TY - JOUR AB - Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution. AU - Cheng, Bingqing AU - Hamel, Sebastien AU - Bethkenhagen, Mandy ID - 12702 JF - Nature Communications TI - Thermodynamics of diamond formation from hydrocarbon mixtures in planets VL - 14 ER - TY - JOUR AB - Background Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture. Methods First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study). Results Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations. Conclusions The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age. AU - Bernabeu, Elena AU - Mccartney, Daniel L. AU - Gadd, Danni A. AU - Hillary, Robert F. AU - Lu, Ake T. AU - Murphy, Lee AU - Wrobel, Nicola AU - Campbell, Archie AU - Harris, Sarah E. AU - Liewald, David AU - Hayward, Caroline AU - Sudlow, Cathie AU - Cox, Simon R. AU - Evans, Kathryn L. AU - Horvath, Steve AU - Mcintosh, Andrew M. AU - Robinson, Matthew Richard AU - Vallejos, Catalina A. AU - Marioni, Riccardo E. ID - 12719 JF - Genome Medicine TI - Refining epigenetic prediction of chronological and biological age VL - 15 ER - TY - JOUR AB - Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning, are capable of making adversarial training suitable for real-world robot applications. We evaluate three different robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment to mobile robot navigation and gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative impact on the nominal accuracy caused by adversarial training still outweighs the improved robustness by an order of magnitude. We conclude that although progress is happening, further advances in robust learning methods are necessary before they can benefit robot learning tasks in practice. AU - Lechner, Mathias AU - Amini, Alexander AU - Rus, Daniela AU - Henzinger, Thomas A ID - 12704 IS - 3 JF - IEEE Robotics and Automation Letters TI - Revisiting the adversarial robustness-accuracy tradeoff in robot learning VL - 8 ER - TY - JOUR AB - The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E′(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard–soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi–C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor–acceptor bond to date is observed. AU - García-Romero, Álvaro AU - Waters, Jessica E. AU - Jethwa, Rajesh B AU - Bond, Andrew D. AU - Colebatch, Annie L. AU - García-Rodríguez, Raúl AU - Wright, Dominic S. ID - 12737 IS - 11 JF - Inorganic Chemistry SN - 0020-1669 TI - Highly adaptive nature of group 15 tris(quinolyl) ligands─studies with coinage metals VL - 62 ER - TY - JOUR AB - Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order. AU - Volosniev, Artem AU - Shiva Kumar, Abhishek AU - Lorenc, Dusan AU - Ashourishokri, Younes AU - Zhumekenov, Ayan A. AU - Bakr, Osman M. AU - Lemeshko, Mikhail AU - Alpichshev, Zhanybek ID - 12723 IS - 10 JF - Physical Review Letters KW - General Physics and Astronomy SN - 0031-9007 TI - Spin-electric coupling in lead halide perovskites VL - 130 ER - TY - JOUR AB - We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation. AU - Volosniev, Artem AU - Shiva Kumar, Abhishek AU - Lorenc, Dusan AU - Ashourishokri, Younes AU - Zhumekenov, Ayan AU - Bakr, Osman M. AU - Lemeshko, Mikhail AU - Alpichshev, Zhanybek ID - 12724 IS - 12 JF - Physical Review B SN - 2469-9950 TI - Effective model for studying optical properties of lead halide perovskites VL - 107 ER - TY - JOUR AB - Stereological methods for estimating the 3D particle size and density from 2D projections are essential to many research fields. These methods are, however, prone to errors arising from undetected particle profiles due to sectioning and limited resolution, known as ‘lost caps’. A potential solution developed by Keiding, Jensen, and Ranek in 1972, which we refer to as the Keiding model, accounts for lost caps by quantifying the smallest detectable profile in terms of its limiting ‘cap angle’ (ϕ), a size-independent measure of a particle’s distance from the section surface. However, this simple solution has not been widely adopted nor tested. Rather, model-independent design-based stereological methods, which do not explicitly account for lost caps, have come to the fore. Here, we provide the first experimental validation of the Keiding model by comparing the size and density of particles estimated from 2D projections with direct measurement from 3D EM reconstructions of the same tissue. We applied the Keiding model to estimate the size and density of somata, nuclei and vesicles in the cerebellum of mice and rats, where high packing density can be problematic for design-based methods. Our analysis reveals a Gaussian distribution for ϕ rather than a single value. Nevertheless, curve fits of