@article{291, abstract = {Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.}, author = {Budanur, Nazmi B and Hof, Björn}, journal = {Physical Review Fluids}, number = {5}, publisher = {American Physical Society}, title = {{Complexity of the laminar-turbulent boundary in pipe flow}}, doi = {10.1103/PhysRevFluids.3.054401}, volume = {3}, year = {2018}, } @article{58, abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.}, author = {Akopyan, Arseniy and Segal Halevi, Erel}, journal = {SIAM Journal on Discrete Mathematics}, number = {3}, pages = {2242 -- 2257}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Counting blanks in polygonal arrangements}}, doi = {10.1137/16M110407X}, volume = {32}, year = {2018}, } @misc{9840, abstract = {Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity.}, author = {Payne, Pavel and Geyrhofer, Lukas and Barton, Nicholas H and Bollback, Jonathan P}, publisher = {Dryad}, title = {{Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations}}, doi = {10.5061/dryad.42n44}, year = {2018}, } @article{616, abstract = {Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation.}, author = {Pull, Christopher and Ugelvig, Line V and Wiesenhofer, Florian and Grasse, Anna V and Tragust, Simon and Schmitt, Thomas and Brown, Mark and Cremer, Sylvia}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}}, doi = {10.7554/eLife.32073}, volume = {7}, year = {2018}, } @article{132, abstract = {Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments.}, author = {Sznurkowska, Magdalena and Hannezo, Edouard B and Azzarelli, Roberta and Rulands, Steffen and Nestorowa, Sonia and Hindley, Christopher and Nichols, Jennifer and Göttgens, Berthold and Huch, Meritxell and Philpott, Anna and Simons, Benjamin}, journal = {Developmental Cell}, number = {3}, pages = {360 -- 375}, publisher = {Cell Press}, title = {{Defining lineage potential and fate behavior of precursors during pancreas development}}, doi = {10.1016/j.devcel.2018.06.028}, volume = {46}, year = {2018}, } @article{42, abstract = {Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield.}, author = {Cucinotta, Mara and Manrique, Silvia and Cuesta, Candela and Benková, Eva and Novák, Ondřej and Colombo, Lucia}, journal = {Journal of Experimental Botany}, number = {21}, pages = {5169 -- 5176}, publisher = {Oxford University Press}, title = {{Cup-shaped Cotyledon1 (CUC1) and CU2 regulate cytokinin homeostasis to determine ovule number in arabidopsis}}, doi = {10.1093/jxb/ery281}, volume = {69}, year = {2018}, } @article{407, abstract = {Isoprenoid cytokinins play a number of crucial roles in the regulation of plant growth and development. To study cytokinin receptor properties in plants, we designed and prepared fluorescent derivatives of 6-[(3-methylbut-2-en-1-yl)amino]purine (N6-isopentenyladenine, iP) with several fluorescent labels attached to the C2 or N9 atom of the purine moiety via a 2- or 6-carbon linker. The fluorescent labels included dansyl (DS), fluorescein (FC), 7-nitrobenzofurazan (NBD), rhodamine B (RhoB), coumarin (Cou), 7-(diethylamino)coumarin (DEAC) and cyanine 5 dye (Cy5). All prepared compounds were screened for affinity for the Arabidopsis thaliana cytokinin receptor (CRE1/AHK4). Although the attachment of the fluorescent labels to iP via the linkers mostly disrupted binding to the receptor, several fluorescent derivatives interacted well. For this reason, three derivatives, two rhodamine B and one 4-chloro-7-nitrobenzofurazan labeled iP were tested for their interaction with CRE1/AHK4 and Zea mays cytokinin receptors in detail. We further showed that the three derivatives were able to activate transcription of cytokinin response regulator ARR5 in Arabidopsis seedlings. The activity of fluorescently labeled cytokinins was compared with corresponding 6-dimethylaminopurine fluorescently labeled negative controls. Selected rhodamine B C2-labeled compounds 17, 18 and 4-chloro-7-nitrobenzofurazan N9-labeled compound 28 and their respective negative controls (19, 20 and 29, respectively) were used for in planta staining experiments in Arabidopsis thaliana cell suspension culture using live cell confocal microscopy.