--- _id: '5906' abstract: - lang: eng text: We introduce a simple, exactly solvable strong-randomness renormalization group (RG) model for the many-body localization (MBL) transition in one dimension. Our approach relies on a family of RG flows parametrized by the asymmetry between thermal and localized phases. We identify the physical MBL transition in the limit of maximal asymmetry, reflecting the instability of MBL against rare thermal inclusions. We find a critical point that is localized with power-law distributed thermal inclusions. The typical size of critical inclusions remains finite at the transition, while the average size is logarithmically diverging. We propose a two-parameter scaling theory for the many-body localization transition that falls into the Kosterlitz-Thouless universality class, with the MBL phase corresponding to a stable line of fixed points with multifractal behavior. article_number: '040601' article_processing_charge: No article_type: original author: - first_name: Anna full_name: Goremykina, Anna last_name: Goremykina - first_name: Romain full_name: Vasseur, Romain last_name: Vasseur - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Goremykina A, Vasseur R, Serbyn M. Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. 2019;122(4). doi:10.1103/physrevlett.122.040601 apa: Goremykina, A., Vasseur, R., & Serbyn, M. (2019). Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.122.040601 chicago: Goremykina, Anna, Romain Vasseur, and Maksym Serbyn. “Analytically Solvable Renormalization Group for the Many-Body Localization Transition.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/physrevlett.122.040601. ieee: A. Goremykina, R. Vasseur, and M. Serbyn, “Analytically solvable renormalization group for the many-body localization transition,” Physical Review Letters, vol. 122, no. 4. American Physical Society, 2019. ista: Goremykina A, Vasseur R, Serbyn M. 2019. Analytically solvable renormalization group for the many-body localization transition. Physical Review Letters. 122(4), 040601. mla: Goremykina, Anna, et al. “Analytically Solvable Renormalization Group for the Many-Body Localization Transition.” Physical Review Letters, vol. 122, no. 4, 040601, American Physical Society, 2019, doi:10.1103/physrevlett.122.040601. short: A. Goremykina, R. Vasseur, M. Serbyn, Physical Review Letters 122 (2019). date_created: 2019-02-01T08:22:28Z date_published: 2019-02-01T00:00:00Z date_updated: 2024-02-28T13:13:38Z day: '01' department: - _id: MaSe doi: 10.1103/physrevlett.122.040601 external_id: arxiv: - '1807.04285' isi: - '000456783700001' intvolume: ' 122' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1807.04285 month: '02' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Analytically solvable renormalization group for the many-body localization transition type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 122 year: '2019' ... --- _id: '6632' abstract: - lang: eng text: We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases. article_number: '063627' article_processing_charge: No author: - first_name: Volker full_name: Karle, Volker last_name: Karle - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: Tilman full_name: Enss, Tilman last_name: Enss citation: ama: Karle V, Defenu N, Enss T. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 2019;99(6). doi:10.1103/PhysRevA.99.063627 apa: Karle, V., Defenu, N., & Enss, T. (2019). Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.99.063627 chicago: Karle, Volker, Nicolò Defenu, and Tilman Enss. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A. American Physical Society, 2019. https://doi.org/10.1103/PhysRevA.99.063627. ieee: V. Karle, N. Defenu, and T. Enss, “Coupled superfluidity of binary Bose mixtures in two dimensions,” Physical Review A, vol. 99, no. 6. American Physical Society, 2019. ista: Karle V, Defenu N, Enss T. 2019. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 99(6), 063627. mla: Karle, Volker, et al. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A, vol. 99, no. 6, 063627, American Physical Society, 2019, doi:10.1103/PhysRevA.99.063627. short: V. Karle, N. Defenu, T. Enss, Physical Review A 99 (2019). date_created: 2019-07-14T21:59:17Z date_published: 2019-06-28T00:00:00Z date_updated: 2024-02-28T13:12:34Z day: '28' department: - _id: MiLe doi: 10.1103/PhysRevA.99.063627 external_id: arxiv: - '1903.06759' isi: - '000473133600007' intvolume: ' 99' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06759 month: '06' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - '24699934' issn: - '24699926' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Coupled superfluidity of binary Bose mixtures in two dimensions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '7396' abstract: - lang: eng text: The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting. article_number: '035005 ' article_processing_charge: No article_type: original author: - first_name: Christiane P. full_name: Koch, Christiane P. last_name: Koch - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Dominique full_name: Sugny, Dominique last_name: Sugny citation: ama: Koch CP, Lemeshko M, Sugny D. Quantum control of molecular rotation. Reviews of Modern Physics. 