the Keiding model to the 2D diameter distribution accurately estimate the mean ϕ and 3D diameter distribution. While systematic testing using simulations revealed an upper limit to determining ϕ, our analysis shows that estimated ϕ can be used to determine the 3D particle density from the 2D density under a wide range of conditions, and this method is potentially more accurate than minimum-size-based lost-cap corrections and disector methods. Our results show the Keiding model provides an efficient means of accurately estimating the size and density of particles from 2D projections even under conditions of a high density. AU - Rothman, Jason Seth AU - Borges Merjane, Carolina AU - Holderith, Noemi AU - Jonas, Peter M AU - Angus Silver, R. ID - 12759 IS - 3 March JF - PLoS ONE TI - Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy VL - 18 ER - TY - JOUR AB - ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA–adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III–dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III–dependent membrane remodeling. AU - Hurtig, Fredrik AU - Burgers, Thomas C.Q. AU - Cezanne, Alice AU - Jiang, Xiuyun AU - Mol, Frank N. AU - Traparić, Jovan AU - Pulschen, Andre Arashiro AU - Nierhaus, Tim AU - Tarrason-Risa, Gabriel AU - Harker-Kirschneck, Lena AU - Löwe, Jan AU - Šarić, Anđela AU - Vlijm, Rifka AU - Baum, Buzz ID - 12756 IS - 11 JF - Science Advances TI - The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division VL - 9 ER - TY - JOUR AB - AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is “solved”. However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability (ΔΔG) and function. To study the question we extracted the pLDDT and metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known ΔΔG values. Additionally, we correlated the same AlphaFold pLDDT metrics with the impact of a single mutation on structure using a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold may not be immediately applied to other problems or applications in protein folding. AU - Pak, Marina A. AU - Markhieva, Karina A. AU - Novikova, Mariia S. AU - Petrov, Dmitry S. AU - Vorobyev, Ilya S. AU - Maksimova, Ekaterina AU - Kondrashov, Fyodor AU - Ivankov, Dmitry N. ID - 12758 IS - 3 JF - PLoS ONE TI - Using AlphaFold to predict the impact of single mutations on protein stability and function VL - 18 ER - TY - JOUR AB - My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant ‘black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm (‘domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues. AU - Sazanov, Leonid A ID - 12757 IS - 5 JF - The Biochemical Journal SN - 0264-6021 TI - From the 'black box' to 'domino effect' mechanism: What have we learned from the structures of respiratory complex I VL - 480 ER - TY - JOUR AB - Populations evolve in spatially heterogeneous environments. While a certain trait might bring a fitness advantage in some patch of the environment, a different trait might be advantageous in another patch. Here, we study the Moran birth–death process with two types of individuals in a population stretched across two patches of size N, each patch favouring one of the two types. We show that the long-term fate of such populations crucially depends on the migration rate μ between the patches. To classify the possible fates, we use the distinction between polynomial (short) and exponential (long) timescales. We show that when μ is high then one of the two types fixates on the whole population after a number of steps that is only polynomial in N. By contrast, when μ is low then each type holds majority in the patch where it is favoured for a number of steps that is at least exponential in N. Moreover, we precisely identify the threshold migration rate μ⋆ that separates those two scenarios, thereby exactly delineating the situations that support long-term coexistence of the two types. We also discuss the case of various cycle graphs and we present computer simulations that perfectly match our analytical results. AU - Svoboda, Jakub AU - Tkadlec, Josef AU - Kaveh, Kamran AU - Chatterjee, Krishnendu ID - 12787 IS - 2271 JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences SN - 1364-5021 TI - Coexistence times in the Moran process with environmental heterogeneity VL - 479 ER - TY - JOUR AB - We show that the simplest of existing molecules—closed-shell diatomics not interacting with one another—host topological charges when driven by periodic far-off-resonant laser pulses. A periodically kicked molecular rotor can be mapped onto a “crystalline” lattice in angular momentum space. This allows us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch waves of solid-state physics. Applying laser pulses spaced by 1/3 