--- _id: '2031' abstract: - lang: eng text: A puzzling property of synaptic transmission, originally established at the neuromuscular junction, is that the time course of transmitter release is independent of the extracellular Ca2+ concentration ([Ca2+]o), whereas the rate of release is highly [Ca2+]o-dependent. Here, we examine the time course of release at inhibitory basket cell-Purkinje cell synapses and show that it is independent of [Ca2+]o. Modeling of Ca2+-dependent transmitter release suggests that the invariant time course of release critically depends on tight coupling between Ca2+ channels and release sensors. Experiments with exogenous Ca2+ chelators reveal that channel-sensor coupling at basket cell-Purkinje cell synapses is very tight, with a mean distance of 10–20 nm. Thus, tight channel-sensor coupling provides a mechanistic explanation for the apparent [Ca2+]o independence of the time course of release. author: - first_name: Itaru full_name: Arai, Itaru id: 32A73F6C-F248-11E8-B48F-1D18A9856A87 last_name: Arai - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: Arai itaru, Jonas PM. Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse. eLife. 2014;3. doi:10.7554/eLife.04057 apa: Arai, itaru, & Jonas, P. M. (2014). Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.04057 chicago: Arai, itaru, and Peter M Jonas. “Nanodomain Coupling Explains Ca^2+ Independence of Transmitter Release Time Course at a Fast Central Synapse.” ELife. eLife Sciences Publications, 2014. https://doi.org/10.7554/eLife.04057. ieee: itaru Arai and P. M. Jonas, “Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse,” eLife, vol. 3. eLife Sciences Publications, 2014. ista: Arai itaru, Jonas PM. 2014. Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse. eLife. 3. mla: Arai, itaru, and Peter M. Jonas. “Nanodomain Coupling Explains Ca^2+ Independence of Transmitter Release Time Course at a Fast Central Synapse.” ELife, vol. 3, eLife Sciences Publications, 2014, doi:10.7554/eLife.04057. short: itaru Arai, P.M. Jonas, ELife 3 (2014). date_created: 2018-12-11T11:55:19Z date_published: 2014-12-09T00:00:00Z date_updated: 2021-01-12T06:54:51Z day: '09' ddc: - '570' department: - _id: PeJo doi: 10.7554/eLife.04057 ec_funded: 1 file: - access_level: open_access checksum: c240f915450d4ebe8f95043a2a8c7b1a content_type: application/pdf creator: system date_created: 2018-12-12T10:14:41Z date_updated: 2020-07-14T12:45:26Z file_id: '5094' file_name: IST-2016-421-v1+1_e04057.full.pdf file_size: 2239563 relation: main_file file_date_updated: 2020-07-14T12:45:26Z has_accepted_license: '1' intvolume: ' 3' language: - iso: eng month: '12' oa: 1 oa_version: Submitted Version project: - _id: 25C26B1E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P24909-B24 name: Mechanisms of transmitter release at GABAergic synapses - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '5041' pubrep_id: '421' quality_controlled: '1' scopus_import: 1 status: public title: Nanodomain coupling explains Ca^2+ independence of transmitter release time course at a fast central synapse type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2014' ... --- _id: '2041' abstract: - lang: eng text: The hippocampus mediates several higher brain functions, such as learning, memory, and spatial coding. The input region of the hippocampus, the dentate gyrus, plays a critical role in these processes. Several lines of evidence suggest that the dentate gyrus acts as a preprocessor of incoming information, preparing it for subsequent processing in CA3. For example, the dentate gyrus converts input from the entorhinal cortex, where cells have multiple spatial fields, into the spatially more specific place cell activity characteristic of the CA3 region. Furthermore, the dentate gyrus is involved in pattern separation, transforming relatively similar input patterns into substantially different output patterns. Finally, the dentate gyrus produces a very sparse coding scheme in which only a very small fraction of neurons are active at any one time. article_number: 2p author: - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: John full_name: Lisman, John last_name: Lisman citation: ama: Jonas PM, Lisman J. Structure, function and plasticity of hippocampal dentate gyrus microcircuits. Frontiers in Neural Circuits. 