@article{291, abstract = {Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.}, author = {Budanur, Nazmi B and Hof, Björn}, journal = {Physical Review Fluids}, number = {5}, publisher = {American Physical Society}, title = {{Complexity of the laminar-turbulent boundary in pipe flow}}, doi = {10.1103/PhysRevFluids.3.054401}, volume = {3}, year = {2018}, } @article{58, abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.}, author = {Akopyan, Arseniy and Segal Halevi, Erel}, journal = {SIAM Journal on Discrete Mathematics}, number = {3}, pages = {2242 -- 2257}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Counting blanks in polygonal arrangements}}, doi = {10.1137/16M110407X}, volume = {32}, year = {2018}, } @misc{9840, abstract = {Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity.}, author = {Payne, Pavel and Geyrhofer, Lukas and Barton, Nicholas H and Bollback, Jonathan P}, publisher = {Dryad}, title = {{Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations}}, doi = {10.5061/dryad.42n44}, year = {2018}, } @article{616, abstract = {Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation.}, author = {Pull, Christopher and Ugelvig, Line V and Wiesenhofer, Florian and Grasse, Anna V and Tragust, Simon and Schmitt, Thomas and Brown, Mark and Cremer, Sylvia}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}}, doi = {10.7554/eLife.32073}, volume = {7}, year = {2018}, } @article{132, abstract = {Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments.}, author = {Sznurkowska, Magdalena and Hannezo, Edouard B and Azzarelli, Roberta and Rulands, Steffen and Nestorowa, Sonia and Hindley, Christopher and Nichols, Jennifer and Göttgens, Berthold and Huch, Meritxell and Philpott, Anna and Simons, Benjamin}, journal = {Developmental Cell}, number = {3}, pages = {360 -- 375}, publisher = {Cell Press}, title = {{Defining lineage potential and fate behavior of precursors during pancreas development}}, doi = {10.1016/j.devcel.2018.06.028}, volume = {46}, year = {2018}, } @article{42, abstract = {Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield.}, author = {Cucinotta, Mara and Manrique, Silvia and Cuesta, Candela and Benková, Eva and Novák, Ondřej and Colombo, Lucia}, journal = {Journal of Experimental Botany}, number = {21}, pages = {5169 -- 5176}, publisher = {Oxford University Press}, title = {{Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis}}, doi = {10.1093/jxb/ery281}, volume = {69}, year = {2018}, } @article{407, abstract = {Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy.}, author = {Kubiasová, Karolina and Mik, Václav and Nisler, Jaroslav and Hönig, Martin and Husičková, Alexandra and Spíchal, Lukáš and Pěkná, Zuzana and Šamajová, Olga and Doležal, Karel and Plíhal, Ondřej and Benková, Eva and Strnad, Miroslav and Plíhalová, Lucie}, journal = {Phytochemistry}, pages = {1--11}, publisher = {Elsevier}, title = {{Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins}}, doi = {10.1016/j.phytochem.2018.02.015}, volume = {150}, year = {2018}, } @article{46, abstract = {We analyze a disordered central spin model, where a central spin interacts equally with each spin in a periodic one-dimensional (1D) random-field Heisenberg chain. If the Heisenberg chain is initially in the many-body localized (MBL) phase, we find that the coupling to the central spin suffices to delocalize the chain for a substantial range of coupling strengths. We calculate the phase diagram of the model and identify the phase boundary between the MBL and ergodic phase. Within the localized phase, the central spin significantly enhances the rate of the logarithmic entanglement growth and its saturation value. We attribute the increase in entanglement entropy to a nonextensive enhancement of magnetization fluctuations induced by the central spin. Finally, we demonstrate that correlation functions of the central spin can be utilized to distinguish between MBL and ergodic phases of the 1D chain. Hence, we propose the use of a central spin as a possible experimental probe to identify the MBL phase.}, author = {Hetterich, Daniel and Yao, Norman and Serbyn, Maksym and Pollmann, Frank and Trauzettel, Björn}, journal = {Physical Review B}, number = {16}, publisher = {American Physical Society}, title = {{Detection and characterization of many-body localization in central spin models}}, doi = {10.1103/PhysRevB.98.161122}, volume = {98}, year = {2018}, } @article{308, abstract = {Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.