of the molecular rotational period creates a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in graphene. They—and the corresponding edge states—are broadly tunable by adjusting the laser strength and can be observed in present-day experiments by measuring molecular alignment and populations of rotational levels. This paves the way to study controllable topological physics in gas-phase experiments with small molecules as well as to classify dynamical molecular states by their topological invariants. AU - Karle, Volker AU - Ghazaryan, Areg AU - Lemeshko, Mikhail ID - 12788 IS - 10 JF - Physical Review Letters SN - 0031-9007 TI - Topological charges of periodically kicked molecules VL - 130 ER - TY - JOUR AB - Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity. AU - Ghazaryan, Areg AU - Holder, Tobias AU - Berg, Erez AU - Serbyn, Maksym ID - 12790 IS - 10 JF - Physical Review B SN - 2469-9950 TI - Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity VL - 107 ER - TY - JOUR AB - We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent Rayleigh–Bénard flows using only temperature information. We perform a quantitative analysis of the quality of the reconstructions at various amounts of low-passed-filtered information and turbulent intensities. We compare our results with those obtained via nudging, a classical equation-informed data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data for temperature is provided with high spatial and temporal density. When data becomes sparse, the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra. AU - Clark Di Leoni, Patricio AU - Agasthya, Lokahith N AU - Buzzicotti, Michele AU - Biferale, Luca ID - 12791 IS - 3 JF - The European Physical Journal E SN - 1292-8941 TI - Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks VL - 46 ER - TY - JOUR AB - Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization. AU - Huljev, Karla AU - Shamipour, Shayan AU - Nunes Pinheiro, Diana C AU - Preusser, Friedrich AU - Steccari, Irene AU - Sommer, Christoph M AU - Naik, Suyash AU - Heisenberg, Carl-Philipp J ID - 12830 IS - 7 JF - Developmental Cell SN - 1534-5807 TI - A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish VL - 58 ER - TY - JOUR AB - The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions. AU - Zeng, Zhongda AU - Yakaboylu, Enderalp AU - Lemeshko, Mikhail AU - Shi, Tao AU - Schmidt, Richard ID - 12831 IS - 13 JF - The Journal of Chemical Physics TI - Variational theory of angulons and their rotational spectroscopy VL - 158 ER - TY - JOUR AB - Universal nonequilibrium properties of isolated quantum systems are typically probed by studying transport of conserved quantities, such as charge or spin, while transport of energy has received considerably less attention. Here, we study infinite-temperature energy transport in the kinetically constrained PXP model describing Rydberg atom quantum simulators. Our state-of-the-art numerical simulations, including exact diagonalization and time-evolving block decimation methods, reveal the existence of two distinct transport regimes. At moderate times, the energy-energy correlation function displays periodic oscillations due to families of eigenstates forming different su(2) representations hidden within the spectrum. These families of eigenstates generalize the quantum many-body scarred states found in previous works and leave an imprint on the infinite-temperature energy transport. At later times, we observe a long-lived superdiffusive transport regime that we attribute to the proximity of a nearby integrable point. While generic strong deformations of the PXP model indeed restore diffusive transport, adding a strong chemical potential intriguingly gives rise to a well-converged superdiffusive exponent z≈3/2. Our results suggest constrained models to be potential hosts of novel transport regimes and call for developing an analytic understanding of their energy transport. AU - Ljubotina, Marko AU - Desaules, Jean Yves AU - Serbyn, Maksym AU - Papić, Zlatko ID - 12839 IS - 1 JF - Physical Review X TI - Superdiffusive energy transport in kinetically constrained models VL - 13 ER - TY - JOUR AB - The development of cost-effective, high-activity and stable bifunctional catalysts for the oxygen reduction and evolution reactions (ORR/OER) is essential for zinc–air batteries (ZABs) to reach the market. Such catalysts must contain multiple adsorption/reaction sites to cope with the high demands of reversible oxygen electrodes. Herein, we propose a high entropy alloy (HEA) based on relatively abundant elements as a bifunctional ORR/OER catalyst. More specifically, we detail the synthesis of a CrMnFeCoNi HEA through a low-temperature solution-based approach. Such HEA displays