2019;91(3). doi:10.1103/revmodphys.91.035005 apa: Koch, C. P., Lemeshko, M., & Sugny, D. (2019). Quantum control of molecular rotation. Reviews of Modern Physics. American Physical Society. https://doi.org/10.1103/revmodphys.91.035005 chicago: Koch, Christiane P., Mikhail Lemeshko, and Dominique Sugny. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics. American Physical Society, 2019. https://doi.org/10.1103/revmodphys.91.035005. ieee: C. P. Koch, M. Lemeshko, and D. Sugny, “Quantum control of molecular rotation,” Reviews of Modern Physics, vol. 91, no. 3. American Physical Society, 2019. ista: Koch CP, Lemeshko M, Sugny D. 2019. Quantum control of molecular rotation. Reviews of Modern Physics. 91(3), 035005. mla: Koch, Christiane P., et al. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics, vol. 91, no. 3, 035005, American Physical Society, 2019, doi:10.1103/revmodphys.91.035005. short: C.P. Koch, M. Lemeshko, D. Sugny, Reviews of Modern Physics 91 (2019). date_created: 2020-01-29T16:04:19Z date_published: 2019-09-18T00:00:00Z date_updated: 2024-02-28T13:15:33Z day: '18' department: - _id: MiLe doi: 10.1103/revmodphys.91.035005 external_id: arxiv: - '1810.11338' isi: - '000486661700001' intvolume: ' 91' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.11338 month: '09' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Reviews of Modern Physics publication_identifier: eissn: - 1539-0756 issn: - 0034-6861 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum control of molecular rotation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 91 year: '2019' ... --- _id: '7606' abstract: - lang: eng text: We derive a tight lower bound on equivocation (conditional entropy), or equivalently a tight upper bound on mutual information between a signal variable and channel outputs. The bound is in terms of the joint distribution of the signals and maximum a posteriori decodes (most probable signals given channel output). As part of our derivation, we describe the key properties of the distribution of signals, channel outputs and decodes, that minimizes equivocation and maximizes mutual information. This work addresses a problem in data analysis, where mutual information between signals and decodes is sometimes used to lower bound the mutual information between signals and channel outputs. Our result provides a corresponding upper bound. article_number: '8989292' article_processing_charge: No author: - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik - first_name: Thomas R full_name: Sokolowski, Thomas R id: 3E999752-F248-11E8-B48F-1D18A9856A87 last_name: Sokolowski orcid: 0000-0002-1287-3779 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: 'Hledik M, Sokolowski TR, Tkačik G. A tight upper bound on mutual information. In: IEEE Information Theory Workshop, ITW 2019. IEEE; 2019. doi:10.1109/ITW44776.2019.8989292' apa: 'Hledik, M., Sokolowski, T. R., & Tkačik, G. (2019). A tight upper bound on mutual information. In IEEE Information Theory Workshop, ITW 2019. Visby, Sweden: IEEE. https://doi.org/10.1109/ITW44776.2019.8989292' chicago: Hledik, Michal, Thomas R Sokolowski, and Gašper Tkačik. “A Tight Upper Bound on Mutual Information.” In IEEE Information Theory Workshop, ITW 2019. IEEE, 2019. https://doi.org/10.1109/ITW44776.2019.8989292. ieee: M. Hledik, T. R. Sokolowski, and G. Tkačik, “A tight upper bound on mutual information,” in IEEE Information Theory Workshop, ITW 2019, Visby, Sweden, 2019. ista: Hledik M, Sokolowski TR, Tkačik G. 2019. A tight upper bound on mutual information. IEEE Information Theory Workshop, ITW 2019. Information Theory Workshop, 8989292. mla: Hledik, Michal, et al. “A Tight Upper Bound on Mutual Information.” IEEE Information Theory Workshop, ITW 2019, 8989292, IEEE, 2019, doi:10.1109/ITW44776.2019.8989292. short: M. Hledik, T.R. Sokolowski, G. Tkačik, in:, IEEE Information Theory Workshop, ITW 2019, IEEE, 2019. conference: end_date: 2019-08-28 location: Visby, Sweden name: Information Theory Workshop start_date: 2019-08-25 date_created: 2020-03-22T23:00:47Z date_published: 2019-08-01T00:00:00Z date_updated: 2024-03-06T14:22:51Z day: '01' department: - _id: GaTk doi: 10.1109/ITW44776.2019.8989292 ec_funded: 1 external_id: arxiv: - '1812.01475' isi: - '000540384500015' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1812.01475 month: '08' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: IEEE Information Theory Workshop, ITW 2019 publication_identifier: isbn: - '9781538669006' publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '15020' relation: dissertation_contains status: public scopus_import: '1' status: public title: A tight upper bound on mutual information type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6933' abstract: - lang: eng text: "We design fast deterministic algorithms for distance computation in the CONGESTED CLIQUE model. Our key contributions include:\r\n\r\n - A (2+ε)-approximation for all-pairs shortest paths problem in O(log²n / ε) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.\r\n - A (1+ε)-approximation for multi-source shortest paths problem from O(√n) sources in O(log² n / ε) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.\r\n\r\nOur main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in Õ(n^{1/6}) rounds." article_processing_charge: No author: - first_name: Keren full_name: Censor-Hillel, Keren last_name: Censor-Hillel - first_name: Michal full_name: Dory, Michal last_name: Dory - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen - first_name: Dean full_name: Leitersdorf, Dean last_name: Leitersdorf citation: ama: 'Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. Fast approximate shortest paths in the congested clique. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin. ACM; 2019:74-83. doi:10.1145/3293611.3331633' apa: 'Censor-Hillel, K., Dory, M., Korhonen, J., & Leitersdorf, D. (2019). Fast approximate shortest paths in the congested clique. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin (pp. 74–83). Toronto, ON, Canada: ACM. https://doi.org/10.1145/3293611.3331633' chicago: Censor-Hillel, Keren, Michal Dory, Janne Korhonen, and Dean Leitersdorf. “Fast Approximate Shortest Paths in the Congested Clique.” In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, 74–83. ACM, 2019. https://doi.org/10.1145/3293611.3331633. ieee: K. Censor-Hillel, M. Dory, J. Korhonen, and D. Leitersdorf, “Fast approximate shortest paths in the congested clique,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, Toronto, ON, Canada, 2019, pp. 74–83. ista: 'Censor-Hillel K, Dory M, Korhonen J, Leitersdorf D. 2019. Fast approximate shortest paths in the congested clique. Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin. PODC: Symposium on Principles of Distributed Computing, 74–83.' mla: Censor-Hillel, Keren, et al. “Fast Approximate Shortest Paths in the Congested Clique.” Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, ACM, 2019, pp. 74–83, doi:10.1145/3293611.3331633. short: K. Censor-Hillel, M. Dory, J. Korhonen, D. Leitersdorf, in:, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin, ACM, 2019, pp. 74–83. conference: end_date: 2019-08-02 location: Toronto, ON, Canada name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2019-07-29 date_created: 2019-10-08T12:48:42Z date_published: 2019-08-01T00:00:00Z date_updated: 2024-03-07T14:43:38Z day: '01' department: - _id: DaAl doi: 10.1145/3293611.3331633 external_id: arxiv: - '1903.05956' isi: - '000570442000011' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.05956 month: '08' oa: 1 oa_version: Preprint page: 74-83 publication: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computin publication_identifier: isbn: - '9781450362177' publication_status: published publisher: ACM quality_controlled: '1' related_material: record: - id: '7939' relation: later_version status: public scopus_import: '1' status: public title: Fast approximate shortest paths in the congested clique type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '6392' abstract: - lang: eng text: "The regulation of gene expression is one of the most fundamental processes in living systems. In recent years, thanks to advances in sequencing technology and automation, it has become possible to study gene expression quantitatively, genome-wide and in high-throughput. This leads to the possibility of exploring changes in gene expression in the context of many external perturbations and their combinations, and thus of characterising the basic principles governing gene regulation. In this thesis, I present quantitative experimental approaches to studying transcriptional and protein level changes in response to combinatorial drug treatment, as well as a theoretical data-driven approach to analysing thermodynamic principles guiding transcription of protein coding genes. \r\nIn the first part of this work, I present a novel methodological framework for quantifying gene expression changes in drug combinations, termed isogrowth profiling. External perturbations through small molecule drugs influence the growth rate of the cell, leading to wide-ranging changes in cellular physiology and gene expression. This confounds the gene expression changes specifically elicited by the particular drug. Combinatorial perturbations, owing to the increased stress they exert, influence the growth rate even more strongly and hence suffer the convolution problem to a greater extent when measuring gene expression changes. Isogrowth profiling is a way to experimentally abstract non-specific, growth rate related changes, by performing the measurement using varying ratios of two drugs at such concentrations that the overall inhibition rate is constant. Using a robotic setup for automated high-throughput re-dilution culture of Saccharomyces cerevisiae, the budding yeast, I investigate all pairwise interactions of four small molecule drugs through sequencing RNA along a growth isobole. Through principal component analysis, I demonstrate here that isogrowth profiling can uncover drug-specific as well as drug-interaction-specific gene expression changes. I show that drug-interaction-specific gene expression changes can be used for prediction of higher-order drug interactions. I propose a simplified generalised framework of isogrowth profiling, with few measurements needed for each drug pair, enabling the broad application of isogrowth profiling to high-throughput screening of inhibitors of cellular growth and beyond. Such high-throughput screenings of gene expression changes specific to pairwise drug interactions will be instrumental for predicting the higher-order interactions of the drugs.