}, author = {Ratheesh, Aparna and Biebl, Julia and Smutny, Michael and Veselá, Jana and Papusheva, Ekaterina and Krens, Gabriel and Kaufmann, Walter and György, Attila and Casano, Alessandra M and Siekhaus, Daria E}, journal = {Developmental Cell}, number = {3}, pages = {331 -- 346}, publisher = {Elsevier}, title = {{Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration}}, doi = {10.1016/j.devcel.2018.04.002}, volume = {45}, year = {2018}, } @article{17, abstract = {Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity El, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters El and (Re,Wi). We present the stability diagram of observed flow regimes in Wi-Re coordinates and find that the instabilities' onsets show an unexpectedly nonmonotonic dependence on El. Further, three distinct regions in the diagram are identified based on El. Strikingly, for high-elasticity fluids we discover a complete relaminarization of flow at Reynolds number in the range of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high Wi. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow.}, author = {Varshney, Atul and Steinberg, Victor}, journal = {Physical Review Fluids}, number = {10}, publisher = {American Physical Society}, title = {{Drag enhancement and drag reduction in viscoelastic flow}}, doi = {10.1103/PhysRevFluids.3.103302}, volume = {3}, year = {2018}, } @article{281, abstract = {Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.}, author = {Granados, Alejandro and Pietsch, Julian and Cepeda Humerez, Sarah A and Farquhar, Isebail and Tkacik, Gasper and Swain, Peter}, journal = {PNAS}, number = {23}, pages = {6088 -- 6093}, publisher = {National Academy of Sciences}, title = {{Distributed and dynamic intracellular organization of extracellular information}}, doi = {10.1073/pnas.1716659115}, volume = {115}, year = {2018}, } @article{620, abstract = {Clathrin-mediated endocytosis requires the coordinated assembly of various endocytic proteins and lipids at the plasma membrane. Accumulating evidence demonstrates a crucial role for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) in endocytosis, but specific roles for PtdIns(4)P other than as the biosynthetic precursor of PtdIns(4,5)P2 have not been clarified. In this study we investigated the role of PtdIns(4)P or PtdIns(4,5)P2 in receptor-mediated endocytosis through the construction of temperature-sensitive (ts) mutants for the PI 4-kinases Stt4p and Pik1p and the PtdIns(4) 5-kinase Mss4p. Quantitative analyses of endocytosis revealed that both the stt4(ts)pik1(ts) and mss4(ts) mutants have a severe defect in endocytic internalization. Live-cell imaging of endocytic protein dynamics in stt4(ts)pik1(ts) and mss4(ts) mutants revealed that PtdIns(4)P is required for the recruitment of the alpha-factor receptor Ste2p to clathrin-coated pits whereas PtdIns(4,5)P2 is required for membrane internalization. We also found that the localization to endocytic sites of the ENTH/ANTH domain-bearing clathrin adaptors, Ent1p/Ent2p and Yap1801p/Yap1802p, is significantly impaired in the stt4(ts)pik1(ts) mutant, but not in the mss4(ts) mutant. These results suggest distinct roles in successive steps for PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis.}, author = {Yamamoto, Wataru and Wada, Suguru and Nagano, Makoto and Aoshima, Kaito and Siekhaus, Daria E and Toshima, Junko and Toshima, Jiro}, journal = {Journal of Cell Science}, number = {1}, publisher = {Company of Biologists}, title = {{Distinct roles for plasma membrane PtdIns 4 P and PtdIns 4 5 P2 during yeast receptor mediated endocytosis}}, doi = {10.1242/jcs.207696}, volume = {131}, year = {2018}, } @inproceedings{182, abstract = {We describe a new algorithm for the parametric identification problem for signal temporal logic (STL), stated as follows. Given a densetime real-valued signal w and a parameterized temporal logic formula φ, compute the subset of the parameter space that renders the formula satisfied by the signal. Unlike previous solutions, which were based on search in the parameter space or quantifier elimination, our procedure works recursively on φ and computes the evolution over time of the set of valid parameter assignments. This procedure is similar to that of monitoring or computing the robustness of φ relative to w. Our implementation and experiments demonstrate that this approach can work well in practice.}, author = {Bakhirkin, Alexey and Ferrere, Thomas and Maler, Oded}, booktitle = {Proceedings of the 21st International Conference on Hybrid Systems}, isbn = {978-1-4503-5642-8 }, location = {Porto, Portugal}, pages = {177 -- 186}, publisher = {ACM}, title = {{Efficient parametric identification for STL}}, doi = {10.1145/3178126.3178132}, year = {2018}, } @inproceedings{143, abstract = {Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Θ(nk), for some integer k d, where d is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal k. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a k such that the termination complexity is (nk). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.}, author = {Brázdil, Tomáš and Chatterjee, Krishnendu and Kučera, Antonín and Novotny, Petr and Velan, Dominik and Zuleger, Florian}, isbn = {978-1-4503-5583-4}, location = {Oxford, United Kingdom}, pages = {185 -- 194}, publisher = {IEEE}, title = {{Efficient algorithms for asymptotic bounds on termination time in VASS}}, doi = {10.1145/3209108.3209191}, volume = {F138033}, year = {2018}, } @inproceedings{273, abstract = {The accuracy of information retrieval systems is often measured using complex loss functions such as the average precision (AP) or the normalized discounted cumulative gain (NDCG). Given a set of positive and negative samples, the parameters of a retrieval system can be estimated by minimizing these loss functions. However, the non-differentiability and non-decomposability of these loss functions does not allow for simple gradient based optimization algorithms. This issue is generally circumvented by either optimizing a structured hinge-loss upper bound to the loss function or by using asymptotic methods like the direct-loss minimization framework. Yet, the high computational complexity of loss-augmented inference, which is necessary for both the frameworks, prohibits its use in large training data sets. To alleviate this deficiency, we present a novel quicksort flavored algorithm for a large class of non-decomposable loss functions. We provide a complete characterization of the loss functions that are amenable to our algorithm, and show that it includes both AP and NDCG based loss functions. Furthermore, we prove that no comparison based algorithm can improve upon the computational complexity of our approach asymptotically. We demonstrate the effectiveness of our approach in the context of optimizing the structured hinge loss upper bound of AP and NDCG loss for learning models for a variety of vision tasks. We show that our approach provides significantly better results than simpler decomposable loss functions, while requiring a comparable training time.}, author = {Mohapatra, Pritish and Rolinek, Michal and Jawahar, C V and Kolmogorov, Vladimir and Kumar, M Pawan}, booktitle = {2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition}, isbn = {9781538664209}, location = {Salt Lake City, UT, USA}, pages = {3693--3701}, publisher = {IEEE}, title = {{Efficient optimization for rank-based loss functions}}, doi = {10.1109/cvpr.2018.00389}, year = {2018}, } @article{289, abstract = {We report on quantum capacitance measurements of high quality, graphite- and hexagonal boron nitride encapsulated Bernal stacked trilayer graphene devices. At zero applied magnetic field, we observe a number of electron density- and electrical displacement-tuned features in the electronic compressibility associated with changes in Fermi surface topology. At high displacement field and low density, strong trigonal warping gives rise to emergent Dirac gullies centered near the corners of the hexagonal Brillouin and related by three fold rotation symmetry. At low magnetic fields of B=1.25~T, the gullies manifest as a change in the degeneracy of the Landau levels from two to three. Weak incompressible states are also observed at integer filling within these triplets Landau levels, which a Hartree-Fock analysis indicates are associated with Coulomb-driven nematic phases that spontaneously break rotation symmetry.}, author = {Zibrov, Alexander and Peng, Rao and Kometter, Carlos and Li, Jia and Dean, Cory and Taniguchi, Takashi and Watanabe, Kenji and Serbyn, Maksym and Young, Andrea}, journal = {Physical Review Letters}, number = {16}, publisher = {American Physical Society}, title = {{Emergent dirac gullies and gully-symmetry-breaking quantum hall states in ABA trilayer graphene}}, doi = {10.1103/PhysRevLett.121.167601}, volume = {121}, year = {2018}, } @article{287, abstract = {In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion, optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy.}, author = {Salari, Vahid and Barzanjeh, Shabir and Cifra, Michal and Simon, Christoph and Scholkmann, Felix and Alirezaei, Zahra and Tuszynski, Jack}, journal = {Frontiers in Bioscience - Landmark}, number = {8}, pages = {1391 -- 1406}, publisher = {Frontiers in Bioscience}, title = {{Electromagnetic fields and optomechanics In cancer diagnostics and treatment}}, doi = {10.2741/4651}, volume = {23}, year = {2018}, } @article{425, abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in R3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, that is, an essential curve in the boundary of X bounding a disk in S3 \ X with length bounded by a computable function of the number of tetrahedra of X.