superior OER performance with an overpotential of 265 mV at a current density of 10 mA/cm2, and a 37.9 mV/dec Tafel slope, well above the properties of a standard commercial catalyst based on RuO2. This high performance is partially explained by the presence of twinned defects, the incidence of large lattice distortions, and the electronic synergy between the different components, being Cr key to decreasing the energy barrier of the OER rate-determining step. CrMnFeCoNi also displays superior ORR performance with a half-potential of 0.78 V and an onset potential of 0.88 V, comparable with commercial Pt/C. The potential gap (Egap) between the OER overpotential and the ORR half-potential of CrMnFeCoNi is just 0.734 V. Taking advantage of these outstanding properties, ZABs are assembled using the CrMnFeCoNi HEA as air cathode and a zinc foil as the anode. The assembled cells provide an open-circuit voltage of 1.489 V, i.e. 90% of its theoretical limit (1.66 V), a peak power density of 116.5 mW/cm2, and a specific capacity of 836 mAh/g that stays stable for more than 10 days of continuous cycling, i.e. 720 cycles @ 8 mA/cm2 and 16.6 days of continuous cycling, i.e. 1200 cycles @ 5 mA/cm2. AU - He, Ren AU - Yang, Linlin AU - Zhang, Yu AU - Wang, Xiang AU - Lee, Seungho AU - Zhang, Ting AU - Li, Lingxiao AU - Liang, Zhifu AU - Chen, Jingwei AU - Li, Junshan AU - Ostovari Moghaddam, Ahmad AU - Llorca, Jordi AU - Ibáñez, Maria AU - Arbiol, Jordi AU - Xu, Ying AU - Cabot, Andreu ID - 12832 IS - 4 JF - Energy Storage Materials TI - A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance VL - 58 ER - TY - JOUR AB - Gears and cogwheels are elemental components of machines. They restrain degrees of freedom and channel power into a specified motion. Building and powering small-scale cogwheels are key steps toward feasible micro and nanomachinery. Assembly, energy injection, and control are, however, a challenge at the microscale. In contrast with passive gears, whose function is to transmit torques from one to another, interlocking and untethered active gears have the potential to unveil dynamics and functions untapped by externally driven mechanisms. Here, it is shown the assembly and control of a family of self-spinning cogwheels with varying teeth numbers and study the interlocking of multiple cogwheels. The teeth are formed by colloidal microswimmers that power the structure. The cogwheels are autonomous and active, showing persistent rotation. Leveraging the angular momentum of optical vortices, we control the direction of rotation of the cogwheels. The pairs of interlocking and active cogwheels that roll over each other in a random walk and have curvature-dependent mobility are studied. This behavior is leveraged to self-position parts and program microbots, demonstrating the ability to pick up, direct, and release a load. The work constitutes a step toward autonomous machinery with external control as well as (re)programmable microbots and matter. AU - Martinet, Quentin AU - Aubret, Antoine AU - Palacci, Jérémie A ID - 12822 IS - 1 JF - Advanced Intelligent Systems SN - 2640-4567 TI - Rotation control, interlocking, and self‐positioning of active cogwheels VL - 5 ER - TY - JOUR AB - The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues. AU - Brandstätter, Tom AU - Brückner, David AU - Han, Yu Long AU - Alert, Ricard AU - Guo, Ming AU - Broedersz, Chase P. ID - 12818 JF - Nature Communications TI - Curvature induces active velocity waves in rotating spherical tissues VL - 14 ER - TY - JOUR AB - Reaching a high cavity population with a coherent pump in the strong-coupling regime of a single-atom laser is impossible due to the photon blockade effect. In this Letter, we experimentally demonstrate that in a single-atom maser based on a transmon strongly coupled to two resonators, it is possible to pump over a dozen photons into the system. The first high-quality resonator plays the role of a usual lasing cavity, and the second one presents a controlled dissipation channel, bolstering population inversion, and modifies the energy-level structure to lift the blockade. As confirmation of the lasing action, we observe conventional laser features such as a narrowing of the emission linewidth and external signal amplification. Additionally, we report unique single-atom features: self-quenching and several lasing thresholds. AU - Sokolova, Alesya AU - Kalacheva, D. A. AU - Fedorov, G. P. AU - Astafiev, O. V. ID - 12819 IS - 3 JF - Physical Review A SN - 2469-9926 TI - Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling VL - 107 ER - TY - JOUR AB - The field of indirect reciprocity investigates how social norms can foster cooperation when individuals continuously monitor and assess