\r\n\r\nIn the second part of this work, I extend isogrowth profiling to single-cell measurements of gene expression, characterising population heterogeneity in the budding yeast in response to combinatorial drug perturbation while controlling for non-specific growth rate effects. Through flow cytometry of strains with protein products fused to green fluorescent protein, I discover multiple proteins with bi-modally distributed expression levels in the population in response to drug treatment. I characterize more closely the effect of an ionic stressor, lithium chloride, and find that it inhibits the splicing of mRNA, most strongly affecting ribosomal protein transcripts and leading to a bi-stable behaviour of a small ribosomal subunit protein Rps22B. Time-lapse microscopy of a microfluidic culture system revealed that the induced Rps22B heterogeneity leads to preferential survival of Rps22B-low cells after long starvation, but to preferential proliferation of Rps22B-high cells after short starvation. Overall, this suggests that yeast cells might use splicing of ribosomal genes for bet-hedging in fluctuating environments. I give specific examples of how further exploration of cellular heterogeneity in yeast in response to external perturbation has the potential to reveal yet-undiscovered gene regulation circuitry.\r\n\r\nIn the last part of this thesis, a re-analysis of a published sequencing dataset of nascent elongating transcripts is used to characterise the thermodynamic constraints for RNA polymerase II (RNAP) elongation. Population-level data on RNAP position throughout the transcribed genome with single nucleotide resolution are used to infer the sequence specific thermodynamic determinants of RNAP pausing and backtracking. This analysis reveals that the basepairing strength of the eight nucleotide-long RNA:DNA duplex relative to the basepairing strength of the same sequence when in DNA:DNA duplex, and the change in this quantity during RNA polymerase movement, is the key determinant of RNAP pausing. This is true for RNAP pausing while elongating, but also of RNAP pausing while backtracking and of the backtracking length. The quantitative dependence of RNAP pausing on basepairing energetics is used to infer the increase in pausing due to transcriptional mismatches, leading to a hypothesis that pervasive RNA polymerase II pausing is due to basepairing energetics, as an evolutionary cost for increased RNA polymerase II fidelity.\r\n\r\nThis work advances our understanding of the general principles governing gene expression, with the goal of making computational predictions of single-cell gene expression responses to combinatorial perturbations based on the individual perturbations possible. This ability would substantially facilitate the design of drug combination treatments and, in the long term, lead to our increased ability to more generally design targeted manipulations to any biological system. " acknowledged_ssus: - _id: LifeSc - _id: M-Shop - _id: Bio alternative_title: - IST Austria Thesis author: - first_name: Martin full_name: Lukacisin, Martin id: 298FFE8C-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisin orcid: 0000-0001-6549-4177 citation: ama: Lukacisin M. Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. 2019. doi:10.15479/AT:ISTA:6392 apa: Lukacisin, M. (2019). Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. IST Austria. https://doi.org/10.15479/AT:ISTA:6392 chicago: Lukacisin, Martin. “Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory.” IST Austria, 2019. https://doi.org/10.15479/AT:ISTA:6392. ieee: M. Lukacisin, “Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory,” IST Austria, 2019. ista: Lukacisin M. 2019. Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory. IST Austria. mla: Lukacisin, Martin. Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory. IST Austria, 2019, doi:10.15479/AT:ISTA:6392. short: M. Lukacisin, Quantitative Investigation of Gene Expression Principles through Combinatorial Drug Perturbation and Theory, IST Austria, 2019. date_created: 2019-05-09T19:53:00Z date_published: 2019-05-09T00:00:00Z date_updated: 2023-09-22T09:19:41Z day: '09' ddc: - '570' department: - _id: ToBo doi: 10.15479/AT:ISTA:6392 extern: '1' file: - access_level: closed checksum: 829bda074444857c7935171237bb7c0c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mlukacisin date_created: 2019-05-10T13:51:49Z date_updated: 2020-07-14T12:47:29Z embargo_to: open_access file_id: '6409' file_name: Thesis_Draft_v3.4Final.docx file_size: 43740796 relation: hidden - access_level: open_access checksum: 56cb5e97f5f8fc41692401b53832d8e0 content_type: application/pdf creator: mlukacisin date_created: 2019-05-10T14:13:42Z date_updated: 2021-02-11T11:17:16Z embargo: 2020-04-17 file_id: '6410' file_name: Thesis_Draft_v3.4FinalA.pdf file_size: 35228388 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '103' publication_identifier: isbn: - 978-3-99078-001-5 issn: - 2663-337X publication_status: published publisher: IST Austria related_material: record: - id: '1029' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mark Tobias full_name: Bollenbach, Mark Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Quantitative investigation of gene expression principles through combinatorial drug perturbation and theory type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6269' abstract: - lang: eng text: 'Clathrin-Mediated Endocytosis (CME) is an aspect of cellular trafficking that is constantly regulated for mediating