2014;8. doi:10.3389/fncir.2014.00107 apa: Jonas, P. M., & Lisman, J. (2014). Structure, function and plasticity of hippocampal dentate gyrus microcircuits. Frontiers in Neural Circuits. Frontiers Research Foundation. https://doi.org/10.3389/fncir.2014.00107 chicago: Jonas, Peter M, and John Lisman. “Structure, Function and Plasticity of Hippocampal Dentate Gyrus Microcircuits.” Frontiers in Neural Circuits. Frontiers Research Foundation, 2014. https://doi.org/10.3389/fncir.2014.00107. ieee: P. M. Jonas and J. Lisman, “Structure, function and plasticity of hippocampal dentate gyrus microcircuits,” Frontiers in Neural Circuits, vol. 8. Frontiers Research Foundation, 2014. ista: Jonas PM, Lisman J. 2014. Structure, function and plasticity of hippocampal dentate gyrus microcircuits. Frontiers in Neural Circuits. 8, 2p. mla: Jonas, Peter M., and John Lisman. “Structure, Function and Plasticity of Hippocampal Dentate Gyrus Microcircuits.” Frontiers in Neural Circuits, vol. 8, 2p, Frontiers Research Foundation, 2014, doi:10.3389/fncir.2014.00107. short: P.M. Jonas, J. Lisman, Frontiers in Neural Circuits 8 (2014). date_created: 2018-12-11T11:55:22Z date_published: 2014-09-10T00:00:00Z date_updated: 2021-01-12T06:54:55Z day: '10' ddc: - '570' department: - _id: PeJo doi: 10.3389/fncir.2014.00107 file: - access_level: open_access checksum: 3ca57b164045523f876407e9f13a9fb8 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:38Z date_updated: 2020-07-14T12:45:26Z file_id: '5294' file_name: IST-2016-424-v1+1_fncir-08-00107.pdf file_size: 201110 relation: main_file file_date_updated: 2020-07-14T12:45:26Z has_accepted_license: '1' intvolume: ' 8' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: Frontiers in Neural Circuits publication_status: published publisher: Frontiers Research Foundation publist_id: '5010' pubrep_id: '424' quality_controlled: '1' scopus_import: 1 status: public title: Structure, function and plasticity of hippocampal dentate gyrus microcircuits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2014' ... --- _id: '2062' abstract: - lang: eng text: The success story of fast-spiking, parvalbumin-positive (PV+) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV+ interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the “small world” of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV+ interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV+ interneurons for therapeutic purposes. article_number: '1255263' author: - first_name: Hua full_name: Hu, Hua id: 4AC0145C-F248-11E8-B48F-1D18A9856A87 last_name: Hu - first_name: Jian full_name: Gan, Jian id: 3614E438-F248-11E8-B48F-1D18A9856A87 last_name: Gan - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 citation: ama: 'Hu H, Gan J, Jonas PM. Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function. Science. 2014;345(6196). doi:10.1126/science.1255263' apa: 'Hu, H., Gan, J., & Jonas, P. M. (2014). Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1255263' chicago: 'Hu, Hua, Jian Gan, and Peter M Jonas. “Fast-Spiking Parvalbumin^+ GABAergic Interneurons: From Cellular Design to Microcircuit Function.” Science. American Association for the Advancement of Science, 2014. https://doi.org/10.1126/science.1255263.' ieee: 'H. Hu, J. Gan, and P. M. Jonas, “Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function,” Science, vol. 345, no. 6196. American Association for the Advancement of Science, 2014.' ista: 'Hu H, Gan J, Jonas PM. 2014. Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function. Science. 