each other’s social interactions. By adhering to certain social norms, cooperating individuals can improve their reputation and, in turn, receive benefits from others. Eight social norms, known as the “leading eight," have been shown to effectively promote the evolution of cooperation as long as information is public and reliable. These norms categorize group members as either ’good’ or ’bad’. In this study, we examine a scenario where individuals instead assign nuanced reputation scores to each other, and only cooperate with those whose reputation exceeds a certain threshold. We find both analytically and through simulations that such quantitative assessments are error-correcting, thus facilitating cooperation in situations where information is private and unreliable. Moreover, our results identify four specific norms that are robust to such conditions, and may be relevant for helping to sustain cooperation in natural populations. AU - Schmid, Laura AU - Ekbatani, Farbod AU - Hilbe, Christian AU - Chatterjee, Krishnendu ID - 12861 JF - Nature Communications TI - Quantitative assessment can stabilize indirect reciprocity under imperfect information VL - 14 ER - TY - JOUR AB - Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings. AU - Safavi, Shervin AU - Panagiotaropoulos, Theofanis I. AU - Kapoor, Vishal AU - Ramirez Villegas, Juan F AU - Logothetis, Nikos K. AU - Besserve, Michel ID - 12862 IS - 4 JF - PLoS Computational Biology TI - Uncovering the organization of neural circuits with Generalized Phase Locking Analysis VL - 19 ER - TY - JOUR AB - Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the energies and forces in molecules and materials. The strong interest in predicting energies in particular has led to a ‘local energy’-based paradigm for modern atomistic ML models, which ensures size-extensivity and a linear scaling of computational cost with system size. However, many electronic properties (such as excitation energies or ionization energies) do not necessarily scale linearly with system size and may even be spatially localized. Using size-extensive models in these cases can lead to large errors. In this work, we explore different strategies for learning intensive and localized properties, using HOMO energies in organic molecules as a representative test case. In particular, we analyze the pooling functions that atomistic neural networks use to predict molecular properties, and suggest an orbital weighted average (OWA) approach that enables the accurate prediction of orbital energies and locations. AU - Chen, Ke AU - Kunkel, Christian AU - Cheng, Bingqing AU - Reuter, Karsten AU - Margraf, Johannes T. ID - 12879 JF - Chemical Science SN - 2041-6520 TI - Physics-inspired machine learning of localized intensive properties ER - TY - JOUR AB - Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components. AU - Jiang, Lihui AU - Yao, Baolin AU - Zhang, Xiaoyan AU - Wu, Lixia AU - Fu, Qijing AU - Zhao, Yiting AU - Cao, Yuxin AU - Zhu, Ruomeng AU - Lu, Xinqi AU - Huang, Wuying AU - Zhao, Jianping AU - Li, Kuixiu AU - Zhao, Shuanglu AU - Han, Li AU - Zhou, Xuan AU - Luo, Chongyu AU - Zhu, Haiyan AU - Yang, Jing AU - Huang, Huichuan AU - Zhu, Zhengge AU - He, Xiahong AU - Friml, Jiří AU - Zhang, Zhongkai AU - Liu, Changning AU - Du, Yunlong ID - 12878 IS - 1 JF - Plant Journal SN - 0960-7412 TI - Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth VL - 115 ER - TY - JOUR AB - Motivation: The problem of model inference is of fundamental importance to systems biology. Logical models (e.g. Boolean networks; BNs) represent a computationally attractive approach capable of handling large biological networks. The models are typically inferred from experimental data. However, even with a substantial amount of experimental data supported by some prior knowledge, existing inference methods often focus on a small sample of admissible candidate models only. Results: We propose Boolean network sketches as a new formal instrument for the inference of Boolean networks. A sketch integrates (typically partial) knowledge about the network’s topology and the update logic (obtained through, e.g. a biological knowledge base or a literature search), as well as further assumptions about the properties of the network’s transitions (e.g. the form of its attractor landscape), and additional restrictions on the model dynamics given by the measured experimental data. Our new BNs inference algorithm starts with an ‘initial’ sketch, which is extended by adding restrictions representing experimental data to a ‘data-informed’ sketch and subsequently computes all BNs consistent with the data-informed sketch. Our algorithm is based on a symbolic representation and coloured model-checking. Our