developmental and physiological responses. The main aim of my thesis is to decipher the basic mechanisms of CME and post-endocytic trafficking in the whole multicellular organ systems of Arabidopsis. The first chapter of my thesis describes the search for new components involved in CME. Tandem affinity purification was conducted using CLC and its interacting partners were identified. Amongst the identified proteins were the Auxilin-likes1 and 2 (Axl1/2), putative uncoating factors, for which we made a full functional analysis. Over-expression of Axl1/2 causes extreme modifications in the dynamics of the machinery proteins and inhibition of endocytosis altogether. However the loss of function of the axl1/2 did not present any cellular or physiological phenotype, meaning Auxilin-likes do not form the major uncoating machinery. The second chapter of my thesis describes the establishment/utilisation of techniques to capture the dynamicity and the complexity of CME and post-endocytic trafficking. We have studied the development of endocytic pits at the PM – specifically, the mode of membrane remodeling during pit development and the role of actin in it, given plant cells possess high turgor pressure. Utilizing the improved z-resolution of TIRF and VAEM techniques, we captured the time-lapse of the endocytic events at the plasma membrane; and using particle detection software, we quantitatively analysed all the endocytic trajectories in an unbiased way to obtain the endocytic rate of the system. This together with the direct analysis of cargo internalisation from the PM provided an estimate on the endocytic potential of the cell. We also developed a methodology for ultrastructural analysis of different populations of Clathrin-Coated Structures (CCSs) in both PM and endomembranes in unroofed protoplasts. Structural analysis, together with the intensity profile of CCSs at the PM show that the mode of CCP development at the PM follows ‘Constant curvature model’; meaning that clathrin polymerisation energy is a major contributing factor of membrane remodeling. In addition, other analyses clearly show that actin is not required for membrane remodeling during invagination or any other step of CCP development, despite the prevalent high turgor pressure. However, actin is essential in orchestrating the post-endocytic trafficking of CCVs facilitating the EE formation. We also observed that the uncoating process post-endocytosis is not immediate; an alternative mechanism of uncoating – Sequential multi-step process – functions in the cell. Finally we also looked at one of the important physiological stimuli modulating the process – hormone, auxin. auxin has been known to influence CME before. We have made a detailed study on the concentration-time based effect of auxin on the machinery proteins, CCP development, and the specificity of cargoes endocytosed. To this end, we saw no general effect of auxin on CME at earlier time points. However, very low concentration of IAA, such as 50nM, accelerates endocytosis of specifically PIN2 through CME. Such a tight regulatory control with high specificity to PIN2 could be essential in modulating its polarity. ' acknowledged_ssus: - _id: Bio - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 citation: ama: Narasimhan M. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . 2019. doi:10.15479/at:ista:th1075 apa: Narasimhan, M. (2019). Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th1075 chicago: Narasimhan, Madhumitha. “Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants .” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th1075. ieee: M. Narasimhan, “Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ,” Institute of Science and Technology Austria, 2019. ista: Narasimhan M. 2019. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. mla: Narasimhan, Madhumitha. Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants . Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th1075. short: M. Narasimhan, Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants , Institute of Science and Technology Austria, 2019. date_created: 2019-04-09T14:37:06Z date_published: 2019-02-04T00:00:00Z date_updated: 2023-09-08T11:43:03Z day: '04' ddc: - '575' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/at:ista:th1075 file: - access_level: open_access checksum: c958f27dd752712886e7e2638b847a3c content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6270' file_name: Supplementary_movie_1.avi file_size: 5402078 relation: main_file - access_level: open_access checksum: 8786fdc29c62987c0aad3c866a4d3691 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6271' file_name: 3.7_supplementary_movie_10.avi file_size: 5927736 relation: main_file - access_level: open_access checksum: 25f784c5159d6f4d966b2f9b371ebaf6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6272' file_name: 3.7_supplementary_movie_9.avi file_size: 9570210 relation: main_file - access_level: open_access checksum: 917069272a7a08d1f38224d5e12765d6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6273' file_name: 3.7_supplementary_movie_8.avi file_size: 2827360 relation: main_file - access_level: open_access checksum: 81e74f5ca0ad70050504f18192236dc0 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6274' file_name: 3.7_supplementary_movie_7.avi file_size: 5771410 relation: main_file - access_level: open_access checksum: 47eb37b27a2930252713924307ea8c6f content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6275' file_name: 3.7_supplementary_movie_6.avi file_size: 1113486 relation: main_file - access_level: open_access checksum: f68f66721041ce84e331959c9a5779c3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6276' file_name: 3.7_supplementary_movie_5.avi file_size: 1057232 relation: main_file - access_level: open_access checksum: 67c01cefab51b363c5e214fe4cd671f3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:23Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6277' file_name: 3.7_supplementary_movie_3.avi file_size: 127472916 relation: main_file - access_level: open_access checksum: e5a397edbee05b8821e2b19b3c1a9260 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6278' file_name: 3.7_supplementary_movie_4.avi file_size: 3181238 relation: main_file - access_level: open_access checksum: 32d92b2a9277f956fdb0b42351d07c0b content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6279' file_name: 3.7_supplementary_movie_2.avi file_size: 5970952 relation: main_file - access_level: open_access checksum: efe7001f5d9a8c61e631e12d5f324ade content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6280' file_name: 3.7_Supplementary_movie_1.avi file_size: 39835236 relation: main_file - access_level: open_access checksum: eeb0a5603c6449c5f34eacd5ff0b3a16 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6281' file_name: 2.5_Suppl_Movie_4_AP2A1_TagRFP.avi file_size: 3696740 relation: main_file - access_level: open_access checksum: 8e7c00ef6223bf0e177deb168338af13 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6282' file_name: 2.5_Suppl_Movie_3_TPLATE_GFP.avi file_size: 6741232 relation: main_file - access_level: open_access checksum: 3636006a7cb709a7543d6581e359b28d content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6283' file_name: 2.5_Suppl_Movie_2_CLC_GFP.avi file_size: 2445946 relation: main_file - access_level: open_access checksum: 39ca5519a6e9a38356e7b3704004fea7 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6284' file_name: 2.5_Suppl_Movie_1_CLC_GFPxAxl1_mcherry.avi file_size: 58594 relation: main_file - access_level: open_access checksum: 4fcdaa3a6c645514a3b3205f0f69dc76 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:35:33Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-02-11 file_id: '6285' file_name: 2019_Thesis_Narasimhan.pdf file_size: 10553937 relation: main_file - access_level: closed checksum: 268f0b6bad21d5f0d671e5d4b88104a7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:35:36Z date_updated: 2020-07-14T12:47:26Z embargo_to: open_access file_id: '6286' file_name: 2019_Thesis_Narasimhan_source.docx file_size: 135291990 relation: source_file file_date_updated: 2021-02-11T23:30:15Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '138' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '412' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: 'Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6435' abstract: - lang: eng text: "Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ\r\ncells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are\r\nin charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units\r\n(i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''.\r\n\r\nSocial immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social\r\nimmunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop\r\nthe collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of\r\nsocial immune responses have been dissected, but many more questions remain open.\r\n\r\nI present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals\r\ncarrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate.\r\n\r\nThe second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive\r\nand challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation.\r\n\r\nIn addition to the two experimental chapters, this thesis includes a co-authored published review on organisational\r\nimmunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built,\r\nidentify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in\r\ntwo collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant\r\nbehaviour." acknowledged_ssus: - _id: Bio - _id: ScienComp - _id: M-Shop - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez citation: ama: Casillas Perez BE. Collective defenses of garden ants against a fungal pathogen. 2019. doi:10.15479/AT:ISTA:6435 apa: Casillas Perez, B. E. (2019). Collective defenses of garden ants against a fungal pathogen. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6435 chicago: Casillas Perez, Barbara E. “Collective Defenses of Garden Ants against a Fungal Pathogen.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6435. ieee: B. E. Casillas Perez, “Collective defenses of garden ants against a fungal pathogen,” Institute of Science and Technology Austria, 2019. ista: Casillas Perez BE. 2019. Collective defenses of garden ants against a fungal pathogen. Institute of Science and Technology Austria. mla: Casillas Perez, Barbara E. Collective Defenses of Garden Ants against a Fungal Pathogen. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6435. short: B.E. Casillas Perez, Collective Defenses of Garden Ants against a Fungal Pathogen, Institute of Science and Technology Austria, 2019. date_created: 2019-05-13T08:58:35Z date_published: 2019-05-07T00:00:00Z date_updated: 2023-09-07T12:57:04Z day: '07' ddc: - '570' - '006' - '578' - '592' degree_awarded: PhD department: - _id: SyCr doi: 10.15479/AT:ISTA:6435 ec_funded: 1 file: - access_level: open_access checksum: 6daf2d2086111aa8fd3fbc919a3e2833 content_type: application/pdf creator: casillas date_created: 2019-05-13T09:16:20Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-05-08 file_id: '6438' file_name: tesisDoctoradoBC.pdf file_size: 3895187 relation: main_file - access_level: closed checksum: 3d221aaff7559a7060230a1ff610594f content_type: application/zip creator: casillas date_created: 2019-05-13T09:16:20Z date_updated: 2020-07-14T12:47:30Z embargo_to: open_access file_id: '6439' file_name: tesisDoctoradoBC.zip file_size: 7365118 relation: source_file file_date_updated: 2021-02-11T11:17:15Z has_accepted_license: '1' keyword: - Social Immunity - Sanitary care - Social Insects - Organisational Immunity - Colony development - Multi-target tracking language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: '183' project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1999' relation: part_of_dissertation status: public status: public supervisor: - first_name: Sylvia M full_name: Cremer, Sylvia M id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 title: Collective defenses of garden ants against a fungal pathogen type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '11222' acknowledgement: This work was supported by the ERC and EU Horizon 2020 (ERC 692692; MSC-IF 708497) and FWF Z 312-B27 Wittgenstein award; W 1205-B09). article_number: A3.27 article_processing_charge: No author: - first_name: Olena full_name: Kim, Olena id: 3F8ABDDA-F248-11E8-B48F-1D18A9856A87 last_name: Kim - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: 'Kim O, Borges Merjane C, Jonas PM. Functional analysis of the docked vesicle pool in hippocampal mossy fiber terminals by electron microscopy. In: Intrinsic Activity. Vol 7. Austrian Pharmacological Society; 2019. doi:10.25006/ia.7.s1-a3.27' apa: 'Kim, O., Borges Merjane, C., & Jonas, P. M. (2019). Functional analysis of the docked vesicle pool in hippocampal mossy fiber terminals by electron microscopy. In Intrinsic Activity (Vol. 7). Innsbruck, Austria: Austrian Pharmacological Society. https://doi.org/10.25006/ia.7.s1-a3.27' chicago: Kim, Olena, Carolina Borges Merjane, and Peter M Jonas. “Functional Analysis of the Docked Vesicle Pool in Hippocampal Mossy Fiber Terminals by Electron Microscopy.” In Intrinsic Activity, Vol. 7. Austrian Pharmacological Society, 2019. https://doi.org/10.25006/ia.7.s1-a3.27. ieee: O. Kim, C. Borges Merjane, and P. M. Jonas, “Functional analysis of the docked vesicle pool in hippocampal mossy fiber terminals by electron microscopy,” in Intrinsic Activity, Innsbruck, Austria, 2019, vol. 7, no. Suppl. 1. ista: 'Kim O, Borges Merjane C, Jonas PM. 2019. Functional analysis of the docked vesicle pool in hippocampal mossy fiber terminals by electron microscopy. Intrinsic Activity. ANA: Austrian Neuroscience Association ; APHAR: Austrian Pharmacological Society vol. 7, A3.27.' mla: Kim, Olena, et al. “Functional Analysis of the Docked Vesicle Pool in Hippocampal Mossy Fiber Terminals by Electron Microscopy.” Intrinsic Activity, vol. 7, no. Suppl. 1, A3.27, Austrian Pharmacological Society, 2019, doi:10.25006/ia.7.s1-a3.27. short: O. Kim, C. Borges Merjane, P.M. Jonas, in:, Intrinsic Activity, Austrian Pharmacological Society, 2019. conference: end_date: 2019-09-27 location: Innsbruck, Austria name: 'ANA: Austrian Neuroscience Association ; APHAR: Austrian Pharmacological Society' start_date: 2019-09-25 date_created: 2022-04-20T15:06:05Z date_published: 2019-09-11T00:00:00Z date_updated: 2024-03-18T23:30:07Z day: '11' department: - _id: PeJo doi: 10.25006/ia.7.s1-a3.27 ec_funded: 1 intvolume: ' 7' issue: Suppl. 1 keyword: - hippocampus - mossy fibers - readily releasable pool - electron microscopy language: - iso: eng main_file_link: - open_access: '1' url: https://www.intrinsicactivity.org/2019/7/S1/A3.27/ month: '09' oa: 1 oa_version: Published Version project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25BAF7B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '708497' name: Presynaptic calcium channels distribution and impact on coupling at the hippocampal mossy fiber synapse - _id: 25C3DBB6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W01205 name: Zellkommunikation in Gesundheit und Krankheit - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize publication: Intrinsic Activity publication_identifier: issn: - 2309-8503 publication_status: published publisher: Austrian Pharmacological Society quality_controlled: '1' related_material: record: - id: '11196' relation: dissertation_contains status: public status: public title: Functional analysis of the docked vesicle pool in hippocampal mossy fiber terminals by electron microscopy type: conference_abstract user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 7 year: '2019' ... --- _id: '6947' abstract: - lang: eng text: Lymph nodes are es s ential organs of the immune s ys tem where adaptive immune responses originate, and consist of various leukocyte populations and a stromal backbone. Fibroblastic reticular cells (FRCs) are the main stromal cells and form a sponge-like extracellular