@article{5982, abstract = {In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.}, author = {Zhang, Yu and Liu, Yu and Lim, Khak Ho and Xing, Congcong and Li, Mengyao and Zhang, Ting and Tang, Pengyi and Arbiol, Jordi and Llorca, Jordi and Ng, Ka Ming and Ibáñez, Maria and Guardia, Pablo and Prato, Mirko and Cadavid, Doris and Cabot, Andreu}, issn = {1433-7851}, journal = {Angewandte Chemie International Edition}, number = {52}, pages = {17063--17068}, publisher = {Wiley}, title = {{Tin diselenide molecular precursor for solution-processable thermoelectric materials}}, doi = {10.1002/anie.201809847}, volume = {57}, year = {2018}, } @inproceedings{5978, abstract = {We consider the MAP-inference problem for graphical models,which is a valued constraint satisfaction problem defined onreal numbers with a natural summation operation. We proposea family of relaxations (different from the famous Sherali-Adams hierarchy), which naturally define lower bounds for itsoptimum. This family always contains a tight relaxation andwe give an algorithm able to find it and therefore, solve theinitial non-relaxed NP-hard problem.The relaxations we consider decompose the original probleminto two non-overlapping parts: an easy LP-tight part and adifficult one. For the latter part a combinatorial solver must beused. As we show in our experiments, in a number of applica-tions the second, difficult part constitutes only a small fractionof the whole problem. This property allows to significantlyreduce the computational time of the combinatorial solver andtherefore solve problems which were out of reach before.}, author = {Haller, Stefan and Swoboda, Paul and Savchynskyy, Bogdan}, booktitle = {Proceedings of the 32st AAAI Conference on Artificial Intelligence}, location = {New Orleans, LU, United States}, pages = {6581--6588}, publisher = {AAAI Press}, title = {{Exact MAP-inference by confining combinatorial search with LP relaxation}}, year = {2018}, } @article{5990, abstract = {A Ge–Si core–shell nanowire is used to realize a Josephson field‐effect transistor with highly transparent contacts to superconducting leads. By changing the electric field, access to two distinct regimes, not combined before in a single device, is gained: in the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion, the supercurrent is carried by single‐particle levels of a strongly coupled quantum dot operating in the few‐hole regime. These results establish Ge–Si nanowires as an important platform for hybrid superconductor–semiconductor physics and Majorana fermions.}, author = {Ridderbos, Joost and Brauns, Matthias and Shen, Jie and de Vries, Folkert K. and Li, Ang and Bakkers, Erik P. A. M. and Brinkman, Alexander and Zwanenburg, Floris A.}, issn = {0935-9648}, journal = {Advanced Materials}, number = {44}, publisher = {Wiley}, title = {{Josephson effect in a few-hole quantum dot}}, doi = {10.1002/adma.201802257}, volume = {30}, year = {2018}, } @article{5980, abstract = {The problem of private set-intersection (PSI) has been traditionally treated as an instance of the more general problem of multi-party computation (MPC). Consequently, in order to argue security, or compose these protocols one has to rely on the general theory that was developed for the purpose of MPC. The pursuit of efficient protocols, however, has resulted in designs that exploit properties pertaining to PSI. In almost all practical applications where a PSI protocol is deployed, it is expected to be executed multiple times, possibly on related inputs. In this work we initiate a dedicated study of PSI in the multi-interaction (MI) setting. In this model a server sets up the common system parameters and executes set-intersection multiple times with potentially different clients. We discuss a few attacks that arise when protocols are naïvely composed in this manner and, accordingly, craft security definitions for the MI setting and study their inter-relation. Finally, we suggest a set of protocols that are MI-secure, at the same time almost as efficient as their parent, stand-alone, protocols.}, author = {Chatterjee, Sanjit and Kamath Hosdurg, Chethan and Kumar, Vikas}, journal = {American Institute of Mathematical Sciences}, number = {1}, pages = {17--47}, publisher = {AIMS}, title = {{Private set-intersection with common set-up}}, doi = {10.3934/amc.2018002}, volume = {12}, year = {2018}, } @article{5998, abstract = {Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.}, author = {Velicky, Philipp and Meinhardt, Gudrun and Plessl, Kerstin and Vondra, Sigrid and Weiss, Tamara and Haslinger, Peter and Lendl, Thomas and Aumayr, Karin and Mairhofer, Mario and Zhu, Xiaowei and Schütz, Birgit and Hannibal, Roberta L. and Lindau, Robert and Weil, Beatrix and Ernerudh, Jan and Neesen, Jürgen and Egger, Gerda and Mikula, Mario and Röhrl, Clemens and Urban, Alexander E. and Baker, Julie and Knöfler, Martin and Pollheimer, Jürgen}, issn = {1553-7404}, journal = {PLOS Genetics}, number = {10}, publisher = {Public Library of Science}, title = {{Genome amplification and cellular senescence are hallmarks of human placenta development}}, doi = {10.1371/journal.pgen.1007698}, volume = {14}, year = {2018}, }