}, author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli}, journal = {Journal of the ACM}, number = {1}, publisher = {ACM}, title = {{Embeddability in the 3-Sphere is decidable}}, doi = {10.1145/3078632}, volume = {65}, year = {2018}, } @article{564, abstract = {Maladapted individuals can only colonise a new habitat if they can evolve a positive growth rate fast enough to avoid extinction, a process known as evolutionary rescue. We treat log fitness at low density in the new habitat as a single polygenic trait and thus use the infinitesimal model to follow the evolution of the growth rate; this assumes that the trait values of offspring of a sexual union are normally distributed around the mean of the parents’ trait values, with variance that depends only on the parents’ relatedness. The probability that a single migrant can establish depends on just two parameters: the mean and genetic variance of the trait in the source population. The chance of success becomes small if migrants come from a population with mean growth rate in the new habitat more than a few standard deviations below zero; this chance depends roughly equally on the probability that the initial founder is unusually fit, and on the subsequent increase in growth rate of its offspring as a result of selection. The loss of genetic variation during the founding event is substantial, but highly variable. With continued migration at rate M, establishment is inevitable; when migration is rare, the expected time to establishment decreases inversely with M. However, above a threshold migration rate, the population may be trapped in a ‘sink’ state, in which adaptation is held back by gene flow; above this threshold, the expected time to establishment increases exponentially with M. This threshold behaviour is captured by a deterministic approximation, which assumes a Gaussian distribution of the trait in the founder population with mean and variance evolving deterministically. By assuming a constant genetic variance, we also develop a diffusion approximation for the joint distribution of population size and trait mean, which extends to include stabilising selection and density regulation. Divergence of the population from its ancestors causes partial reproductive isolation, which we measure through the reproductive value of migrants into the newly established population.}, author = {Barton, Nicholas H and Etheridge, Alison}, journal = {Theoretical Population Biology}, number = {7}, pages = {110--127}, publisher = {Academic Press}, title = {{Establishment in a new habitat by polygenic adaptation}}, doi = {10.1016/j.tpb.2017.11.007}, volume = {122}, year = {2018}, } @article{157, abstract = {Social dilemmas occur when incentives for individuals are misaligned with group interests 1-7 . According to the 'tragedy of the commons', these misalignments can lead to overexploitation and collapse of public resources. The resulting behaviours can be analysed with the tools of game theory 8 . The theory of direct reciprocity 9-15 suggests that repeated interactions can alleviate such dilemmas, but previous work has assumed that the public resource remains constant over time. Here we introduce the idea that the public resource is instead changeable and depends on the strategic choices of individuals. An intuitive scenario is that cooperation increases the public resource, whereas defection decreases it. Thus, cooperation allows the possibility of playing a more valuable game with higher payoffs, whereas defection leads to a less valuable game. We analyse this idea using the theory of stochastic games 16-19 and evolutionary game theory. We find that the dependence of the public resource on previous interactions can greatly enhance the propensity for cooperation. For these results, the interaction between reciprocity and payoff feedback is crucial: neither repeated interactions in a constant environment nor single interactions in a changing environment yield similar cooperation rates. Our framework shows which feedbacks between exploitation and environment - either naturally occurring or designed - help to overcome social dilemmas.}, author = {Hilbe, Christian and Šimsa, Štepán and Chatterjee, Krishnendu and Nowak, Martin}, journal = {Nature}, number = {7713}, pages = {246 -- 249}, publisher = {Nature Publishing Group}, title = {{Evolution of cooperation in stochastic games}}, doi = {10.1038/s41586-018-0277-x}, volume = {559}, year = {2018}, }