--- _id: '13062' abstract: - lang: eng text: 'This paper analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.' article_processing_charge: No author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Szep E, Sachdeva H, Barton NH. Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model. 2021. doi:10.5061/DRYAD.8GTHT76P1' apa: 'Szep, E., Sachdeva, H., & Barton, N. H. (2021). Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model. Dryad. https://doi.org/10.5061/DRYAD.8GTHT76P1' chicago: 'Szep, Eniko, Himani Sachdeva, and Nicholas H Barton. “Supplementary Code for: Polygenic Local Adaptation in Metapopulations: A Stochastic Eco-Evolutionary Model.” Dryad, 2021. https://doi.org/10.5061/DRYAD.8GTHT76P1.' ieee: 'E. Szep, H. Sachdeva, and N. H. Barton, “Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model.” Dryad, 2021.' ista: 'Szep E, Sachdeva H, Barton NH. 2021. Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model, Dryad, 10.5061/DRYAD.8GTHT76P1.' mla: 'Szep, Eniko, et al. Supplementary Code for: Polygenic Local Adaptation in Metapopulations: A Stochastic Eco-Evolutionary Model. Dryad, 2021, doi:10.5061/DRYAD.8GTHT76P1.' short: E. Szep, H. Sachdeva, N.H. Barton, (2021). date_created: 2023-05-23T16:17:02Z date_published: 2021-03-02T00:00:00Z date_updated: 2023-09-05T15:44:05Z day: '02' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.8GTHT76P1 license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.8gtht76p1 month: '03' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '9252' relation: used_in_publication status: public status: public title: 'Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9383' abstract: - lang: eng text: A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present‐day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us. acknowledgement: We thank M. Garlovsky, S. Martin, C. Cooney, C. Roux, J. Larson, and J. Mallet for critical feedback and for discussion. K. Lohse, M. de la Cámara, J. Cerca, M. A. Chase, C. Baskett, A. M. Westram, and N. H. Barton gave feedback on a draft of the manuscript. O. Seehausen, two anonymous reviewers, and the AE (Michael Kopp) provided comments that greatly improved the manuscript. V. Holzmann made many corrections to the proofs. G. Bisschop and K. Lohse kindly contributed the simulations and analyses presented in Box 3. We would also like to extend our thanks to everyone who took part in the speciation survey, which received ethical approval through the University of Sheffield Ethics Review Procedure (Application 029768). We are especially grateful to R. K. Butlin for stimulating discussion throughout the writing of the manuscript and for feedback on an earlier draft. article_processing_charge: No article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet citation: ama: Stankowski S, Ravinet M. Defining the speciation continuum. Evolution. 2021;75(6):1256-1273. doi:10.1111/evo.14215 apa: Stankowski, S., & Ravinet, M. (2021). Defining the speciation continuum. Evolution. Oxford University Press. https://doi.org/10.1111/evo.14215 chicago: Stankowski, Sean, and Mark Ravinet. “Defining the Speciation Continuum.” Evolution. Oxford University Press, 2021. https://doi.org/10.1111/evo.14215. ieee: S. Stankowski and M. Ravinet, “Defining the speciation continuum,” Evolution, vol. 75, no. 6. Oxford University Press, pp. 1256–1273, 2021. ista: Stankowski S, Ravinet M. 2021. Defining the speciation continuum. Evolution. 75(6), 1256–1273. mla: Stankowski, Sean, and Mark Ravinet. “Defining the Speciation Continuum.” Evolution, vol. 75, no. 6, Oxford University Press, 2021, pp. 1256–73, doi:10.1111/evo.14215. short: S. Stankowski, M. Ravinet, Evolution 75 (2021) 1256–1273. date_created: 2021-05-09T22:01:39Z date_published: 2021-03-22T00:00:00Z date_updated: 2023-10-18T08:16:01Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.14215 external_id: isi: - '000647226400001' file: - access_level: open_access checksum: 96f6ccf15d95a4e9f7c0b27eee570fa6 content_type: application/pdf creator: kschuh date_created: 2022-03-25T12:02:04Z date_updated: 2022-03-25T12:02:04Z file_id: '10921' file_name: 2021_Evolution_Stankowski.pdf file_size: 719991 relation: main_file success: 1 file_date_updated: 2022-03-25T12:02:04Z has_accepted_license: '1' intvolume: ' 75' isi: 1 issue: '6' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '03' oa: 1 oa_version: Published Version page: 1256-1273 publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Defining the speciation continuum tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 75 year: '2021' ... --- _id: '14984' abstract: - lang: eng text: Hybrid zones are narrow geographic regions where different populations, races or interbreeding species meet and mate, producing mixed ‘hybrid’ offspring. They are relatively common and can be found in a diverse range of organisms and environments. The study of hybrid zones has played an important role in our understanding of the origin of species, with hybrid zones having been described as ‘natural laboratories’. This is because they allow us to study,in situ, the conditions and evolutionary forces that enable divergent taxa to remain distinct despite some ongoing gene exchange between them. article_processing_charge: No author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: 'Stankowski S, Shipilina D, Westram AM. Hybrid Zones. In: Encyclopedia of Life Sciences. Vol 2. eLS. Wiley; 2021. doi:10.1002/9780470015902.a0029355' apa: Stankowski, S., Shipilina, D., & Westram, A. M. (2021). Hybrid Zones. In Encyclopedia of Life Sciences (Vol. 2). Wiley. https://doi.org/10.1002/9780470015902.a0029355 chicago: Stankowski, Sean, Daria Shipilina, and Anja M Westram. “Hybrid Zones.” In Encyclopedia of Life Sciences, Vol. 2. ELS. Wiley, 2021. https://doi.org/10.1002/9780470015902.a0029355. ieee: S. Stankowski, D. Shipilina, and A. M. Westram, “Hybrid Zones,” in Encyclopedia of