approach is unique in its ability to cover a broad spectrum of knowledge and efficiently produce a compact representation of all inferred BNs. We evaluate the method on a non-trivial collection of real-world and simulated data. AU - Beneš, Nikola AU - Brim, Luboš AU - Huvar, Ondřej AU - Pastva, Samuel AU - Šafránek, David ID - 12876 IS - 4 JF - Bioinformatics TI - Boolean network sketches: A unifying framework for logical model inference VL - 39 ER - TY - JOUR AB - Peripheral heterochromatin positioning depends on nuclear envelope associated proteins and repressive histone modifications. Here we show that overexpression (OE) of Lamin B1 (LmnB1) leads to the redistribution of peripheral heterochromatin into heterochromatic foci within the nucleoplasm. These changes represent a perturbation of heterochromatin binding at the nuclear periphery (NP) through a mechanism independent from altering other heterochromatin anchors or histone post-translational modifications. We further show that LmnB1 OE alters gene expression. These changes do not correlate with different levels of H3K9me3, but a significant number of the misregulated genes were likely mislocalized away from the NP upon LmnB1 OE. We also observed an enrichment of developmental processes amongst the upregulated genes. ~74% of these genes were normally repressed in our cell type, suggesting that LmnB1 OE promotes gene de-repression. This demonstrates a broader consequence of LmnB1 OE on cell fate, and highlights the importance of maintaining proper levels of LmnB1. AU - Kaneshiro, Jeanae M. AU - Capitanio, Juliana S. AU - Hetzer, Martin W ID - 12880 IS - 1 JF - Nucleus SN - 1949-1034 TI - Lamin B1 overexpression alters chromatin organization and gene expression VL - 14 ER - TY - JOUR AB - We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem, the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent decrease in the tunneling time can be the filtering effect occurring at the end of the barrier. AU - Suzuki, Fumika AU - Unruh, William G. ID - 12914 IS - 4 JF - Physical Review A SN - 2469-9926 TI - Numerical quantum clock simulations for measuring tunneling times VL - 107 ER - TY - JOUR AB - The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = −2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link—with valley polarization and orbital magnetization—explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices. AU - Díez-Mérida, J. AU - Díez-Carlón, A. AU - Yang, S. Y. AU - Xie, Y. M. AU - Gao, X. J. AU - Senior, Jorden L AU - Watanabe, K. AU - Taniguchi, T. AU - Lu, X. AU - Higginbotham, Andrew P AU - Law, K. T. AU - Efetov, Dmitri K. ID - 12913 JF - Nature Communications TI - Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene VL - 14 ER - TY - JOUR AB - The global existence of renormalised solutions and convergence to equilibrium for reaction-diffusion systems with non-linear diffusion are investigated. The system is assumed to have quasi-positive non-linearities and to satisfy an entropy inequality. The difficulties in establishing global renormalised solutions caused by possibly degenerate diffusion are overcome by introducing a new class of weighted truncation functions. By means of the obtained global renormalised solutions, we study the large-time behaviour of complex balanced systems arising from chemical reaction network theory with non-linear diffusion. When the reaction network does not admit boundary equilibria, the complex balanced equilibrium is shown, by using the entropy method, to exponentially attract all renormalised solutions in the same compatibility class. This convergence extends even to a range of non-linear diffusion, where global existence is an open problem, yet we are able to show that solutions to approximate systems converge exponentially to equilibrium uniformly in the regularisation parameter. AU - Fellner, Klemens AU - Fischer, Julian L AU - Kniely, Michael AU - Tang, Bao Quoc ID - 10550 JF - Journal of Nonlinear Science SN - 0938-8974 TI - Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion VL - 33 ER - TY - JOUR AB - We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient flow calibration in the sense of the recent work of Fischer et al. (2020) for any such cluster. This extends the two-dimensional construction to the three-dimensional case of surfaces meeting along triple junctions. AU - Hensel, Sebastian AU - Laux, Tim ID - 13043 IS - 1 JF - Interfaces and Free Boundaries SN - 1463-9963 TI - Weak-strong uniqueness for the mean curvature flow of double bubbles VL - 25 ER - TY - JOUR AB - The chemical potential of adsorbed or confined fluids provides insight into their unique thermodynamic properties and determines adsorption isotherms. However, it is often difficult to compute this quantity from atomistic simulations using existing statistical mechanical methods. We introduce a computational framework that utilizes static structure factors, thermodynamic integration, and free energy perturbation for calculating the absolute chemical potential of fluids. For demonstration, we apply the method to compute the adsorption isotherms of carbon dioxide in a metal-organic framework and water in carbon nanotubes. AU - Schmid, Rochus AU - Cheng, Bingqing ID - 12912 IS - 16 JF - The Journal of Chemical Physics TI - Computing chemical potentials of adsorbed or confined fluids VL - 158 ER - TY - JOUR AB - Embroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths. AU - Liu, Zhenyuan AU - Piovarci, Michael AU - Hafner, Christian AU - Charrondiere, Raphael AU - Bickel, Bernd ID - 12972 IS - 2 JF - Computer Graphics Forum KW - embroidery KW - design KW - directionality KW - density KW - image SN - 1467-8659 TI - Directionality-aware design of embroidery patterns VL - 42 ER - TY - JOUR AB - Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts. AU - Troussicot, Laura AU - Vallet, Alicia AU - Molin, Mikael AU - Burmann, Björn M. AU - Schanda, Paul ID - 13095 IS - 19 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR VL - 145 ER - TY - JOUR AB - Let Lc,n denote the size of the longest cycle in G(n, c/n),c >1 constant. We show that there exists a continuous function f(c) such that Lc,n/n→f(c) a.s. for c>20, thus extending a result of Frieze and the author to smaller values of c. Thereafter, for c>20, we determine the limit of the probability that G(n, c/n)contains cycles of every length between the length of its shortest and its longest cycles as n→∞. AU - Anastos, Michael ID - 13042 IS - 2 JF - Electronic Journal of Combinatorics TI - A note on long cycles in sparse random graphs VL - 30 ER - TY - DATA AB - Disulfide bond formation is fundamentally important for protein structure, and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive microsecond time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfil other favorable contacts. This data repository contains NMR data presented in the associated manuscript AU - Schanda, Paul ID - 12820 TI - Research data of the publication "Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR" ER - TY - JOUR AB - We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression. AU - French, Martin AU - Bethkenhagen, Mandy AU - Ravasio, Alessandra AU - Hernandez, Jean Alexis ID - 13039 IS - 13 JF - Physical Review B SN - 2469-9950 TI - Ab initio calculation of the reflectivity of molecular fluids under shock compression VL - 107 ER - TY - JOUR AB - There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe–Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m–1 K–2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe. AU - Nan, Bingfei AU - Song, Xuan AU - Chang, Cheng AU - Xiao, Ke AU - Zhang, Yu AU - Yang, Linlin AU - Horta, Sharona AU - Li, Junshan AU - Lim, Khak Ho AU - Ibáñez, Maria AU - Cabot, Andreu ID - 13092 IS - 19 JF - ACS Applied Materials and Interfaces SN - 1944-8244 TI - Bottom-up synthesis of SnTe-based thermoelectric composites VL - 15 ER - TY - JOUR AB - Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand–receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states. AU - Azadbakht, Ali AU - Meadowcroft, Billie AU - Varkevisser, Thijs AU - Šarić, Anđela AU - Kraft, Daniela J. ID - 13094 IS - 10 JF - Nano Letters SN - 1530-6984 TI - Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles VL - 23 ER - TY - JOUR AB - The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300–390 K range is demonstrated. AU - Nan, Bingfei AU - Li, Mengyao AU - Zhang, Yu AU - Xiao, Ke AU - Lim, Khak Ho AU - Chang, Cheng AU - Han, Xu AU - Zuo, Yong AU - Li, Junshan AU - Arbiol, Jordi AU - Llorca, Jordi AU - Ibáñez, Maria AU - Cabot, Andreu ID - 13093 JF - ACS Applied Electronic Materials TI - Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature ER - TY - JOUR AB - We use a function field version of the Hardy–Littlewood circle method to study the locus of free rational curves on an arbitrary smooth projective hypersurface of sufficiently low degree. On the one hand this allows us to bound the dimension of the singular locus of the moduli space of rational curves on such hypersurfaces and, on the other hand, it sheds light on Peyre’s reformulation of the Batyrev–Manin conjecture in terms of slopes with respect to the tangent bundle. AU - Browning, Timothy D AU - Sawin, Will ID - 13091 IS - 3 JF - Algebra and Number Theory SN - 1937-0652 TI - Free rational curves on low degree hypersurfaces and the circle method VL - 17 ER - TY - JOUR AB - The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality. AU - Redchenko, Elena AU - Poshakinskiy, Alexander V. AU - Sett, Riya AU - Zemlicka, Martin AU - Poddubny, Alexander N. AU - Fink, Johannes M ID - 13117 JF - Nature Communications TI - Tunable directional photon scattering from a pair of superconducting qubits VL - 14 ER - TY - JOUR AB - Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification. AU - Sahu, Rishabh AU - Qiu, Liu AU - Hease, William J AU - Arnold, Georg M AU - Minoguchi, Y. AU - Rabl, P. AU - Fink, Johannes M ID - 13106 IS - 6646 JF - Science KW - Multidisciplinary SN - 0036-8075 TI - Entangling microwaves with light VL - 380 ER - TY - JOUR AB - We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior ahom of a stationary random medium. The latter is described by a coefficient field a(x) generated from a given ensemble ⟨⋅⟩ and the corresponding linear elliptic operator −∇⋅a∇. In line with the theory of homogenization, the method proceeds by computing d=3 correctors (d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a(x) from the whole-space ensemble ⟨⋅⟩. We make this point by investigating the bias (or systematic error), i.e., the difference between ahom and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a(x), we heuristically argue that this error is generically O(L−1). In case of a suitable periodization of ⟨⋅⟩ , we rigorously show that it is O(L−d). In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles ⟨⋅⟩ of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function. AU - Clozeau, Nicolas AU - Josien, Marc AU - Otto, Felix AU - Xu, Qiang ID - 13129 JF - Foundations of Computational Mathematics SN - 1615-3375 TI - Bias in the representative volume element method: Periodize the ensemble instead of its realizations ER - TY - GEN AB - This dataset comprises all data shown in the figures of the submitted article "Tunable directional photon scattering from a pair of superconducting qubits" at arXiv:2205.03293. Additional raw data are available from the corresponding author on reasonable request. AU - Redchenko, Elena AU - Poshakinskiy, Alexander AU - Sett, Riya AU - Zemlicka, Martin AU - Poddubny, Alexander AU - Fink, Johannes M ID - 13124 TI - Tunable directional photon scattering from a pair of superconducting qubits ER - TY - GEN AB - Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 AU - Sahu, Rishabh ID - 13122 TI - Entangling microwaves with light ER - TY - JOUR AB - The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. AU - Chen, C AU - Zhang, Y AU - Cai, J AU - Qiu, Y AU - Li, L AU - Gao, C AU - Gao, Y AU - Ke, M AU - Wu, S AU - Wei, C AU - Chen, J AU - Xu, T AU - Friml, Jiří AU - Wang, J AU - Li, R AU - Chao, D AU - Zhang, B AU - Chen, X AU - Gao, Z ID - 13213 IS - 3 JF - Plant Physiology SN - 0032-0889 TI - Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots VL - 192 ER - TY - JOUR AB - In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype. AU - Guet, Calin C AU - Bruneaux, L AU - Oikonomou, P AU - Aldana, M AU - Cluzel, P ID - 12478 JF - Frontiers in Microbiology TI - Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression VL - 14 ER - TY - JOUR AB - The formation of amyloid fibrils is a general class of protein self-assembly behaviour, which is associated with both functional biology and the development of a number of disorders, such as Alzheimer and Parkinson diseases. In this Review, we discuss how general physical concepts from the study of phase transitions can be used to illuminate the fundamental mechanisms of amyloid self-assembly. We summarize progress in the efforts to describe the essential biophysical features of amyloid self-assembly as a nucleation-and-growth process and discuss how master equation approaches can reveal the key molecular pathways underlying this process, including the role of secondary nucleation. Additionally, we outline how non-classical aspects of aggregate formation involving oligomers or biomolecular condensates have emerged, inspiring developments in understanding, modelling and modulating complex protein assembly pathways. Finally, we consider how these concepts can be applied to kinetics-based drug discovery and therapeutic design to develop treatments for protein aggregation diseases. AU - Michaels, Thomas C.T. AU - Qian, Daoyuan AU - Šarić, Anđela AU - Vendruscolo, Michele AU - Linse, Sara AU - Knowles, Tuomas P.J. ID - 13237 JF - Nature Reviews Physics TI - Amyloid formation as a protein phase transition VL - 5 ER - TY - JOUR AB - Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation. AU - Shamipour, Shayan AU - Hofmann, Laura AU - Steccari, Irene AU - Kardos, Roland AU - Heisenberg, Carl-Philipp J ID - 13229 IS - 6 JF - PLoS Biology TI - Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes VL - 21 ER -