TY - JOUR AB - Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. AU - Castro, João Pl AU - Yancoskie, Michelle N. AU - Marchini, Marta AU - Belohlavy, Stefanie AU - Hiramatsu, Layla AU - Kučka, Marek AU - Beluch, William H. AU - Naumann, Ronald AU - Skuplik, Isabella AU - Cobb, John AU - Barton, Nicholas H AU - Rolian, Campbell AU - Chan, Yingguang Frank ID - 6713 JF - eLife TI - An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice VL - 8 ER - TY - GEN AB - We study double quantum dots in a Ge/SiGe heterostructure and test their maturity towards singlet-triplet ($S-T_0$) qubits. We demonstrate a large range of tunability, from two single quantum dots to a double quantum dot. We measure Pauli spin blockade and study the anisotropy of the $g$-factor. We use an adjacent quantum dot for sensing charge transitions in the double quantum dot at interest. In conclusion, Ge/SiGe possesses all ingredients necessary for building a singlet-triplet qubit. AU - Hofmann, Andrea C AU - Jirovec, Daniel AU - Borovkov, Maxim AU - Prieto Gonzalez, Ivan AU - Ballabio, Andrea AU - Frigerio, Jacopo AU - Chrastina, Daniel AU - Isella, Giovanni AU - Katsaros, Georgios ID - 10065 T2 - arXiv TI - Assessing the potential of Ge/SiGe quantum dots as hosts for singlet-triplet qubits ER - TY - JOUR AB - Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. AU - Valosková, Katarina AU - Biebl, Julia AU - Roblek, Marko AU - Emtenani, Shamsi AU - György, Attila AU - Misova, Michaela AU - Ratheesh, Aparna AU - Rodrigues, Patricia AU - Shkarina, Katerina AU - Larsen, Ida Signe Bohse AU - Vakhrushev, Sergey Y AU - Clausen, Henrik AU - Siekhaus, Daria E ID - 6187 JF - eLife SN - 2050-084X TI - A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion VL - 8 ER - TY - THES AB - Invasive migration plays a crucial role not only during development and homeostasis but also in pathological states, such as tumor metastasis. Drosophila macrophage migration into the extended germband is an interesting system to study invasive migration. It carries similarities to immune cell transmigration and cancer cell invasion, therefore studying this process could also bring new understanding of invasion in higher organisms. In our work, we uncover a highly conserved member of the major facilitator family that plays a role in tissue invasion through regulation of glycosylation on a subgroup of proteins and/or by aiding the precise timing of DN-Cadherin downregulation. Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva’s vertebrate ortholog, MFSD1, rescues the minerva mutant’s migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis. AU - Valosková, Katarina ID - 6546 SN - 2663-337X TI - The role of a highly conserved major facilitator superfamily member in Drosophila embryonic macrophage migration ER - TY - THES AB - Distinguishing between similar experiences is achieved by the brain in a process called pattern separation. In the hippocampus, pattern separation reduces the interference of memories and increases the storage capacity by decorrelating similar inputs patterns of neuronal activity into non-overlapping output firing patterns. Winners-take-all (WTA) mechanism is a theoretical model for pattern separation in which a "winner" cell suppresses the activity of the neighboring neurons through feedback inhibition. However, if the network properties of the dentate gyrus support WTA as a biologically conceivable model remains unknown. Here, we showed that the connectivity rules of PV+interneurons and their synaptic properties are optimizedfor efficient pattern separation. We found using multiple whole-cell in vitrorecordings that PV+interneurons mainly connect to granule cells (GC) through lateral inhibition, a form of feedback inhibition in which a GC inhibits other GCs but not itself through the activation of PV+interneurons. Thus, lateral inhibition between GC–PV+interneurons was ~10 times more abundant than recurrent connections. Furthermore, the GC–PV+interneuron connectivity was more spatially confined but less abundant than PV+interneurons–GC connectivity, leading to an asymmetrical distribution of excitatory and inhibitory connectivity. Our network model of the dentate gyrus with incorporated real connectivity rules efficiently decorrelates neuronal activity patterns using WTA as the primary mechanism. This process relied on lateral inhibition, fast-signaling properties of PV+interneurons and the asymmetrical distribution of excitatory and inhibitory connectivity. Finally, we found that silencing the activity of PV+interneurons in vivoleads to acute deficits in discrimination between similar environments, suggesting that PV+interneuron networks are necessary for behavioral relevant computations. Our results demonstrate that PV+interneurons possess unique connectivity and fast signaling properties that confer to the dentate gyrus network properties that allow the emergence of pattern separation. Thus, our results contribute to the knowledge of how specific forms of network organization underlie sophisticated types of information processing. AU - Espinoza Martinez, Claudia ID - 6363 SN - 2663-337X TI - Parvalbumin+ interneurons enable efficient pattern separation in hippocampal microcircuits ER -