@article{131, abstract = {XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. }, author = {Picard, Marion A and Cosseau, Celine and Ferré, Sabrina and Quack, Thomas and Grevelding, Christoph and Couté, Yohann and Vicoso, Beatriz}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolution of gene dosage on the Z-chromosome of schistosome parasites}}, doi = {10.7554/eLife.35684}, volume = {7}, year = {2018}, } @misc{5584, abstract = {This package contains data for the publication "Nonlinear decoding of a complex movie from the mammalian retina" by Deny S. et al, PLOS Comput Biol (2018). The data consists of (i) 91 spike sorted, isolated rat retinal ganglion cells that pass stability and quality criteria, recorded on the multi-electrode array, in response to the presentation of the complex movie with many randomly moving dark discs. The responses are represented as 648000 x 91 binary matrix, where the first index indicates the timebin of duration 12.5 ms, and the second index the neural identity. The matrix entry is 0/1 if the neuron didn't/did spike in the particular time bin. (ii) README file and a graphical illustration of the structure of the experiment, specifying how the 648000 timebins are split into epochs where 1, 2, 4, or 10 discs were displayed, and which stimulus segments are exact repeats or unique ball trajectories. (iii) a 648000 x 400 matrix of luminance traces for each of the 20 x 20 positions ("sites") in the movie frame, with time that is locked to the recorded raster. The luminance traces are produced as described in the manuscript by filtering the raw disc movie with a small gaussian spatial kernel. }, author = {Deny, Stephane and Marre, Olivier and Botella-Soler, Vicente and Martius, Georg S and Tkacik, Gasper}, keywords = {retina, decoding, regression, neural networks, complex stimulus}, publisher = {Institute of Science and Technology Austria}, title = {{Nonlinear decoding of a complex movie from the mammalian retina}}, doi = {10.15479/AT:ISTA:98}, year = {2018}, } @article{286, abstract = {Pedigree and sibship reconstruction are important methods in quantifying relationships and fitness of individuals in natural populations. Current methods employ a Markov chain-based algorithm to explore plausible possible pedigrees iteratively. This provides accurate results, but is time-consuming. Here, we develop a method to infer sibship and paternity relationships from half-sibling arrays of known maternity using hierarchical clustering. Given 50 or more unlinked SNP markers and empirically derived error rates, the method performs as well as the widely used package Colony, but is faster by two orders of magnitude. Using simulations, we show that the method performs well across contrasting mating scenarios, even when samples are large. We then apply the method to open-pollinated arrays of the snapdragon Antirrhinum majus and find evidence for a high degree of multiple mating. Although we focus on diploid SNP data, the method does not depend on marker type and as such has broad applications in nonmodel systems. }, author = {Ellis, Thomas and Field, David and Barton, Nicholas H}, journal = {Molecular Ecology Resources}, number = {5}, pages = {988 -- 999}, publisher = {Wiley}, title = {{Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering}}, doi = {10.1111/1755-0998.12782}, volume = {18}, year = {2018}, } @misc{5586, abstract = {Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018).}, author = {Vicoso, Beatriz}, keywords = {schistosoma, Z-chromosome, gene expression}, publisher = {Institute of Science and Technology Austria}, title = {{Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018)}}, doi = {10.15479/AT:ISTA:109}, year = {2018}, } @misc{5583, abstract = {Data and scripts are provided in support of the manuscript "Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps. Simulation scripts cover: 1. Performance under different mating scenarios. 2. Comparison with Colony2. 3. Effect of changing the number of Monte Carlo draws The final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone.}, author = {Ellis, Thomas}, publisher = {Institute of Science and Technology Austria}, title = {{Data and Python scripts supporting Python package FAPS}}, doi = {10.15479/AT:ISTA:95}, year = {2018}, } @misc{5569, abstract = {Nela Nikolic, Tobias Bergmiller, Alexandra Vandervelde, Tanino G. Albanese, Lendert Gelens, and Isabella Moll (2018) “Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations” Nucleic Acids Research, doi: 10.15479/AT:ISTA:74; microscopy experiments by Tobias Bergmiller; image and data analysis by Nela Nikolic.