}, author = {Kubiasová, Karolina and Mik, Václav and Nisler, Jaroslav and Hönig, Martin and Husičková, Alexandra and Spíchal, Lukáš and Pěkná, Zuzana and Šamajová, Olga and Doležal, Karel and Plíhal, Ondřej and Benková, Eva and Strnad, Miroslav and Plíhalová, Lucie}, journal = {Phytochemistry}, pages = {1--11}, publisher = {Elsevier}, title = {{Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins}}, doi = {10.1016/j.phytochem.2018.02.015}, volume = {150}, year = {2018}, } @article{46, abstract = {We analyze a disordered central spin model, where a central spin interacts equally with each spin in a periodic one-dimensional (1D) random-field Heisenberg chain. If the Heisenberg chain is initially in the many-body localized (MBL) phase, we find that the coupling to the central spin suffices to delocalize the chain for a substantial range of coupling strengths. We calculate the phase diagram of the model and identify the phase boundary between the MBL and ergodic phase. Within the localized phase, the central spin significantly enhances the rate of the logarithmic entanglement growth and its saturation value. We attribute the increase in entanglement entropy to a nonextensive enhancement of magnetization fluctuations induced by the central spin. Finally, we demonstrate that correlation functions of the central spin can be utilized to distinguish between MBL and ergodic phases of the 1D chain. Hence, we propose the use of a central spin as a possible experimental probe to identify the MBL phase.}, author = {Hetterich, Daniel and Yao, Norman and Serbyn, Maksym and Pollmann, Frank and Trauzettel, Björn}, journal = {Physical Review B}, number = {16}, publisher = {American Physical Society}, title = {{Detection and characterization of many-body localization in central spin models}}, doi = {10.1103/PhysRevB.98.161122}, volume = {98}, year = {2018}, } @article{308, abstract = {Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.}, author = {Ratheesh, Aparna and Biebl, Julia and Smutny, Michael and Veselá, Jana and Papusheva, Ekaterina and Krens, Gabriel and Kaufmann, Walter and György, Attila and Casano, Alessandra M and Siekhaus, Daria E}, journal = {Developmental Cell}, number = {3}, pages = {331 -- 346}, publisher = {Elsevier}, title = {{Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration}}, doi = {10.1016/j.devcel.2018.04.002}, volume = {45}, year = {2018}, } @article{17, abstract = {Creeping flow of polymeric fluid without inertia exhibits elastic instabilities and elastic turbulence accompanied by drag enhancement due to elastic stress produced by flow-stretched polymers. However, in inertia-dominated flow at high Re and low fluid elasticity El, a reduction in turbulent frictional drag is caused by an intricate competition between inertial and elastic stresses. Here we explore the effect of inertia on the stability of viscoelastic flow in a broad range of control parameters El and (Re,Wi). We present the stability diagram of observed flow regimes in Wi-Re coordinates and find that the instabilities' onsets show an unexpectedly nonmonotonic dependence on El. Further, three distinct regions in the diagram are identified based on El. Strikingly, for high-elasticity fluids we discover a complete relaminarization of flow at Reynolds number in the range of 1 to 10, different from a well-known turbulent drag reduction. These counterintuitive effects may be explained by a finite polymer extensibility and a suppression of vorticity at high Wi. Our results call for further theoretical and numerical development to uncover the role of inertial effect on elastic turbulence in a viscoelastic flow.}, author = {Varshney, Atul and Steinberg, Victor}, journal = {Physical Review Fluids}, number = {10}, publisher = {American Physical Society}, title = {{Drag enhancement and drag reduction in viscoelastic flow}}, doi = {10.1103/PhysRevFluids.3.103302}, volume = {3}, year = {2018}, }