Life Sciences, vol. 2, Wiley, 2021. ista: 'Stankowski S, Shipilina D, Westram AM. 2021.Hybrid Zones. In: Encyclopedia of Life Sciences. vol. 2.' mla: Stankowski, Sean, et al. “Hybrid Zones.” Encyclopedia of Life Sciences, vol. 2, Wiley, 2021, doi:10.1002/9780470015902.a0029355. short: S. Stankowski, D. Shipilina, A.M. Westram, in:, Encyclopedia of Life Sciences, Wiley, 2021. date_created: 2024-02-14T12:05:50Z date_published: 2021-05-28T00:00:00Z date_updated: 2024-02-19T09:54:18Z day: '28' department: - _id: NiBa doi: 10.1002/9780470015902.a0029355 intvolume: ' 2' language: - iso: eng month: '05' oa_version: None publication: Encyclopedia of Life Sciences publication_identifier: eisbn: - '9780470015902' isbn: - '9780470016176' publication_status: published publisher: Wiley quality_controlled: '1' series_title: eLS status: public title: Hybrid Zones type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ... --- _id: '7651' abstract: - lang: eng text: The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods. article_number: '20190721' article_processing_charge: No article_type: original author: - first_name: J. full_name: Larsson, J. last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: S. full_name: Bengmark, S. last_name: Bengmark - first_name: T. full_name: Lundh, T. last_name: Lundh - first_name: R. K. full_name: Butlin, R. K. last_name: Butlin citation: ama: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 2020;17(163). doi:10.1098/rsif.2019.0721 apa: Larsson, J., Westram, A. M., Bengmark, S., Lundh, T., & Butlin, R. K. (2020). A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2019.0721 chicago: Larsson, J., Anja M Westram, S. Bengmark, T. Lundh, and R. K. Butlin. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface. The Royal Society, 2020. https://doi.org/10.1098/rsif.2019.0721. ieee: J. Larsson, A. M. Westram, S. Bengmark, T. Lundh, and R. K. Butlin, “A developmentally descriptive method for quantifying shape in gastropod shells,” Journal of The Royal Society Interface, vol. 17, no. 163. The Royal Society, 2020. ista: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. 2020. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 17(163), 20190721. mla: Larsson, J., et al. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface, vol. 17, no. 163, 20190721, The Royal Society, 2020, doi:10.1098/rsif.2019.0721. short: J. Larsson, A.M. Westram, S. Bengmark, T. Lundh, R.K. Butlin, Journal of The Royal Society Interface 17 (2020). date_created: 2020-04-08T15:19:17Z date_published: 2020-02-01T00:00:00Z date_updated: 2021-01-12T08:14:41Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsif.2019.0721 file: - access_level: open_access checksum: 4eb102304402f5c56432516b84df86d6 content_type: application/pdf creator: dernst date_created: 2020-04-14T12:31:16Z date_updated: 2020-07-14T12:48:01Z file_id: '7660' file_name: 2020_JournRoyalSociety_Larsson.pdf file_size: 1556190 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 17' issue: '163' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version publication: Journal of The Royal Society Interface publication_identifier: eissn: - 1742-5662 issn: - 1742-5689 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: 1 status: public title: A developmentally descriptive method for quantifying shape in gastropod shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2020' ... --- _id: '9123' abstract: - lang: eng text: 'Inversions are chromosomal rearrangements where the order of genes is reversed. Inversions originate by mutation and can be under positive, negative or balancing selection. Selective effects result from potential disruptive effects on meiosis, gene disruption at inversion breakpoints and, importantly, the effects of inversions as modifiers of recombination rate: Recombination is strongly reduced in individuals heterozygous for an inversion, allowing for alleles at different loci to be inherited as a ‘block’. This may lead to a selective advantage whenever it is favourable to keep certain combinations of alleles associated, for example under local adaptation with gene flow. Inversions can cover a considerable part of a chromosome and contain numerous loci under different selection pressures, so that the resulting overall effects may be complex. Empirical data from various systems show that inversions may have a prominent role in local adaptation, speciation, parallel evolution, the maintenance of polymorphism and sex chromosome evolution.' article_processing_charge: No author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson citation: ama: 'Westram AM, Faria R, Butlin R, Johannesson K. Inversions and Evolution. In: ELS. Wiley; 2020. doi:10.1002/9780470015902.a0029007' apa: Westram, A. M., Faria, R., Butlin, R., & Johannesson, K. (2020). Inversions and Evolution. In eLS. Wiley. https://doi.org/10.1002/9780470015902.a0029007 chicago: Westram, Anja M, Rui Faria, Roger Butlin, and Kerstin Johannesson. “Inversions and Evolution.” In ELS. Wiley, 2020. https://doi.org/10.1002/9780470015902.a0029007. ieee: A. M. Westram, R. Faria, R. Butlin, and K. Johannesson, “Inversions and Evolution,” in eLS, Wiley, 2020. ista: 'Westram AM, Faria R, Butlin R, Johannesson K. 2020.Inversions and Evolution. In: eLS. .' mla: Westram, Anja M., et al. “Inversions and Evolution.” ELS, Wiley, 2020, doi:10.1002/9780470015902.a0029007. short: A.M. Westram, R. Faria, R. Butlin, K. Johannesson, in:, ELS, Wiley, 2020. date_created: 2021-02-15T12:39:04Z date_published: 2020-05-16T00:00:00Z date_updated: 2021-02-15T13:18:16Z day: '16' department: - _id: NiBa doi: 10.1002/9780470015902.a0029007 language: - iso: eng month: '05' oa_version: None publication: eLS publication_identifier: isbn: - '9780470016176' - '9780470015902' publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Inversions and Evolution type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ...