also facilitate the discovery of mechanisms for neural circuit remodeling and replacement. The genetic toolkit for amphibians, however, remains limited, with only a few species having sequenced genomes and a small number of transgenic lines available. In mammals, recombinant adeno-associated viral vectors (AAVs) have become a powerful alternative to genome modification for visualizing and perturbing the nervous system. AAVs are DNA viruses that enable neuronal transduction in both developing and adult animals with low toxicity and spatial, temporal, and cell-type specificity. However, AAVs have never been shown to transduce amphibian cells efficiently. To bridge this gap, we established a simple, scalable, and robust strategy to screen AAV serotypes in three distantly-related amphibian species: the frogs Xenopus laevis and Pelophylax bedriagae, and the salamander Pleurodeles waltl, in both developing larval tadpoles and post-metamorphic animals. For each species, we successfully identified at least two AAV serotypes capable of infecting the CNS; however, no pan-amphibian serotype was identified, indicating rapid evolution of AAV tropism. In addition, we developed an AAV-based strategy that targets isochronic cohorts of developing neurons – a critical tool for parsing neural circuit assembly. Finally, to enable visualization and manipulation of neural circuits, we identified AAV variants for retrograde tracing of neuronal projections in adult animals. Our findings expand the toolkit for amphibians to include AAVs, establish a generalizable workflow for AAV screening in non-canonical research organisms, generate testable hypotheses for the evolution of AAV tropism, and lay the foundation for modern cross-species comparisons of vertebrate CNS development, function, and evolution. ' acknowledgement: "We would like to extend our thanks to members of the Sweeney, Tosches, Shein-Idelson,\r\nYamaguchi, Kelley, and Cline Labs for their contributions to this project, discussion and support.\r\nWe additionally thank the Beckman Institute Clover Center and Viviana Gradinaru (Caltech),\r\nKimberly Ritola (UNC NeuroTools), Flavia Gama Gomez Leite (ISTA Viral Core), and Hüseyin\r\nCihan Önal (Shigemoto Group, ISTA) for their consultation and assistance regarding AAVs, as\r\nwell as Andras Simon and Alberto Joven for feedback and discussions on AAVs in Pleurodeles.\r\nTo do these experiments, we have also benefited from the tremendous support of our animal care and imaging facilities at our respective institutions, as well as the amphibian stock centers\r\n(National Xenopus Resource Center, European Xenopus Resource Center, Xenopus Express)\r\nand our funding sources: U.S. National Science Foundation (NSF) Grant Number IOS 2110086\r\n(D.B.K., L.B.S., M.A.T., A.Y., and H.T.C.); United States-Israel Binational Science Foundation\r\n(BSF) Grant Number 2020702 (M.S.-I.); NSF Award Number 1645105 (G.J.G., M.E.H.); FTI\r\nStrategy Lower Austria Dissertation Grant Number FTI21-D-046 (D.V.); Horizon Europe ERC\r\nStarting Grant Number 101041551 (L.B.S.); NIH grant number R35GM146973 (M.A.T.); Rita Allen\r\nFoundation award number GA_032522_FE (M.A.T.); European Molecular Biology Organization\r\nLong-Term Fellowship ALTF 874-2021 (A.D.); National Science Foundation Graduate Research\r\nFellowship DGE 2036197 (E.C.J.B.); NIH grant number P40OD010997 (M.E.H)." article_processing_charge: No author: - first_name: Eliza C.B. full_name: Jaeger, Eliza C.B. last_name: Jaeger - first_name: David full_name: Vijatovic, David id: cf391e77-ec3c-11ea-a124-d69323410b58 last_name: Vijatovic - first_name: Astrid full_name: Deryckere, Astrid last_name: Deryckere - first_name: Nikol full_name: Zorin, Nikol last_name: Zorin - first_name: Akemi L. full_name: Nguyen, Akemi L. last_name: Nguyen - first_name: Georgiy full_name: Ivanian, Georgiy id: eaf2b366-cfd1-11ee-bbdf-c8790f800a05 last_name: Ivanian - first_name: Jamie full_name: Woych, Jamie last_name: Woych - first_name: Rebecca C full_name: Arnold, Rebecca C id: d6cce458-14c9-11ed-a755-c1c8fc6fde6f last_name: Arnold - first_name: Alonso full_name: Ortega Gurrola, Alonso last_name: Ortega Gurrola - first_name: Arik full_name: Shvartsman, Arik last_name: Shvartsman - first_name: Francesca full_name: Barbieri, Francesca id: a9492887-8972-11ed-ae7b-bfae10998254 last_name: Barbieri - first_name: Florina-Alexandra full_name: Toma, Florina-Alexandra id: 85dd99f2-15b2-11ec-abd3-d1ae4d57f3b5 last_name: Toma - first_name: Gary J. full_name: Gorbsky, Gary J. last_name: Gorbsky - first_name: Marko E. full_name: Horb, Marko E. last_name: Horb - first_name: Hollis T. full_name: Cline, Hollis T. last_name: Cline - first_name: Timothy F. full_name: Shay, Timothy F. last_name: Shay - first_name: Darcy B. full_name: Kelley, Darcy B. last_name: Kelley - first_name: Ayako full_name: Yamaguchi, Ayako last_name: Yamaguchi - first_name: Mark full_name: Shein-Idelson, Mark last_name: Shein-Idelson - first_name: Maria Antonietta full_name: Tosches, Maria Antonietta last_name: Tosches - first_name: Lora Beatrice Jaeger full_name: Sweeney, Lora Beatrice Jaeger id: 56BE8254-C4F0-11E9-8E45-0B23E6697425 last_name: Sweeney orcid: 0000-0001-9242-5601 citation: ama: Jaeger ECB, Vijatovic D, Deryckere A, et al. Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv. doi:10.1101/2024.02.15.580289 apa: Jaeger, E. C. B., Vijatovic, D., Deryckere, A., Zorin, N., Nguyen, A. L., Ivanian, G., … Sweeney, L. B. (n.d.). Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv. https://doi.org/10.1101/2024.02.15.580289 chicago: Jaeger, Eliza C.B., David Vijatovic, Astrid Deryckere, Nikol Zorin, Akemi L. Nguyen, Georgiy Ivanian, Jamie Woych, et al. “Adeno-Associated Viral Tools to Trace Neural Development and Connectivity across Amphibians.” BioRxiv, n.d. https://doi.org/10.1101/2024.02.15.580289. ieee: E. C. B. Jaeger et al., “Adeno-associated viral tools to trace neural development and connectivity across amphibians,” bioRxiv. . ista: Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Ortega Gurrola A, Shvartsman A, Barbieri F, Toma F-A, Gorbsky GJ, Horb ME, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. bioRxiv, 10.1101/2024.02.15.580289. mla: Jaeger, Eliza C. B., et al. “Adeno-Associated Viral Tools to Trace Neural Development and Connectivity across Amphibians.” BioRxiv, doi:10.1101/2024.02.15.580289. short: E.C.B. Jaeger, D. Vijatovic, A. Deryckere, N. Zorin, A.L. Nguyen, G. Ivanian, J. Woych, R.C. Arnold, A. Ortega Gurrola, A. Shvartsman, F. Barbieri, F.-A. Toma, G.J. Gorbsky, M.E. Horb, H.T. Cline, T.F. Shay, D.B. Kelley, A. Yamaguchi, M. Shein-Idelson, M.A. Tosches, L.B. Sweeney, BioRxiv (n.d.). date_created: 2024-02-20T09:20:32Z date_published: 2024-02-16T00:00:00Z date_updated: 2024-02-20T09:34:25Z day: '16' department: - _id: LoSw - _id: MaDe - _id: GaNo doi: 10.1101/2024.02.15.580289 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2024.02.15.580289 month: '02' oa: 1 oa_version: Preprint project: - _id: bd73af52-d553-11ed-ba76-912049f0ac7a grant_number: FTI21-D-046 name: Entwicklung und Funktion der V1 Interneuronen vom Schwimmen zum Laufen während der Metamorphose von Xenopus - _id: ebb66355-77a9-11ec-83b8-b8ac210a4dae grant_number: '101041551' name: Development and Evolution of Tetrapod Motor Circuits publication: bioRxiv publication_status: submitted status: public title: Adeno-associated viral tools to trace neural development and connectivity across amphibians type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15012' abstract: - lang: eng text: We solve a problem of Dujmović and Wood (2007) by showing that a complete convex geometric graph on n vertices cannot be decomposed into fewer than n-1 star-forests, each consisting of noncrossing edges. This bound is clearly tight. We also discuss similar questions for abstract graphs. acknowledgement: János Pach’s Research partially supported by European Research Council (ERC), grant “GeoScape” No. 882971 and by the Hungarian Science Foundation (NKFIH), grant K-131529. Work by Morteza Saghafian is partially supported by the European Research Council (ERC), grant No. 788183, and by the Wittgenstein Prize, Austrian Science Fund (FWF), grant No. Z 342-N31. alternative_title: - LNCS article_processing_charge: No author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Morteza full_name: Saghafian, Morteza id: f86f7148-b140-11ec-9577-95435b8df824 last_name: Saghafian - first_name: Patrick full_name: Schnider, Patrick last_name: Schnider citation: ama: 'Pach J, Saghafian M, Schnider P. Decomposition of geometric graphs into star-forests. In: 31st International Symposium on Graph Drawing and Network Visualization. Vol 14465. Springer Nature; 2024:339-346. doi:10.1007/978-3-031-49272-3_23' apa: 'Pach, J., Saghafian, M., & Schnider, P. (2024). Decomposition of geometric graphs into star-forests. In 31st International Symposium on Graph Drawing and Network Visualization (Vol. 14465, pp. 339–346). Isola delle Femmine, Palermo, Italy: Springer Nature. https://doi.org/10.1007/978-3-031-49272-3_23' chicago: Pach, János, Morteza Saghafian, and Patrick Schnider. “Decomposition of Geometric Graphs into Star-Forests.” In 31st International Symposium on Graph Drawing and Network Visualization, 14465:339–46. Springer Nature, 2024. https://doi.org/10.1007/978-3-031-49272-3_23. ieee: J. Pach, M. Saghafian, and P. Schnider, “Decomposition of geometric graphs into star-forests,” in 31st International Symposium on Graph Drawing and Network Visualization, Isola delle Femmine, Palermo, Italy, 2024, vol. 14465, pp. 339–346. ista: 'Pach J, Saghafian M, Schnider P. 2024. Decomposition of geometric graphs into star-forests. 31st International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network Visualization, LNCS, vol. 14465, 339–346.' mla: Pach, János, et al. “Decomposition of Geometric Graphs into Star-Forests.” 31st International Symposium on Graph Drawing and Network Visualization, vol. 14465, Springer Nature, 2024, pp. 339–46, doi:10.1007/978-3-031-49272-3_23. short: J. Pach, M. Saghafian, P. Schnider, in:, 31st International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2024, pp. 339–346. conference: end_date: 2023-09-22 location: Isola delle Femmine, Palermo, Italy name: 'GD: Graph Drawing and Network Visualization' start_date: 2023-09-20 date_created: 2024-02-18T23:01:03Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-02-20T09:13:07Z day: '01' department: - _id: HeEd doi: 10.1007/978-3-031-49272-3_23 ec_funded: 1 external_id: arxiv: - '2306.13201' intvolume: ' 14465' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2306.13201 month: '01' oa: 1 oa_version: Preprint page: 339-346 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: 31st International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - '16113349' isbn: - '9783031492716' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Decomposition of geometric graphs into star-forests type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14465 year: '2024' ... --- _id: '15006' abstract: - lang: eng text: Graphical games are a useful framework for modeling the interactions of (selfish) agents who are connected via an underlying topology and whose behaviors influence each other. They have wide applications ranging from computer science to economics and biology. Yet, even though an agent’s payoff only depends on the actions of their direct neighbors in graphical games, computing the Nash equilibria and making statements about the convergence time of "natural" local dynamics in particular can be highly challenging. In this work, we present a novel approach for classifying complexity of Nash equilibria in graphical games by establishing a connection to local graph algorithms, a subfield of distributed computing. In particular, we make the observation that the equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex labelings which are verifiable with constant-round local algorithms. This connection allows us to derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in graphical games. Since we establish that distributed convergence can sometimes be provably slow, we also introduce and give bounds on an intuitive notion of "time-constrained" inefficiency of best responses. We exemplify how our results can be used in the implementation of mechanisms that ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into the convergence of strategy-proof algorithms for graphical games, which is still not well understood. acknowledgement: This work was partially funded by the Academy of Finland, grant 314888, the European Research Council CoG 863818 (ForM-SMArt), and the Austrian Science Fund (FWF) project I 4800-N (ADVISE). LS was supported by the Stochastic Analysis and Application Research Center (SAARC) under National Research Foundation of Korea grant NRF-2019R1A5A1028324. alternative_title: - LIPIcs article_number: '11' article_processing_charge: No author: - first_name: Juho full_name: Hirvonen, Juho last_name: Hirvonen - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Hirvonen J, Schmid L, Chatterjee K, Schmid S. On the convergence time in graphical games: A locality-sensitive approach. In: 27th International Conference on Principles of Distributed Systems. Vol 286. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2024. doi:10.4230/LIPIcs.OPODIS.2023.11' apa: 'Hirvonen, J., Schmid, L., Chatterjee, K., & Schmid, S. (2024). On the convergence time in graphical games: A locality-sensitive approach. In 27th International Conference on Principles of Distributed Systems (Vol. 286). Tokyo, Japan: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2023.11' chicago: 'Hirvonen, Juho, Laura Schmid, Krishnendu Chatterjee, and Stefan Schmid. “On the Convergence Time in Graphical Games: A Locality-Sensitive Approach.” In 27th International Conference on Principles of Distributed Systems, Vol. 286. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. https://doi.org/10.4230/LIPIcs.OPODIS.2023.11.' ieee: 'J. Hirvonen, L. Schmid, K. Chatterjee, and S. Schmid, “On the convergence time in graphical games: A locality-sensitive approach,” in 27th International Conference on Principles of Distributed Systems, Tokyo, Japan, 2024, vol. 286.' ista: 'Hirvonen J, Schmid L, Chatterjee K, Schmid S. 2024. On the convergence time in graphical games: A locality-sensitive approach. 27th International Conference on Principles of Distributed Systems. OPODIS: Conference on Principles of Distributed Systems, LIPIcs, vol. 286, 11.' mla: 'Hirvonen, Juho, et al. “On the Convergence Time in Graphical Games: A Locality-Sensitive Approach.” 27th International Conference on Principles of Distributed Systems, vol. 286, 11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.OPODIS.2023.11.' short: J. Hirvonen, L. Schmid, K. Chatterjee, S. Schmid, in:, 27th International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. conference: end_date: 2023-12-08 location: Tokyo, Japan name: 'OPODIS: Conference on Principles of Distributed Systems' start_date: 2023-12-06 date_created: 2024-02-18T23:01:01Z date_published: 2024-01-18T00:00:00Z date_updated: 2024-02-26T09:16:12Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.OPODIS.2023.11 ec_funded: 1 external_id: arxiv: - '2102.13457' file: - access_level: open_access checksum: 4fc7eea6e4ba140b904781fc7df868ec content_type: application/pdf creator: dernst date_created: 2024-02-26T09:04:58Z date_updated: 2024-02-26T09:04:58Z file_id: '15028' file_name: 2024_LIPICs_Hirvonen.pdf file_size: 867363 relation: main_file success: 1 file_date_updated: 2024-02-26T09:04:58Z has_accepted_license: '1' intvolume: ' 286' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 27th International Conference on Principles of Distributed Systems publication_identifier: isbn: - '9783959773089' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'On the convergence time in graphical games: A locality-sensitive approach' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 286 year: '2024' ... --- _id: '15001' abstract: - lang: eng text: "Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s A\r\n amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A\r\n fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor." acknowledgement: We acknowledge support from the Erasmus programme and the University College London Institute for the Physics of Living Systems (S.C., T.C.T.M., A.Š.), the Biotechnology and Biological Sciences Research Council (T.P.J.K.), the Engineering and Physical Sciences Research Council (D.F.), the European Research Council (T.P.J.K., S.L., D.F., and A.Š.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Academy of Medical Sciences and Wellcome Trust (A.Š.), and the Royal Society (S.C. and A.Š.). article_number: e2220075121 article_processing_charge: Yes article_type: original author: - first_name: Samo full_name: Curk, Samo id: 031eff0d-d481-11ee-8508-cd12a7a86e5b last_name: Curk orcid: 0000-0001-6160-9766 - first_name: Johannes full_name: Krausser, Johannes last_name: Krausser - first_name: Georg full_name: Meisl, Georg last_name: Meisl - first_name: Daan full_name: Frenkel, Daan last_name: Frenkel - first_name: Sara full_name: Linse, Sara last_name: Linse - first_name: Thomas C.T. full_name: Michaels, Thomas C.T. last_name: Michaels - first_name: Tuomas P.J. full_name: Knowles, Tuomas P.J. last_name: Knowles - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 citation: ama: Curk S, Krausser J, Meisl G, et al. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(7). doi:10.1073/pnas.2220075121 apa: Curk, S., Krausser, J., Meisl, G., Frenkel, D., Linse, S., Michaels, T. C. T., … Šarić, A. (2024). Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2220075121 chicago: Curk, Samo, Johannes Krausser, Georg Meisl, Daan Frenkel, Sara Linse, Thomas C.T. Michaels, Tuomas P.J. Knowles, and Anđela Šarić. “Self-Replication of Aβ42 Aggregates Occurs on Small and Isolated Fibril Sites.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2220075121. ieee: S. Curk et al., “Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 7. Proceedings of the National Academy of Sciences, 2024. ista: Curk S, Krausser J, Meisl G, Frenkel D, Linse S, Michaels TCT, Knowles TPJ, Šarić A. 2024. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. 121(7), e2220075121. mla: Curk, Samo, et al. “Self-Replication of Aβ42 Aggregates Occurs on Small and Isolated Fibril Sites.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 7, e2220075121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2220075121. short: S. Curk, J. Krausser, G. Meisl, D. Frenkel, S. Linse, T.C.T. Michaels, T.P.J. Knowles, A. Šarić, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2024-02-18T23:01:00Z date_published: 2024-02-13T00:00:00Z date_updated: 2024-02-26T08:45:56Z day: '13' ddc: - '570' department: - _id: AnSa doi: 10.1073/pnas.2220075121 ec_funded: 1 external_id: pmid: - '38335256' file: - access_level: open_access checksum: 5aeb65bcc0dd829b1f9ab307c5031d4b content_type: application/pdf creator: dernst date_created: 2024-02-26T08:20:00Z date_updated: 2024-02-26T08:20:00Z file_id: '15026' file_name: 2024_PNAS_Curk.pdf file_size: 7699487 relation: main_file success: 1 file_date_updated: 2024-02-26T08:20:00Z has_accepted_license: '1' intvolume: ' 121' issue: '7' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: record: - id: '15027' relation: research_data status: public scopus_import: '1' status: public title: Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15002' abstract: - lang: eng text: "The lattice Schwinger model, the discrete version of QED in \r\n1\r\n+\r\n1\r\n dimensions, is a well-studied test bench for lattice gauge theories. Here, we study the fractal properties of this model. We reveal the self-similarity of the ground state, which allows us to develop a recurrent procedure for finding the ground-state wave functions and predicting ground-state energies. We present the results of recurrently calculating ground-state wave functions using the fractal Ansatz and automized software package for fractal image processing. In certain parameter regimes, just a few terms are enough for our recurrent procedure to predict ground-state energies close to the exact ones for several hundreds of sites. Our findings pave the way to understanding the complexity of calculating many-body wave functions in terms of their fractal properties as well as finding new links between condensed matter and high-energy lattice models." acknowledgement: "We thank A. Bargov, I. Khaymovich, and V. Tiunova for fruitful discussions and for useful comments. M. C. B. thanks S. Kühn for discussions about the phase structure of the model. A. K. F. thanks V. Gritsev and A. Garkun for insightful comments. E. V. P., E. S. T., and A. K. F. are\r\nsupported by the RSF Grant No. 20-42-05002 (studying the fractal Ansatz) and the Roadmap on Quantum Computing (Contract No. 868-1.3-15/15-2021, October 5, 2021; calculating on GS energies). A. K. F. thanks the Priority 2030 program at the NIST “MISIS” under the project No. K1-2022-027. M. C. B. was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2111–390814868." article_number: '050401' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Petrova, Elena id: 0ac84990-897b-11ed-a09c-f5abb56a4ede last_name: Petrova - first_name: Egor S. full_name: Tiunov, Egor S. last_name: Tiunov - first_name: Mari Carmen full_name: Bañuls, Mari Carmen last_name: Bañuls - first_name: Aleksey K. full_name: Fedorov, Aleksey K. last_name: Fedorov citation: ama: Petrova E, Tiunov ES, Bañuls MC, Fedorov AK. Fractal states of the Schwinger model. Physical Review Letters. 2024;132(5). doi:10.1103/PhysRevLett.132.050401 apa: Petrova, E., Tiunov, E. S., Bañuls, M. C., & Fedorov, A. K. (2024). Fractal states of the Schwinger model. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.132.050401 chicago: Petrova, Elena, Egor S. Tiunov, Mari Carmen Bañuls, and Aleksey K. Fedorov. “Fractal States of the Schwinger Model.” Physical Review Letters. American Physical Society, 2024. https://doi.org/10.1103/PhysRevLett.132.050401. ieee: E. Petrova, E. S. Tiunov, M. C. Bañuls, and A. K. Fedorov, “Fractal states of the Schwinger model,” Physical Review Letters, vol. 132, no. 5. American Physical Society, 2024. ista: Petrova E, Tiunov ES, Bañuls MC, Fedorov AK. 2024. Fractal states of the Schwinger model. Physical Review Letters. 132(5), 050401. mla: Petrova, Elena, et al. “Fractal States of the Schwinger Model.” Physical Review Letters, vol. 132, no. 5, 050401, American Physical Society, 2024, doi:10.1103/PhysRevLett.132.050401. short: E. Petrova, E.S. Tiunov, M.C. Bañuls, A.K. Fedorov, Physical Review Letters 132 (2024). date_created: 2024-02-18T23:01:00Z date_published: 2024-01-30T00:00:00Z date_updated: 2024-02-26T08:03:31Z day: '30' department: - _id: MaSe doi: 10.1103/PhysRevLett.132.050401 external_id: arxiv: - '2201.10220' intvolume: ' 132' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2201.10220 month: '01' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Fractal states of the Schwinger model type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 132 year: '2024' ... --- _id: '12485' abstract: - lang: eng text: In this paper we introduce the critical variational setting for parabolic stochastic evolution equations of quasi- or semi-linear type. Our results improve many of the abstract results in the classical variational setting. In particular, we are able to replace the usual weak or local monotonicity condition by a more flexible local Lipschitz condition. Moreover, the usual growth conditions on the multiplicative noise are weakened considerably. Our new setting provides general conditions under which local and global existence and uniqueness hold. Moreover, we prove continuous dependence on the initial data. We show that many classical SPDEs, which could not be covered by the classical variational setting, do fit in the critical variational setting. In particular, this is the case for the Cahn-Hilliard equations, tamed Navier-Stokes equations, and Allen-Cahn equation. acknowledgement: The first author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 948819) . The second author is supported by the VICI subsidy VI.C.212.027 of the Netherlands Organisation for Scientific Research (NWO). article_processing_charge: No article_type: original author: - first_name: Antonio full_name: Agresti, Antonio id: 673cd0cc-9b9a-11eb-b144-88f30e1fbb72 last_name: Agresti orcid: 0000-0002-9573-2962 - first_name: Mark full_name: Veraar, Mark last_name: Veraar citation: ama: Agresti A, Veraar M. The critical variational setting for stochastic evolution equations. Probability Theory and Related Fields. 2024. doi:10.1007/s00440-023-01249-x apa: Agresti, A., & Veraar, M. (2024). The critical variational setting for stochastic evolution equations. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-023-01249-x chicago: Agresti, Antonio, and Mark Veraar. “The Critical Variational Setting for Stochastic Evolution Equations.” Probability Theory and Related Fields. Springer Nature, 2024. https://doi.org/10.1007/s00440-023-01249-x. ieee: A. Agresti and M. Veraar, “The critical variational setting for stochastic evolution equations,” Probability Theory and Related Fields. Springer Nature, 2024. ista: Agresti A, Veraar M. 2024. The critical variational setting for stochastic evolution equations. Probability Theory and Related Fields. mla: Agresti, Antonio, and Mark Veraar. “The Critical Variational Setting for Stochastic Evolution Equations.” Probability Theory and Related Fields, Springer Nature, 2024, doi:10.1007/s00440-023-01249-x. short: A. Agresti, M. Veraar, Probability Theory and Related Fields (2024). date_created: 2023-02-02T10:45:15Z date_published: 2024-02-02T00:00:00Z date_updated: 2024-02-26T09:39:07Z day: '02' department: - _id: JuFi doi: 10.1007/s00440-023-01249-x ec_funded: 1 external_id: arxiv: - '2206.00230' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00440-023-01249-x month: '02' oa: 1 oa_version: Preprint project: - _id: 0aa76401-070f-11eb-9043-b5bb049fa26d call_identifier: H2020 grant_number: '948819' name: Bridging Scales in Random Materials publication: Probability Theory and Related Fields publication_identifier: eissn: - 1432-2064 issn: - 0178-8051 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: The critical variational setting for stochastic evolution equations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15008' abstract: - lang: eng text: "Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. \r\nIn this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with n vertices and m edges admit a routing scheme that has competitive ratio O(log² n) and consists of a convex combination of only O(√m) electrical routings. This immediately leads to an improved construction algorithm with time Õ(m^{3/2}) that can also be implemented in parallel with Õ(√m) depth." acknowledgement: "Monika Henzinger and A. R. Sricharan: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation\r\nprogramme (Grant agreement No. 101019564) and the Austrian Science Fund (FWF) project Z\r\n422-N, project I 5982-N, and project P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.\r\nHarald Räcke: Research supported by German Research Foundation (DFG), grant 470029389\r\n(FlexNets), 2021-2024.\r\nSushant Sachdeva: SS’s work is supported by an Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2018-06398 and a Sloan Research Fellowship." alternative_title: - LIPIcs article_number: '55' article_processing_charge: No author: - first_name: Gramoz full_name: Goranci, Gramoz last_name: Goranci - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Harald full_name: Räcke, Harald last_name: Räcke - first_name: Sushant full_name: Sachdeva, Sushant last_name: Sachdeva - first_name: A. R. full_name: Sricharan, A. R. last_name: Sricharan citation: ama: 'Goranci G, Henzinger MH, Räcke H, Sachdeva S, Sricharan AR. Electrical flows for polylogarithmic competitive oblivious routing. In: 15th Innovations in Theoretical Computer Science Conference. Vol 287. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2024. doi:10.4230/LIPIcs.ITCS.2024.55' apa: 'Goranci, G., Henzinger, M. H., Räcke, H., Sachdeva, S., & Sricharan, A. R. (2024). Electrical flows for polylogarithmic competitive oblivious routing. In 15th Innovations in Theoretical Computer Science Conference (Vol. 287). Berkeley, CA, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ITCS.2024.55' chicago: Goranci, Gramoz, Monika H Henzinger, Harald Räcke, Sushant Sachdeva, and A. R. Sricharan. “Electrical Flows for Polylogarithmic Competitive Oblivious Routing.” In 15th Innovations in Theoretical Computer Science Conference, Vol. 287. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. https://doi.org/10.4230/LIPIcs.ITCS.2024.55. ieee: G. Goranci, M. H. Henzinger, H. Räcke, S. Sachdeva, and A. R. Sricharan, “Electrical flows for polylogarithmic competitive oblivious routing,” in 15th Innovations in Theoretical Computer Science Conference, Berkeley, CA, United States, 2024, vol. 287. ista: 'Goranci G, Henzinger MH, Räcke H, Sachdeva S, Sricharan AR. 2024. Electrical flows for polylogarithmic competitive oblivious routing. 15th Innovations in Theoretical Computer Science Conference. ITCS: Innovations in Theoretical Computer Science Conference, LIPIcs, vol. 287, 55.' mla: Goranci, Gramoz, et al. “Electrical Flows for Polylogarithmic Competitive Oblivious Routing.” 15th Innovations in Theoretical Computer Science Conference, vol. 287, 55, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.ITCS.2024.55. short: G. Goranci, M.H. Henzinger, H. Räcke, S. Sachdeva, A.R. Sricharan, in:, 15th Innovations in Theoretical Computer Science Conference, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. conference: end_date: 2024-02-02 location: Berkeley, CA, United States name: 'ITCS: Innovations in Theoretical Computer Science Conference' start_date: 2024-01-30 date_created: 2024-02-18T23:01:02Z date_published: 2024-01-24T00:00:00Z date_updated: 2024-02-26T10:12:19Z day: '24' ddc: - '000' department: - _id: MoHe doi: 10.4230/LIPIcs.ITCS.2024.55 ec_funded: 1 external_id: arxiv: - '2303.02491' file: - access_level: open_access checksum: b89716aae6a5599f187897e39de1e53a content_type: application/pdf creator: dernst date_created: 2024-02-26T10:10:48Z date_updated: 2024-02-26T10:10:48Z file_id: '15030' file_name: 2024_LIPICs_Goranci.pdf file_size: 1054754 relation: main_file success: 1 file_date_updated: 2024-02-26T10:10:48Z has_accepted_license: '1' intvolume: ' 287' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: 34def286-11ca-11ed-8bc3-da5948e1613c grant_number: Z00422 name: Wittgenstein Award - Monika Henzinger - _id: bda196b2-d553-11ed-ba76-8e8ee6c21103 grant_number: I05982 name: Static and Dynamic Hierarchical Graph Decompositions - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer publication: 15th Innovations in Theoretical Computer Science Conference publication_identifier: isbn: - '9783959773096' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Electrical flows for polylogarithmic competitive oblivious routing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 287 year: '2024' ...