}, author = {Bergmiller, Tobias and Nikolic, Nela}, keywords = {microscopy, microfluidics}, publisher = {Institute of Science and Technology Austria}, title = {{Time-lapse microscopy data}}, doi = {10.15479/AT:ISTA:74}, year = {2018}, } @article{161, abstract = {Which properties of metabolic networks can be derived solely from stoichiometry? Predictive results have been obtained by flux balance analysis (FBA), by postulating that cells set metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-cell level using maximum entropy modeling, which we extend and test experimentally. Specifically, we define for Escherichia coli metabolism a flux distribution that yields the experimental growth rate: the model, containing FBA as a limit, provides a better match to measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations for growth rate distributions. We validate the latter here with single-cell data at different sub-inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging from the interplay of competitive dynamics in the population and regulation of metabolism at the level of single cells.}, author = {De Martino, Daniele and Mc, Andersson Anna and Bergmiller, Tobias and Guet, Calin C and Tkacik, Gasper}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Statistical mechanics for metabolic networks during steady state growth}}, doi = {10.1038/s41467-018-05417-9}, volume = {9}, year = {2018}, } @misc{5587, abstract = {Supporting material to the article STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH boundscoli.dat Flux Bounds of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium. polcoli.dat Matrix enconding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium, obtained from the soichiometric matrix by standard linear algebra (reduced row echelon form). ellis.dat Approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. point0.dat Center of the approximate Lowner-John ellipsoid rounding the polytope of the E. coli catabolic core model iAF1260 in a glucose limited minimal medium obtained with the Lovasz method. lovasz.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), and it gives in output an approximate Lowner-John ellipsoid rounding the polytope with the Lovasz method NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015). sampleHRnew.cpp This c++ code file receives in input the polytope of the feasible steady states of a metabolic network, (matrix and bounds), the ellipsoid rounding the polytope, a point inside and it gives in output a max entropy sampling at fixed average growth rate of the steady states by performing an Hit-and-Run Monte Carlo Markov chain. NB inputs are referred by defaults to the catabolic core of the E.Coli network iAF1260. For further details we refer to PLoS ONE 10.4 e0122670 (2015).}, author = {De Martino, Daniele and Tkacik, Gasper}, keywords = {metabolic networks, e.coli core, maximum entropy, monte carlo markov chain sampling, ellipsoidal rounding}, publisher = {Institute of Science and Technology Austria}, title = {{Supporting materials "STATISTICAL MECHANICS FOR METABOLIC NETWORKS IN STEADY-STATE GROWTH"}}, doi = {10.15479/AT:ISTA:62}, year = {2018}, } @article{542, abstract = {The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to characterize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter.}, author = {Kelemen, Réka K and Vicoso, Beatriz}, journal = {Genetics}, number = {1}, pages = {365 -- 375}, publisher = {Genetics Society of America}, title = {{Complex history and differentiation patterns of the t-haplotype, a mouse meiotic driver}}, doi = {10.1534/genetics.117.300513}, volume = {208}, year = {2018}, } @article{5751, abstract = {Because of the intrinsic randomness of the evolutionary process, a mutant with a fitness advantage has some chance to be selected but no certainty. Any experiment that searches for advantageous mutants will lose many of them due to random drift. It is therefore of great interest to find population structures that improve the odds of advantageous mutants. Such structures are called amplifiers of natural selection: they increase the probability that advantageous mutants are selected. Arbitrarily strong amplifiers guarantee the selection of advantageous mutants, even for very small fitness advantage. Despite intensive research over the past decade, arbitrarily strong amplifiers have remained rare. Here we show how to construct a large variety of them. Our amplifiers are so simple that they could be useful in biotechnology, when optimizing biological molecules, or as a diagnostic tool, when searching for faster dividing cells or viruses. They could also occur in natural population structures.}, author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin A.}, issn = {2399-3642}, journal = {Communications Biology}, number = {1}, publisher = {Springer Nature}, title = {{Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory}}, doi = {10.1038/s42003-018-0078-7}, volume = {1}, year = {2018}, }