TY - JOUR AB - Synaptotagmin 7 (Syt7) was originally identified as a slow Ca2+ sensor for lysosome fusion, but its function at fast synapses is controversial. The paper by Luo and Südhof (2017) in this issue of Neuron shows that at the calyx of Held in the auditory brainstem Syt7 triggers asynchronous release during stimulus trains, resulting in reliable and temporally precise high-frequency transmission. Thus, a slow Ca2+ sensor contributes to the fast signaling properties of the calyx synapse. AU - Chen, Chong AU - Jonas, Peter M ID - 991 IS - 4 JF - Neuron SN - 08966273 TI - Synaptotagmins: That’s why so many VL - 94 ER - TY - JOUR AB - Gamma oscillations (30–150 Hz) in neuronal networks are associated with the processing and recall of information. We measured local field potentials in the dentate gyrus of freely moving mice and found that gamma activity occurs in bursts, which are highly heterogeneous in their spatial extensions, ranging from focal to global coherent events. Synaptic communication among perisomatic-inhibitory interneurons (PIIs) is thought to play an important role in the generation of hippocampal gamma patterns. However, how neuronal circuits can generate synchronous oscillations at different spatial scales is unknown. We analyzed paired recordings in dentate gyrus slices and show that synaptic signaling at interneuron-interneuron synapses is distance dependent. Synaptic strength declines whereas the duration of inhibitory signals increases with axonal distance among interconnected PIIs. Using neuronal network modeling, we show that distance-dependent inhibition generates multiple highly synchronous focal gamma bursts allowing the network to process complex inputs in parallel in flexibly organized neuronal centers. AU - Strüber, Michael AU - Sauer, Jonas AU - Jonas, Peter M AU - Bartos, Marlene ID - 800 IS - 1 JF - Nature Communications SN - 20411723 TI - Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus VL - 8 ER - TY - JOUR AB - Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission AU - Chen, Chong AU - Satterfield, Rachel AU - Young, Samuel AU - Jonas, Peter M ID - 749 IS - 8 JF - Cell Reports SN - 22111247 TI - Triple function of Synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses VL - 21 ER - TY - JOUR AB - Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders. AU - Martins, Rui AU - Maier, Julia AU - Gorki, Anna AU - Huber, Kilian AU - Sharif, Omar AU - Starkl, Philipp AU - Saluzzo, Simona AU - Quattrone, Federica AU - Gawish, Riem AU - Lakovits, Karin AU - Aichinger, Michael AU - Radic Sarikas, Branka AU - Lardeau, Charles AU - Hladik, Anastasiya AU - Korosec, Ana AU - Brown, Markus AU - Vaahtomeri, Kari AU - Duggan, Michelle AU - Kerjaschki, Dontscho AU - Esterbauer, Harald AU - Colinge, Jacques AU - Eisenbarth, Stephanie AU - Decker, Thomas AU - Bennett, Keiryn AU - Kubicek, Stefan AU - Sixt, Michael K AU - Superti Furga, Giulio AU - Knapp, Sylvia ID - 1142 IS - 12 JF - Nature Immunology TI - Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions VL - 17 ER - TY - JOUR AB - Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network. AU - Vyleta, Nicholas AU - Borges Merjane, Carolina AU - Jonas, Peter M ID - 1323 JF - eLife TI - Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses VL - 5 ER -