345(6196), 1255263.' mla: 'Hu, Hua, et al. “Fast-Spiking Parvalbumin^+ GABAergic Interneurons: From Cellular Design to Microcircuit Function.” Science, vol. 345, no. 6196, 1255263, American Association for the Advancement of Science, 2014, doi:10.1126/science.1255263.' short: H. Hu, J. Gan, P.M. Jonas, Science 345 (2014). date_created: 2018-12-11T11:55:29Z date_published: 2014-08-01T00:00:00Z date_updated: 2021-01-12T06:55:03Z day: '01' ddc: - '570' department: - _id: PeJo doi: 10.1126/science.1255263 ec_funded: 1 file: - access_level: open_access checksum: a0036a589037d37e86364fa25cc0a82f content_type: application/pdf creator: system date_created: 2018-12-12T10:16:00Z date_updated: 2020-07-14T12:45:27Z file_id: '5185' file_name: IST-2017-821-v1+1_1255263JonasPVReviewTextR_Final.pdf file_size: 215514 relation: main_file - access_level: open_access checksum: e1f57d2713725449cb898fdcb8ef47b8 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:01Z date_updated: 2020-07-14T12:45:27Z file_id: '5186' file_name: IST-2017-821-v1+2_1255263JonasPVReviewFigures_Final.pdf file_size: 1732723 relation: main_file file_date_updated: 2020-07-14T12:45:27Z has_accepted_license: '1' intvolume: ' 345' issue: '6196' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version project: - _id: 25C26B1E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P24909-B24 name: Mechanisms of transmitter release at GABAergic synapses - _id: 25C0F108-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '268548' name: Nanophysiology of fast-spiking, parvalbumin-expressing GABAergic interneurons publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '4984' pubrep_id: '821' quality_controlled: '1' scopus_import: 1 status: public title: 'Fast-spiking parvalbumin^+ GABAergic interneurons: From cellular design to microcircuit function' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 345 year: '2014' ... --- _id: '2164' abstract: - lang: eng text: 'Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity. ' author: - first_name: Xuejun full_name: Chai, Xuejun last_name: Chai - first_name: Gert full_name: Münzner, Gert last_name: Münzner - first_name: Shanting full_name: Zhao, Shanting last_name: Zhao - first_name: Stefanie full_name: Tinnes, Stefanie last_name: Tinnes - first_name: Janina full_name: Kowalski, Janina id: 3F3CA136-F248-11E8-B48F-1D18A9856A87 last_name: Kowalski - first_name: Ute full_name: Häussler, Ute last_name: Häussler - first_name: Christina full_name: Young, Christina last_name: Young - first_name: Carola full_name: Haas, Carola last_name: Haas - first_name: Michael full_name: Frotscher, Michael last_name: Frotscher citation: ama: Chai X, Münzner G, Zhao S, et al. Epilepsy-induced motility of differentiated neurons. Cerebral Cortex. 2014;24(8):2130-2140. doi:10.1093/cercor/bht067 apa: Chai, X., Münzner, G., Zhao, S., Tinnes, S., Kowalski, J., Häussler, U., … Frotscher, M. (2014). Epilepsy-induced motility of differentiated neurons. Cerebral Cortex. Oxford University Press. https://doi.org/10.1093/cercor/bht067 chicago: Chai, Xuejun, Gert Münzner, Shanting Zhao, Stefanie Tinnes, Janina Kowalski, Ute Häussler, Christina Young, Carola Haas, and Michael Frotscher. “Epilepsy-Induced Motility of Differentiated Neurons.” Cerebral Cortex. Oxford University Press, 2014. https://doi.org/10.1093/cercor/bht067. ieee: X. Chai et al., “Epilepsy-induced motility of differentiated neurons,” Cerebral Cortex, vol. 24, no. 8. Oxford University Press, pp. 2130–2140, 2014. ista: Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas C, Frotscher M. 2014. Epilepsy-induced motility of differentiated neurons. Cerebral Cortex. 24(8), 2130–2140. mla: Chai, Xuejun, et al. “Epilepsy-Induced Motility of Differentiated Neurons.” Cerebral Cortex, vol. 24, no. 8, Oxford University Press, 2014, pp. 2130–40, doi:10.1093/cercor/bht067. short: X. Chai, G. Münzner, S. Zhao, S. Tinnes, J. Kowalski, U. Häussler, C. Young, C. Haas, M. Frotscher, Cerebral Cortex 24 (2014) 2130–2140. date_created: 2018-12-11T11:56:04Z date_published: 2014-08-01T00:00:00Z date_updated: 2021-01-12T06:55:43Z day: '01' department: - _id: PeJo doi: 10.1093/cercor/bht067 intvolume: ' 24' issue: '8' language: - iso: eng month: '08' oa_version: None page: 2130 - 2140 publication: Cerebral Cortex publication_status: published publisher: Oxford University Press publist_id: '4820' quality_controlled: '1' scopus_import: 1 status: public title: Epilepsy-induced motility of differentiated neurons type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2014' ... --- _id: '2176' abstract: - lang: eng text: Electron microscopy (EM) allows for the simultaneous visualization of all tissue components at high resolution. However, the extent to which conventional aldehyde fixation and ethanol dehydration of the tissue alter the fine structure of cells and organelles, thereby preventing detection of subtle structural changes induced by an experiment, has remained an issue. Attempts have been made to rapidly freeze tissue to preserve native ultrastructure. Shock-freezing of living tissue under high pressure (high-pressure freezing, HPF) followed by cryosubstitution of the tissue water avoids aldehyde fixation and dehydration in ethanol; the tissue water is immobilized in â ̂1/450 ms, and a close-to-native fine structure of cells, organelles and molecules is preserved. Here we describe a protocol for HPF that is useful to monitor ultrastructural changes associated with functional changes at synapses in the brain but can be applied to many other tissues as well. The procedure requires a high-pressure freezer and takes a minimum of 7 d but can be paused at several points. author: - first_name: Daniel full_name: Studer, Daniel last_name: Studer - first_name: Shanting full_name: Zhao, Shanting last_name: Zhao - first_name: Xuejun full_name: Chai, Xuejun last_name: Chai - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Werner full_name: Graber, Werner last_name: Graber - first_name: Sigrun full_name: Nestel, Sigrun last_name: Nestel - first_name: Michael full_name: Frotscher, Michael last_name: Frotscher citation: ama: Studer D, Zhao S, Chai X, et al. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 2014;9(6):1480-1495. doi:10.1038/nprot.2014.099 apa: Studer, D., Zhao, S., Chai, X., Jonas, P. M., Graber, W., Nestel, S., & Frotscher, M. (2014). Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. Nature Publishing Group. https://doi.org/10.1038/nprot.2014.099 chicago: Studer, Daniel, Shanting Zhao, Xuejun Chai, Peter M Jonas, Werner Graber, Sigrun Nestel, and Michael Frotscher. “Capture of Activity-Induced Ultrastructural Changes at Synapses by High-Pressure Freezing of Brain Tissue.” Nature Protocols. Nature Publishing Group, 2014. https://doi.org/10.1038/nprot.2014.099. ieee: D. Studer et al., “Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue,” Nature Protocols, vol. 9, no. 6. Nature Publishing Group, pp. 1480–1495, 2014. ista: Studer D, Zhao S, Chai X, Jonas PM, Graber W, Nestel S, Frotscher M. 2014. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 9(6), 1480–1495. mla: Studer, Daniel, et al. “Capture of Activity-Induced Ultrastructural Changes at Synapses by High-Pressure Freezing of Brain Tissue.” Nature Protocols, vol. 9, no. 6, Nature Publishing Group, 2014, pp. 1480–95, doi:10.1038/nprot.2014.099. short: D. Studer, S. Zhao, X. Chai, P.M. Jonas, W. Graber, S. Nestel, M. Frotscher, Nature Protocols 9 (2014) 1480–1495. date_created: 2018-12-11T11:56:09Z date_published: 2014-05-29T00:00:00Z date_updated: 2021-01-12T06:55:47Z day: '29' department: - _id: PeJo doi: 10.1038/nprot.2014.099 intvolume: ' 9' issue: '6' language: - iso: eng month: '05' oa_version: None page: 1480 - 1495 project: - _id: 25BDE9A4-B435-11E9-9278-68D0E5697425 grant_number: SFB-TR3-TP10B name: Glutamaterge synaptische Übertragung und Plastizität in hippocampalen Mikroschaltkreisen publication: Nature Protocols publication_status: published publisher: Nature Publishing Group publist_id: '4807' quality_controlled: '1' scopus_import: 1 status: public title: Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2014' ...