matrix network, called conduits , which they thems elves enwrap and contract. Lymph, containing s oluble antigens , arrive in lymph nodes via afferent lymphatic vessels that connect to the s ubcaps ular s inus and conduit network. According to the current paradigm, the conduit network dis tributes afferent lymph through lymph nodes and thus provides acces s for immune cells to lymph-borne antigens. An elas tic caps ule s urrounds the organ and confines the immune cells and FRC network. Lymph nodes are completely packed with lymphocytes and lymphocyte numbers directly dictates the size of the organ. Although lymphocytes cons tantly enter and leave the lymph node, its s ize remains remarkedly s table under homeostatic conditions. It is only partly known how the cellularity and s ize of the lymph node is regulated and how the lymph node is able to swell in inflammation. The role of the FRC network in lymph node s welling and trans fer of fluids are inves tigated in this thes is. Furthermore, we s tudied what trafficking routes are us ed by cancer cells in lymph nodes to form distal metastases.We examined the role of a mechanical feedback in regulation of lymph node swelling. Using parallel plate compression and UV-las er cutting experiments we dis s ected the mechanical force dynamics of the whole lymph node, and individually for FRCs and the caps ule. Physical forces generated by packed lymphocytes directly affect the tens ion on the FRC network and capsule, which increases its resistance to swelling. This implies a feedback mechanism between tis s ue pres s ure and ability of lymphocytes to enter the organ. Following inflammation, the lymph node swells ∼10 fold in two weeks . Yet, what is the role for tens ion on the FRC network and caps ule, and how are lymphocytes able to enter in conditions that resist swelling remain open ques tions . We s how that tens ion on the FRC network is important to limit the swelling rate of the organ so that the FRC network can grow in a coordinated fashion. This is illustrated by interfering with FRC contractility, which leads to faster swelling rates and a dis organized FRC network in the inflamed lymph node. Growth of the FRC network in turn is expected to releas e tens ion on thes e s tructures and lowers the res is tance to swelling, thereby allowing more lymphocytes to enter the organ and drive more swelling. Halt of swelling coincides with a thickening of the caps ule, which forms a thick res is tant band around the organ and lowers tens ion on the FRC network to form a new force equilibrium.The FRC and conduit network are further believed to be a privileged s ite of s oluble information within the lymph node, although many details remain uns olved. We s how by 3D ultra-recons truction that FRCs and antigen pres enting cells cover the s urface of conduit s ys tem for more than 99% and we dis cus s the implications for s oluble information exchangeat the conduit level.Finally, there is an ongoing debate in the cancer field whether and how cancer cells in lymph nodes s eed dis tal metas tas es . We s how that cancer cells infus ed into the lymph node can utilize trafficking routes of immune cells and rapidly migrate to blood vessels. Once in the blood circulation, these cells are able to form metastases in distal tissues. acknowledged_ssus: - _id: Bio - _id: PreCl - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 citation: ama: 'Assen FP. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. 2019. doi:10.15479/AT:ISTA:6947' apa: 'Assen, F. P. (2019). Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:6947' chicago: 'Assen, Frank P. “Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:6947.' ieee: 'F. P. Assen, “Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking,” Institute of Science and Technology Austria, 2019.' ista: 'Assen FP. 2019. Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking. Institute of Science and Technology Austria.' mla: 'Assen, Frank P. Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:6947.' short: 'F.P. Assen, Lymph Node Mechanics: Deciphering the Interplay between Stroma Contractility, Morphology and Lymphocyte Trafficking, Institute of Science and Technology Austria, 2019.' date_created: 2019-10-14T16:54:52Z date_published: 2019-10-09T00:00:00Z date_updated: 2023-09-13T08:50:57Z day: '9' ddc: - '570' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:6947 file: - access_level: closed checksum: 53a739752a500f84d0f8ec953cbbd0b6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: fassen date_created: 2019-11-06T12:30:02Z date_updated: 2020-11-07T23:30:03Z embargo_to: open_access file_id: '6990' file_name: PhDthesis_FrankAssen_revised2.docx file_size: 214172667 relation: source_file - access_level: open_access checksum: 8c156b65d9347bb599623a4b09f15d15 content_type: application/pdf creator: fassen date_created: 2019-11-06T12:30:57Z date_updated: 2020-11-07T23:30:03Z embargo: 2020-11-06 file_id: '6991' file_name: PhDthesis_FrankAssen_revised2.pdf file_size: 83637532 relation: main_file file_date_updated: 2020-11-07T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '142' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '664' relation: part_of_dissertation status: public - id: '402' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: 'Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ...