--- _id: '12819' abstract: - lang: eng text: 'Reaching a high cavity population with a coherent pump in the strong-coupling regime of a single-atom laser is impossible due to the photon blockade effect. In this Letter, we experimentally demonstrate that in a single-atom maser based on a transmon strongly coupled to two resonators, it is possible to pump over a dozen photons into the system. The first high-quality resonator plays the role of a usual lasing cavity, and the second one presents a controlled dissipation channel, bolstering population inversion, and modifies the energy-level structure to lift the blockade. As confirmation of the lasing action, we observe conventional laser features such as a narrowing of the emission linewidth and external signal amplification. Additionally, we report unique single-atom features: self-quenching and several lasing thresholds.' acknowledgement: We thank N.N. Abramov for assistance with the experimental setup. The sample was fabricated using equipment of MIPT Shared Facilities Center. This research was supported by Russian Science Foundation, grant no. 21-72-30026. article_number: L031701 article_processing_charge: No article_type: letter_note author: - first_name: Alesya full_name: Sokolova, Alesya id: 2d0a0600-edfb-11eb-afb5-c0f5fa7f4f3a last_name: Sokolova orcid: 0000-0002-8308-4144 - first_name: D. A. full_name: Kalacheva, D. A. last_name: Kalacheva - first_name: G. P. full_name: Fedorov, G. P. last_name: Fedorov - first_name: O. V. full_name: Astafiev, O. V. last_name: Astafiev citation: ama: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 2023;107(3). doi:10.1103/PhysRevA.107.L031701 apa: Sokolova, A., Kalacheva, D. A., Fedorov, G. P., & Astafiev, O. V. (2023). Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.L031701 chicago: Sokolova, Alesya, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.L031701. ieee: A. Sokolova, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev, “Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling,” Physical Review A, vol. 107, no. 3. American Physical Society, 2023. ista: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. 2023. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 107(3), L031701. mla: Sokolova, Alesya, et al. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A, vol. 107, no. 3, L031701, American Physical Society, 2023, doi:10.1103/PhysRevA.107.L031701. short: A. Sokolova, D.A. Kalacheva, G.P. Fedorov, O.V. Astafiev, Physical Review A 107 (2023). date_created: 2023-04-09T22:01:00Z date_published: 2023-03-22T00:00:00Z date_updated: 2023-08-01T14:06:05Z day: '22' department: - _id: JoFi doi: 10.1103/PhysRevA.107.L031701 external_id: arxiv: - '2209.05165' isi: - '000957799000006' intvolume: ' 107' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2209.05165 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12861' abstract: - lang: eng text: The field of indirect reciprocity investigates how social norms can foster cooperation when individuals continuously monitor and assess each other’s social interactions. By adhering to certain social norms, cooperating individuals can improve their reputation and, in turn, receive benefits from others. Eight social norms, known as the “leading eight," have been shown to effectively promote the evolution of cooperation as long as information is public and reliable. These norms categorize group members as either ’good’ or ’bad’. In this study, we examine a scenario where individuals instead assign nuanced reputation scores to each other, and only cooperate with those whose reputation exceeds a certain threshold. We find both analytically and through simulations that such quantitative assessments are error-correcting, thus facilitating cooperation in situations where information is private and unreliable. Moreover, our results identify four specific norms that are robust to such conditions, and may be relevant for helping to sustain cooperation in natural populations. acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.) and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.). L.S. received additional partial support by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), and also thanks the support by the Stochastic Analysis and Application Research Center (SAARC) under National Research Foundation of Korea grant NRF-2019R1A5A1028324. The authors additionally thank Stefan Schmid for providing access to his lab infrastructure at the University of Vienna for the purpose of collecting simulation data.' article_number: '2086' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Farbod full_name: Ekbatani, Farbod last_name: Ekbatani - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Schmid L, Ekbatani F, Hilbe C, Chatterjee K. Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. 2023;14. doi:10.1038/s41467-023-37817-x apa: Schmid, L., Ekbatani, F., Hilbe, C., & Chatterjee, K. (2023). Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-37817-x chicago: Schmid, Laura, Farbod Ekbatani, Christian Hilbe, and Krishnendu Chatterjee. “Quantitative Assessment Can Stabilize Indirect Reciprocity under Imperfect Information.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-37817-x. ieee: L. Schmid, F. Ekbatani, C. Hilbe, and K. Chatterjee, “Quantitative assessment can stabilize indirect reciprocity under imperfect information,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Schmid L, Ekbatani F, Hilbe C, Chatterjee K. 2023. Quantitative assessment can stabilize indirect reciprocity under imperfect information. Nature Communications. 14, 2086. mla: Schmid, Laura, et al. “Quantitative Assessment Can Stabilize Indirect Reciprocity under Imperfect Information.” Nature Communications, vol. 14, 2086, Springer Nature, 2023, doi:10.1038/s41467-023-37817-x. short: L. Schmid, F. Ekbatani, C. Hilbe, K. Chatterjee, Nature Communications 14 (2023). date_created: 2023-04-23T22:01:03Z date_published: 2023-04-12T00:00:00Z date_updated: 2023-08-01T14:15:57Z day: '12' ddc: - '000' department: - _id: KrCh doi: 10.1038/s41467-023-37817-x ec_funded: 1 external_id: isi: - '001003644100020' pmid: - '37045828' file: - access_level: open_access checksum: a4b3b7b36fbef068cabf4fb99501fef6 content_type: application/pdf creator: dernst date_created: 2023-04-25T09:13:53Z date_updated: 2023-04-25T09:13:53Z file_id: '12868' file_name: 2023_NatureComm_Schmid.pdf file_size: 1786475 relation: main_file success: 1 file_date_updated: 2023-04-25T09:13:53Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantitative assessment can stabilize indirect reciprocity under imperfect information tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12862' abstract: - lang: eng text: Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings. acknowledgement: "We thank Britni Crocker for help with preprocessing of the data and spike sorting; Joachim Werner and Michael Schnabel for their excellent IT support; Andreas Tolias for help with the initial implantation’s of the Utah arrays.\r\nAll authors were supported by the Max Planck Society. M.B. was supported by the German\r\nFederal Ministry of Education and Research (BMBF) through the funding scheme received by\r\nthe Tübingen AI Center, FKZ: 01IS18039B. N.K.L. and V.K. acknowledge the support from the\r\nShanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. " article_number: e1010983 article_processing_charge: No article_type: original author: - first_name: Shervin full_name: Safavi, Shervin last_name: Safavi - first_name: Theofanis I. full_name: Panagiotaropoulos, Theofanis I. last_name: Panagiotaropoulos - first_name: Vishal full_name: Kapoor, Vishal last_name: Kapoor - first_name: Juan F full_name: Ramirez Villegas, Juan F id: 44B06F76-F248-11E8-B48F-1D18A9856A87 last_name: Ramirez Villegas - first_name: Nikos K. full_name: Logothetis, Nikos K. last_name: Logothetis - first_name: Michel full_name: Besserve, Michel last_name: Besserve citation: ama: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 2023;19(4). doi:10.1371/journal.pcbi.1010983 apa: Safavi, S., Panagiotaropoulos, T. I., Kapoor, V., Ramirez Villegas, J. F., Logothetis, N. K., & Besserve, M. (2023). Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1010983 chicago: Safavi, Shervin, Theofanis I. Panagiotaropoulos, Vishal Kapoor, Juan F Ramirez Villegas, Nikos K. Logothetis, and Michel Besserve. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1010983. ieee: S. Safavi, T. I. Panagiotaropoulos, V. Kapoor, J. F. Ramirez Villegas, N. K. Logothetis, and M. Besserve, “Uncovering the organization of neural circuits with Generalized Phase Locking Analysis,” PLoS Computational Biology, vol. 19, no. 4. Public Library of Science, 2023. ista: Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez Villegas JF, Logothetis NK, Besserve M. 2023. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Computational Biology. 19(4), e1010983. mla: Safavi, Shervin, et al. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis.” PLoS Computational Biology, vol. 19, no. 4, e1010983, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1010983. short: S. Safavi, T.I. Panagiotaropoulos, V. Kapoor, J.F. Ramirez Villegas, N.K. Logothetis, M. Besserve, PLoS Computational Biology 19 (2023). date_created: 2023-04-23T22:01:03Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:15:16Z day: '01' ddc: - '570' department: - _id: JoCs doi: 10.1371/journal.pcbi.1010983 external_id: isi: - '000962668700002' file: - access_level: open_access checksum: edeb9d09f3e41ba7c0251308b9e372e7 content_type: application/pdf creator: dernst date_created: 2023-04-25T08:59:18Z date_updated: 2023-04-25T08:59:18Z file_id: '12867' file_name: 2023_PLoSCompBio_Safavi.pdf file_size: 4737671 relation: main_file success: 1 file_date_updated: 2023-04-25T08:59:18Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: link: - relation: software url: https://github.com/shervinsafavi/gpla.git scopus_import: '1' status: public title: Uncovering the organization of neural circuits with Generalized Phase Locking Analysis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '12879' abstract: - lang: eng text: Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the energies and forces in molecules and materials. The strong interest in predicting energies in particular has led to a ‘local energy’-based paradigm for modern atomistic ML models, which ensures size-extensivity and a linear scaling of computational cost with system size. However, many electronic properties (such as excitation energies or ionization energies) do not necessarily scale linearly with system size and may even be spatially localized. Using size-extensive models in these cases can lead to large errors. In this work, we explore different strategies for learning intensive and localized properties, using HOMO energies in organic molecules as a representative test case. In particular, we analyze the pooling functions that atomistic neural networks use to predict molecular properties, and suggest an orbital weighted average (OWA) approach that enables the accurate prediction of orbital energies and locations. acknowledgement: KC acknowledges funding from the China Scholarship Council. KC is grateful for the TUM graduate school finance support to visit Bingqing Cheng's group in IST for two months. We also thankfully acknowledge computational resources provided by the MPCDF Supercomputing Centre. article_processing_charge: No article_type: original author: - first_name: Ke full_name: Chen, Ke id: c636c5ca-e8b8-11ed-b2d4-cc2c37613a8d last_name: Chen - first_name: Christian full_name: Kunkel, Christian last_name: Kunkel - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Karsten full_name: Reuter, Karsten last_name: Reuter - first_name: Johannes T. full_name: Margraf, Johannes T. last_name: Margraf citation: ama: Chen K, Kunkel C, Cheng B, Reuter K, Margraf JT. Physics-inspired machine learning of localized intensive properties. Chemical Science. 2023. doi:10.1039/d3sc00841j apa: Chen, K., Kunkel, C., Cheng, B., Reuter, K., & Margraf, J. T. (2023). Physics-inspired machine learning of localized intensive properties. Chemical Science. Royal Society of Chemistry. https://doi.org/10.1039/d3sc00841j chicago: Chen, Ke, Christian Kunkel, Bingqing Cheng, Karsten Reuter, and Johannes T. Margraf. “Physics-Inspired Machine Learning of Localized Intensive Properties.” Chemical Science. Royal Society of Chemistry, 2023. https://doi.org/10.1039/d3sc00841j. ieee: K. Chen, C. Kunkel, B. Cheng, K. Reuter, and J. T. Margraf, “Physics-inspired machine learning of localized intensive properties,” Chemical Science. Royal Society of Chemistry, 2023. ista: Chen K, Kunkel C, Cheng B, Reuter K, Margraf JT. 2023. Physics-inspired machine learning of localized intensive properties. Chemical Science. mla: Chen, Ke, et al. “Physics-Inspired Machine Learning of Localized Intensive Properties.” Chemical Science, Royal Society of Chemistry, 2023, doi:10.1039/d3sc00841j. short: K. Chen, C. Kunkel, B. Cheng, K. Reuter, J.T. Margraf, Chemical Science (2023). date_created: 2023-04-30T22:01:06Z date_published: 2023-04-10T00:00:00Z date_updated: 2023-08-01T14:18:10Z day: '10' ddc: - '000' - '540' department: - _id: BiCh doi: 10.1039/d3sc00841j external_id: isi: - '000971508100001' file: - access_level: open_access checksum: 5eeec69a51e192dcd94b955d84423836 content_type: application/pdf creator: dernst date_created: 2023-05-02T07:17:05Z date_updated: 2023-05-02T07:17:05Z file_id: '12883' file_name: 2023_ChemialScience_Chen.pdf file_size: 1515446 relation: main_file success: 1 file_date_updated: 2023-05-02T07:17:05Z has_accepted_license: '1' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '04' oa: 1 oa_version: Published Version publication: Chemical Science publication_identifier: eissn: - 2041-6539 issn: - 2041-6520 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Physics-inspired machine learning of localized intensive properties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '12878' abstract: - lang: eng text: Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components. acknowledgement: The authors thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for support with phytohormone measurement. Thanks also go to Professor Pieter. B. F. Ouwerkerk (Leiden University) and Professor Jean-Benoit Morel (Plant Health Institute of Montpellier) for provision of the rice lines NB-7B-70 and NB-7B-76 and wild-type NB-61-WT, Professor Zuhua He (Chinese Academy of Sciences) for provision of the rice OsNPR1-RNAi mutant, and Professor Yinong Yang (The Pennsylvania State University) for provision of the rice line NahG. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32260085, 31460453, 31660501, 31860064, 31970609, 31801792 and 31960554), the Key Projects of the Applied Basic Research Plan of Yunnan Province (202301AS070082), the Major Special Program for Scientific Research, Education Department of Yunnan Province (Grant No. ZD2015005), the Start-up fund from Xishuangbanna Tropical Botanical Garden, and ‘Top Talents Program in Science and Technology’ from Yunnan Province, the SRF for ROCS, SEM (Grant No. [2013] 1792), and the Major Science and Technology Project in Yunnan Province (202102AE090042 and 202202AE090036); and the young and middle-aged academic and technical leaders reserve talent program in Yunnan Province (202205AC160076). article_processing_charge: No article_type: original author: - first_name: Lihui full_name: Jiang, Lihui last_name: Jiang - first_name: Baolin full_name: Yao, Baolin last_name: Yao - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Lixia full_name: Wu, Lixia last_name: Wu - first_name: Qijing full_name: Fu, Qijing last_name: Fu - first_name: Yiting full_name: Zhao, Yiting last_name: Zhao - first_name: Yuxin full_name: Cao, Yuxin last_name: Cao - first_name: Ruomeng full_name: Zhu, Ruomeng last_name: Zhu - first_name: Xinqi full_name: Lu, Xinqi last_name: Lu - first_name: Wuying full_name: Huang, Wuying last_name: Huang - first_name: Jianping full_name: Zhao, Jianping last_name: Zhao - first_name: Kuixiu full_name: Li, Kuixiu last_name: Li - first_name: Shuanglu full_name: Zhao, Shuanglu last_name: Zhao - first_name: Li full_name: Han, Li last_name: Han - first_name: Xuan full_name: Zhou, Xuan last_name: Zhou - first_name: Chongyu full_name: Luo, Chongyu last_name: Luo - first_name: Haiyan full_name: Zhu, Haiyan last_name: Zhu - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Huichuan full_name: Huang, Huichuan last_name: Huang - first_name: Zhengge full_name: Zhu, Zhengge last_name: Zhu - first_name: Xiahong full_name: He, Xiahong last_name: He - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhongkai full_name: Zhang, Zhongkai last_name: Zhang - first_name: Changning full_name: Liu, Changning last_name: Liu - first_name: Yunlong full_name: Du, Yunlong last_name: Du citation: ama: Jiang L, Yao B, Zhang X, et al. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 2023;115(1):155-174. doi:10.1111/tpj.16218 apa: Jiang, L., Yao, B., Zhang, X., Wu, L., Fu, Q., Zhao, Y., … Du, Y. (2023). Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. Wiley. https://doi.org/10.1111/tpj.16218 chicago: Jiang, Lihui, Baolin Yao, Xiaoyan Zhang, Lixia Wu, Qijing Fu, Yiting Zhao, Yuxin Cao, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal. Wiley, 2023. https://doi.org/10.1111/tpj.16218. ieee: L. Jiang et al., “Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth,” Plant Journal, vol. 115, no. 1. Wiley, pp. 155–174, 2023. ista: Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. 2023. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 115(1), 155–174. mla: Jiang, Lihui, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal, vol. 115, no. 1, Wiley, 2023, pp. 155–74, doi:10.1111/tpj.16218. short: L. Jiang, B. Yao, X. Zhang, L. Wu, Q. Fu, Y. Zhao, Y. Cao, R. Zhu, X. Lu, W. Huang, J. Zhao, K. Li, S. Zhao, L. Han, X. Zhou, C. Luo, H. Zhu, J. Yang, H. Huang, Z. Zhu, X. He, J. Friml, Z. Zhang, C. Liu, Y. Du, Plant Journal 115 (2023) 155–174. date_created: 2023-04-30T22:01:06Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-01T14:16:33Z day: '01' department: - _id: JiFr doi: 10.1111/tpj.16218 external_id: isi: - '000971861400001' pmid: - '37025008 ' intvolume: ' 115' isi: 1 issue: '1' language: - iso: eng month: '07' oa_version: None page: 155-174 pmid: 1 publication: Plant Journal publication_identifier: eissn: - 1365-313X issn: - 0960-7412 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 115 year: '2023' ... --- _id: '12876' abstract: - lang: eng text: "Motivation: The problem of model inference is of fundamental importance to systems biology. Logical models (e.g. Boolean networks; BNs) represent a computationally attractive approach capable of handling large biological networks. The models are typically inferred from experimental data. However, even with a substantial amount of experimental data supported by some prior knowledge, existing inference methods often focus on a small sample of admissible candidate models only.\r\n\r\nResults: We propose Boolean network sketches as a new formal instrument for the inference of Boolean networks. A sketch integrates (typically partial) knowledge about the network’s topology and the update logic (obtained through, e.g. a biological knowledge base or a literature search), as well as further assumptions about the properties of the network’s transitions (e.g. the form of its attractor landscape), and additional restrictions on the model dynamics given by the measured experimental data. Our new BNs inference algorithm starts with an ‘initial’ sketch, which is extended by adding restrictions representing experimental data to a ‘data-informed’ sketch and subsequently computes all BNs consistent with the data-informed sketch. Our algorithm is based on a symbolic representation and coloured model-checking. Our approach is unique in its ability to cover a broad spectrum of knowledge and efficiently produce a compact representation of all inferred BNs. We evaluate the method on a non-trivial collection of real-world and simulated data." acknowledgement: This work was partially supported by GACR [grant No. GA22-10845S]; and Grant Agency of Masaryk University [grant No. MUNI/G/1771/2020]. This work was partially supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie [Grant Agreement No. 101034413 to S.P.]. article_number: btad158 article_processing_charge: No article_type: original author: - first_name: Nikola full_name: Beneš, Nikola last_name: Beneš - first_name: Luboš full_name: Brim, Luboš last_name: Brim - first_name: Ondřej full_name: Huvar, Ondřej last_name: Huvar - first_name: Samuel full_name: Pastva, Samuel id: 07c5ea74-f61c-11ec-a664-aa7c5d957b2b last_name: Pastva - first_name: David full_name: Šafránek, David last_name: Šafránek citation: ama: 'Beneš N, Brim L, Huvar O, Pastva S, Šafránek D. Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. 2023;39(4). doi:10.1093/bioinformatics/btad158' apa: 'Beneš, N., Brim, L., Huvar, O., Pastva, S., & Šafránek, D. (2023). Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. Oxford Academic. https://doi.org/10.1093/bioinformatics/btad158' chicago: 'Beneš, Nikola, Luboš Brim, Ondřej Huvar, Samuel Pastva, and David Šafránek. “Boolean Network Sketches: A Unifying Framework for Logical Model Inference.” Bioinformatics. Oxford Academic, 2023. https://doi.org/10.1093/bioinformatics/btad158.' ieee: 'N. Beneš, L. Brim, O. Huvar, S. Pastva, and D. Šafránek, “Boolean network sketches: A unifying framework for logical model inference,” Bioinformatics, vol. 39, no. 4. Oxford Academic, 2023.' ista: 'Beneš N, Brim L, Huvar O, Pastva S, Šafránek D. 2023. Boolean network sketches: A unifying framework for logical model inference. Bioinformatics. 39(4), btad158.' mla: 'Beneš, Nikola, et al. “Boolean Network Sketches: A Unifying Framework for Logical Model Inference.” Bioinformatics, vol. 39, no. 4, btad158, Oxford Academic, 2023, doi:10.1093/bioinformatics/btad158.' short: N. Beneš, L. Brim, O. Huvar, S. Pastva, D. Šafránek, Bioinformatics 39 (2023). date_created: 2023-04-30T22:01:05Z date_published: 2023-04-03T00:00:00Z date_updated: 2023-08-01T14:27:28Z day: '03' ddc: - '000' department: - _id: ToHe doi: 10.1093/bioinformatics/btad158 ec_funded: 1 external_id: isi: - '000976610800001' pmid: - '37004199' file: - access_level: open_access checksum: 2cb90ddf781baefddf47eac4b54e2a03 content_type: application/pdf creator: dernst date_created: 2023-05-02T07:39:04Z date_updated: 2023-05-02T07:39:04Z file_id: '12886' file_name: 2023_Bioinformatics_Benes.pdf file_size: 478740 relation: main_file success: 1 file_date_updated: 2023-05-02T07:39:04Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Bioinformatics publication_identifier: eissn: - 1367-4811 publication_status: published publisher: Oxford Academic quality_controlled: '1' related_material: link: - relation: software url: https://doi.org/10.5281/zenodo.7688740 scopus_import: '1' status: public title: 'Boolean network sketches: A unifying framework for logical model inference' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2023' ... --- _id: '12880' abstract: - lang: eng text: Peripheral heterochromatin positioning depends on nuclear envelope associated proteins and repressive histone modifications. Here we show that overexpression (OE) of Lamin B1 (LmnB1) leads to the redistribution of peripheral heterochromatin into heterochromatic foci within the nucleoplasm. These changes represent a perturbation of heterochromatin binding at the nuclear periphery (NP) through a mechanism independent from altering other heterochromatin anchors or histone post-translational modifications. We further show that LmnB1 OE alters gene expression. These changes do not correlate with different levels of H3K9me3, but a significant number of the misregulated genes were likely mislocalized away from the NP upon LmnB1 OE. We also observed an enrichment of developmental processes amongst the upregulated genes. ~74% of these genes were normally repressed in our cell type, suggesting that LmnB1 OE promotes gene de-repression. This demonstrates a broader consequence of LmnB1 OE on cell fate, and highlights the importance of maintaining proper levels of LmnB1. acknowledgement: 'We thank members of the Hetzer lab for critical review of the manuscript; Novogene for mRNA library preparation and sequencing; the Next-Generation Sequencing Core Facility at the Salk Institute, with funding from NIH-NCI CCSG: P30 014195, the Chapman Foundation, and the Helmsley Charitable Trust, for sequencing Cut&Run libraries; and the Waitt Advanced Biophotonics Core Facility at the Salk Institute, with funding from NIH-NCI CCSG: P30 014195, the Waitt Foundation, and the Chan-Zuckerberg Initiative Imaging Scientist Award, for electron microscopy sample preparation and imaging.' article_number: '2202548' article_processing_charge: No article_type: original author: - first_name: Jeanae M. full_name: Kaneshiro, Jeanae M. last_name: Kaneshiro - first_name: Juliana S. full_name: Capitanio, Juliana S. last_name: Capitanio - first_name: Martin W full_name: Hetzer, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: Hetzer orcid: 0000-0002-2111-992X citation: ama: Kaneshiro JM, Capitanio JS, Hetzer M. Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus. 2023;14(1). doi:10.1080/19491034.2023.2202548 apa: Kaneshiro, J. M., Capitanio, J. S., & Hetzer, M. (2023). Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus. Taylor & Francis. https://doi.org/10.1080/19491034.2023.2202548 chicago: Kaneshiro, Jeanae M., Juliana S. Capitanio, and Martin Hetzer. “Lamin B1 Overexpression Alters Chromatin Organization and Gene Expression.” Nucleus. Taylor & Francis, 2023. https://doi.org/10.1080/19491034.2023.2202548. ieee: J. M. Kaneshiro, J. S. Capitanio, and M. Hetzer, “Lamin B1 overexpression alters chromatin organization and gene expression,” Nucleus, vol. 14, no. 1. Taylor & Francis, 2023. ista: Kaneshiro JM, Capitanio JS, Hetzer M. 2023. Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus. 14(1), 2202548. mla: Kaneshiro, Jeanae M., et al. “Lamin B1 Overexpression Alters Chromatin Organization and Gene Expression.” Nucleus, vol. 14, no. 1, 2202548, Taylor & Francis, 2023, doi:10.1080/19491034.2023.2202548. short: J.M. Kaneshiro, J.S. Capitanio, M. Hetzer, Nucleus 14 (2023). date_created: 2023-04-30T22:01:06Z date_published: 2023-04-18T00:00:00Z date_updated: 2023-08-01T14:18:46Z day: '18' ddc: - '570' department: - _id: MaHe doi: 10.1080/19491034.2023.2202548 external_id: isi: - '000971629400001' pmid: - '37071033' file: - access_level: open_access checksum: 8e707eda84f64dbad7f03545ae0a83ef content_type: application/pdf creator: dernst date_created: 2023-05-02T07:24:55Z date_updated: 2023-05-02T07:24:55Z file_id: '12884' file_name: 2023_Nucleus_Kaneshiro.pdf file_size: 3811113 relation: main_file success: 1 file_date_updated: 2023-05-02T07:24:55Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: Nucleus publication_identifier: eissn: - 1949-1042 issn: - 1949-1034 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Lamin B1 overexpression alters chromatin organization and gene expression tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12914' abstract: - lang: eng text: We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem, the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent decrease in the tunneling time can be the filtering effect occurring at the end of the barrier. acknowledgement: We thank W. H. Zurek, N. Sinitsyn, M. O. Scully, M. Arndt, and C. H. Marrows for helpful discussions. F.S. acknowledges support from the Los Alamos National Laboratory LDRD program under Project No. 20230049DR and the Center for Nonlinear Studies. F.S. also thanks the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant No. 754411 for support. W.G.U. thanks the Natural Science and Engineering Research Council of Canada, the Hagler Institute of Texas A&M University, the Helmholz Inst HZDR, Germany for support while this work was being done. article_number: '042216' article_processing_charge: No article_type: original author: - first_name: Fumika full_name: Suzuki, Fumika id: 650C99FC-1079-11EA-A3C0-73AE3DDC885E last_name: Suzuki orcid: 0000-0003-4982-5970 - first_name: William G. full_name: Unruh, William G. last_name: Unruh citation: ama: Suzuki F, Unruh WG. Numerical quantum clock simulations for measuring tunneling times. Physical Review A. 2023;107(4). doi:10.1103/PhysRevA.107.042216 apa: Suzuki, F., & Unruh, W. G. (2023). Numerical quantum clock simulations for measuring tunneling times. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.042216 chicago: Suzuki, Fumika, and William G. Unruh. “Numerical Quantum Clock Simulations for Measuring Tunneling Times.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.042216. ieee: F. Suzuki and W. G. Unruh, “Numerical quantum clock simulations for measuring tunneling times,” Physical Review A, vol. 107, no. 4. American Physical Society, 2023. ista: Suzuki F, Unruh WG. 2023. Numerical quantum clock simulations for measuring tunneling times. Physical Review A. 107(4), 042216. mla: Suzuki, Fumika, and William G. Unruh. “Numerical Quantum Clock Simulations for Measuring Tunneling Times.” Physical Review A, vol. 107, no. 4, 042216, American Physical Society, 2023, doi:10.1103/PhysRevA.107.042216. short: F. Suzuki, W.G. Unruh, Physical Review A 107 (2023). date_created: 2023-05-07T22:01:03Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-08-01T14:33:21Z day: '20' department: - _id: MiLe doi: 10.1103/PhysRevA.107.042216 ec_funded: 1 external_id: arxiv: - '2207.13130' isi: - '000975799300006' intvolume: ' 107' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2207.13130 month: '04' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Numerical quantum clock simulations for measuring tunneling times type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12913' abstract: - lang: eng text: The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = −2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link—with valley polarization and orbital magnetization—explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices. acknowledgement: We are grateful for the fruitful discussions with Allan MacDonald and Andrei Bernevig. D.K.E. acknowledges support from the Ministry of Economy and Competitiveness of Spain through the “Severo Ochoa” program for Centers of Excellence in R&D (SE5-0522), Fundació Privada Cellex, Fundació Privada Mir-Puig, the Generalitat de Catalunya through the CERCA program, funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 852927)” and the La Caixa Foundation. K.T.L. acknowledges the support of the Ministry of Science and Technology of China and the HKRGC through grants MOST20SC04, C6025-19G, 16310219, 16309718, and 16310520. J.D.M. acknowledges support from the INPhINIT ‘la Caixa’ Foundation (ID 100010434) fellowship program (LCF/BQ/DI19/11730021). Y.M.X. acknowledges the support of HKRGC through Grant No. PDFS2223-6S01. article_number: '2396' article_processing_charge: No article_type: original author: - first_name: J. full_name: Díez-Mérida, J. last_name: Díez-Mérida - first_name: A. full_name: Díez-Carlón, A. last_name: Díez-Carlón - first_name: S. Y. full_name: Yang, S. Y. last_name: Yang - first_name: Y. M. full_name: Xie, Y. M. last_name: Xie - first_name: X. J. full_name: Gao, X. J. last_name: Gao - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: X. full_name: Lu, X. last_name: Lu - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 - first_name: K. T. full_name: Law, K. T. last_name: Law - first_name: Dmitri K. full_name: Efetov, Dmitri K. last_name: Efetov citation: ama: Díez-Mérida J, Díez-Carlón A, Yang SY, et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nature Communications. 2023;14. doi:10.1038/s41467-023-38005-7 apa: Díez-Mérida, J., Díez-Carlón, A., Yang, S. Y., Xie, Y. M., Gao, X. J., Senior, J. L., … Efetov, D. K. (2023). Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38005-7 chicago: Díez-Mérida, J., A. Díez-Carlón, S. Y. Yang, Y. M. Xie, X. J. Gao, Jorden L Senior, K. Watanabe, et al. “Symmetry-Broken Josephson Junctions and Superconducting Diodes in Magic-Angle Twisted Bilayer Graphene.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38005-7. ieee: J. Díez-Mérida et al., “Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Díez-Mérida J, Díez-Carlón A, Yang SY, Xie YM, Gao XJ, Senior JL, Watanabe K, Taniguchi T, Lu X, Higginbotham AP, Law KT, Efetov DK. 2023. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nature Communications. 14, 2396. mla: Díez-Mérida, J., et al. “Symmetry-Broken Josephson Junctions and Superconducting Diodes in Magic-Angle Twisted Bilayer Graphene.” Nature Communications, vol. 14, 2396, Springer Nature, 2023, doi:10.1038/s41467-023-38005-7. short: J. Díez-Mérida, A. Díez-Carlón, S.Y. Yang, Y.M. Xie, X.J. Gao, J.L. Senior, K. Watanabe, T. Taniguchi, X. Lu, A.P. Higginbotham, K.T. Law, D.K. Efetov, Nature Communications 14 (2023). date_created: 2023-05-07T22:01:03Z date_published: 2023-04-26T00:00:00Z date_updated: 2023-08-01T14:34:00Z day: '26' ddc: - '530' department: - _id: AnHi doi: 10.1038/s41467-023-38005-7 external_id: isi: - '000979744000004' pmid: - '37100775' file: - access_level: open_access checksum: a778105665c10beb2354c92d2b295115 content_type: application/pdf creator: dernst date_created: 2023-05-08T07:26:40Z date_updated: 2023-05-08T07:26:40Z file_id: '12917' file_name: 2023_NatureComm_DiezMerida.pdf file_size: 1405588 relation: main_file success: 1 file_date_updated: 2023-05-08T07:26:40Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '10550' abstract: - lang: eng text: The global existence of renormalised solutions and convergence to equilibrium for reaction-diffusion systems with non-linear diffusion are investigated. The system is assumed to have quasi-positive non-linearities and to satisfy an entropy inequality. The difficulties in establishing global renormalised solutions caused by possibly degenerate diffusion are overcome by introducing a new class of weighted truncation functions. By means of the obtained global renormalised solutions, we study the large-time behaviour of complex balanced systems arising from chemical reaction network theory with non-linear diffusion. When the reaction network does not admit boundary equilibria, the complex balanced equilibrium is shown, by using the entropy method, to exponentially attract all renormalised solutions in the same compatibility class. This convergence extends even to a range of non-linear diffusion, where global existence is an open problem, yet we are able to show that solutions to approximate systems converge exponentially to equilibrium uniformly in the regularisation parameter. acknowledgement: "We thank the referees for their valuable comments and suggestions. A major part of this work was carried out when B. Q. Tang visited the Institute of Science and Technology Austria (ISTA). The hospitality of ISTA is greatly acknowledged. This work was partially supported by NAWI Graz.\r\nOpen access funding provided by University of Graz." article_number: '66' article_processing_charge: No article_type: original author: - first_name: Klemens full_name: Fellner, Klemens last_name: Fellner - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 - first_name: Bao Quoc full_name: Tang, Bao Quoc last_name: Tang citation: ama: Fellner K, Fischer JL, Kniely M, Tang BQ. Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion. Journal of Nonlinear Science. 2023;33. doi:10.1007/s00332-023-09926-w apa: Fellner, K., Fischer, J. L., Kniely, M., & Tang, B. Q. (2023). Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion. Journal of Nonlinear Science. Springer Nature. https://doi.org/10.1007/s00332-023-09926-w chicago: Fellner, Klemens, Julian L Fischer, Michael Kniely, and Bao Quoc Tang. “Global Renormalised Solutions and Equilibration of Reaction-Diffusion Systems with Non-Linear Diffusion.” Journal of Nonlinear Science. Springer Nature, 2023. https://doi.org/10.1007/s00332-023-09926-w. ieee: K. Fellner, J. L. Fischer, M. Kniely, and B. Q. Tang, “Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion,” Journal of Nonlinear Science, vol. 33. Springer Nature, 2023. ista: Fellner K, Fischer JL, Kniely M, Tang BQ. 2023. Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion. Journal of Nonlinear Science. 33, 66. mla: Fellner, Klemens, et al. “Global Renormalised Solutions and Equilibration of Reaction-Diffusion Systems with Non-Linear Diffusion.” Journal of Nonlinear Science, vol. 33, 66, Springer Nature, 2023, doi:10.1007/s00332-023-09926-w. short: K. Fellner, J.L. Fischer, M. Kniely, B.Q. Tang, Journal of Nonlinear Science 33 (2023). date_created: 2021-12-16T12:15:35Z date_published: 2023-06-07T00:00:00Z date_updated: 2023-08-01T14:40:33Z day: '07' ddc: - '510' department: - _id: JuFi doi: 10.1007/s00332-023-09926-w external_id: arxiv: - '2109.12019' isi: - '001002343400002' file: - access_level: open_access checksum: f3f0f0886098e31c81116cff8183750b content_type: application/pdf creator: dernst date_created: 2023-06-19T07:33:53Z date_updated: 2023-06-19T07:33:53Z file_id: '13149' file_name: 2023_JourNonlinearScience_Fellner.pdf file_size: 742315 relation: main_file success: 1 file_date_updated: 2023-06-19T07:33:53Z has_accepted_license: '1' intvolume: ' 33' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Journal of Nonlinear Science publication_identifier: eissn: - 1432-1467 issn: - 0938-8974 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2023' ...